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1. In the first part of this paper we shall consider associative rings, pointing 
out where associativity is required. In the second part we shall consider not 
necessarily associative rings and in particular alternative rings. 

A property S of rings is said to be a radical property, in the sense of Kurosh 
(4), if it satisfies the following three conditions: 

(a) Every homomorphic image of an S-ring (i.e. a ring with property S) 
is again an S-ring. 

(b) Every ring R contains an S-ideal (i.e. an ideal which is an S ring) S(R)y 

which contains every other S-ideal of R. This maximal S-ideal, S(R)y is called 
the S-radical of R. 

(c) The factor ring R/S(R) is S-semi-simple (i.e. R/S(R) has no non-zero 
S-ideals). 

Many well-known radical properties (Jacobson, Brown-McCoy, Levitzki, 
etc.) satisfy a further condition: 

(d) If / is an ideal of a ring R, if S(I) is the S-radical of the ring i", and if 
S(R) is the S-radical of R, then 

S(I) = I r\S(R). 

If a radical property satisfies condition (d), we say it is hereditary. However, 
not every radical property is hereditary. For example, if S is the upper radical 
property determined by the class of all non-zero nilpotent rings, then S is not 
hereditary. To explain what is meant by an upper radical property, we remind 
the reader that if a class M of rings has the property that any non-zero ideal 
of a ring of M can be mapped homomorphically onto a ring of M, then such a 
class M can be expanded to be the class of all semi-simple rings with respect 
to a radical property SM. A ring is SM-radical if it cannot be mapped homo
morphically onto any ring in the class M. This radical property is the largest 
radical property for which all rings in M are semi-simple. See (4). 

The class of all non-zero nilpotent rings is a class which does determine an 
upper radical property, because every ideal of a nilpotent ring is itself a nil-
potent ring. 

This upper radical property S determined by the class of all non-zero 
nilpotent rings is inverted in some sense, for we usually think of nilpotent rings 
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HEREDITARY RADICALS 595 

as radical rings whereas for this property they are all semi-simple. Nevertheless 
this is a legitimate radical property. 

To see that this radical property is not hereditary, let 7 be any non-zero 
nilpotent ring and let R be the ring obtained from 7 by adjoining a unity 
element to 7. Then 7 is semi-simple, i.e. 5(7) = 0. However, R itself is an 
5-ring, for it cannot be mapped homomorphically onto a non-zero nilpotent 
ring. Thus S{R) = R. Consequently 5(7) = 0 but 

ms(R) = i r\R = 19*0. 

Therefore 5(7) ^ 7 H S(R). 
The first two results are interesting and not difficult to prove. 

LEMMA 1. If S is a radical property y then the following two conditions are 
equivalent: 

(ai) Every ideal of an S-ring is itself an S-ring. 
(a2) For every ring R and every ideal I of R, we have 5(7) 3 7 P S(R). 

LEMMA 2. If 5 is a radical property then the following two conditions are 
equivalent: 

(0i) Every ideal of an S-semi-simple ring is itself S-semi-simple. 
(£2) For every ring R and every ideal I of R, we have 5(7) C / H S(R). 

Proofs. If (a2) holds and R is an 5-ring, then S(R) = R and 

5(7) 3 7 P S(R) = IC\R = I. 

Since 5(7) C 7, we have 5(7) = 7 and thus (ax) holds. 
If («i) holds, we consider 7 P S(R). This is an ideal in the 5-ring S(R) and 

by (ai) it is itself an 5-ring. Since 7 P S(R) is an ideal of 7, it must therefore 
be contained in 5(7). Thus we have (a2). 

If (/32) holds and if R is 5-semi-simple, then S(R) = 0 and 

5(7) Qir\S(R) = / H O = 0 . 

Thus 5(7) = 0 and we have (0i). 
Finally if (/?i) holds, we consider the 5-semi-simple ring R/S(R). The ideal 

[I + S(R)]/S(R)~I/[ir\S(R)) 

is an ideal of an 5-semi-simple ring and by (/3i) it must be 5-semi-simple. 
Consequently J / [ / n S ( J ? ) ] is 5-semi-simple. Therefore 5(7) C 7 C\ S(R). 
For, if not, 

S(I) + [I H S(R)} 5(7) 
7 n S(R) - 5(7) DID S(R) 

w^ould be a non-zero 5-ideal (since it is a homomorphic image of 5(7)) in the 
5-semi-simple ring 7/[7 Pi S(R)], and this is impossible. Thus we have (/32). 

Thus heredity is equivalent to conditions (a2) and (/32) and by Lemmas 1 

https://doi.org/10.4153/CJM-1965-059-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-059-x


596 T, ANDERSON, N. DIVINSKY, AND A. SULINSKI 

and 2 it is equivalent to conditions (<*i) and (/?i). Amitsur (1) studied the 
relationship between conditions (ai) and (#i) and he proved that («i) implies 
(0i). Thus heredity is equivalent to condition (ai) by itself, and by Lemma 1, 
to condition (a2) by itself. 

The following theorem shows that the assumption of (ai) is not necessary 
in establishing (/3i), that (/3i) holds for all radical properties! 

THEOREM 1. If S is any radical property, then for any (associative) ring R and 
any ideal I of R, S (I) is an ideal of R. 

Proof. If S (I) is not an ideal of R, then there exists an element x of R such 
that either x-S(I) or S(I)-x is not contained in S (I). Assume first that x-S(I) 
is not contained in S (I). Then x-S(I) + S (I) properly contains S (I) and of 
course it is contained in I. Furthermore x-S(I) + S (I) is an ideal of / . This 
is clear on the right because S (I) is an ideal of / (we need associativity here). 
If we multiply x- S (I) + S (I) on the left by / we get 

I-xS(I) + I-S(I) = Ix-S(I) + I-S(I) C / . £ ( / ) Ç 5(7). 

Again we use associativity. 
Since I/S(I) is, by (c), 5-semi-simple, the non-zero ideal 

[x'S(i)+S(i)]/s(D 

cannot be an 5-ring. We shall, however, show that [x-S(I) + S (1)]/S (I) is a 
homomorphic image of the 5-ring S (I) and is therefore an S-ring, by (a). This 
contradiction will prove that x-S(I) CI S (I) for every x in R. Similarly, 
SCO-* £ S (I) and SCO is an ideal of R. 

To set up the homomorphism, let y be an arbitrary element in S (I) and 
define: 

B(y) ^xy + S(I). 

Then 6 is a mapping from S (I) to [xS(I) + S (1)]/S (I). I t is clearly an onto 
mapping and it preserves addition. To see that 6(yi y2) = 0(yi) -Oiy-i) we shall 
show that both of these are the zero coset. 

First, 
0Cyi ^2) = x-yi y2 + SCO = xyi-y2 + S (I), 

by associativity. Since yi is in S (I) QI,xyi Ç / and thus xyi-y2 is in 
I-S(I) C S(J). Thus e(yiy2) = 0 + S(I). 

On the other hand, 

0(yi)'0(y2) = xyi-xy2 + S(I) = xyix-y2 + S(7), 

by associativity. Since xy\ x is in / , xyi x-y2 is in S(7). Thus 

0(yi)'B(y2) = 0 + 5 ( J ) . 

This proves that 6 is a homomorphism onto, that [x-S(I) + S (1)]/S (I) is 
an S ring, and that x-S(I) C S (I). The theorem is thus established. 
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COROLLARY 1. If S is any radical property, then for any {associative) ring R 
and any ideal I of R we have S (I) C / P\ 5(7?). 

Proof. Since S (I) is an ideal of R, and it is an S ring, it must, by (b), be 
contained mS(R). It is certainly contained in I and thus 5 ( / ) Ç / n 5 ( J î ) . 

COROLLARY 2. If S is any radical property, then every ideal of an S-semi-simple 
ring (associative) is itself S-semi-simple. 

This follows from Corollary 1 and Lemma 2. 

2. Not necessarily associative rings (narings). The Kurosh theory of 
radicals holds for any class $ of narings satisfying the following two conditions 
(4): 

(1) Every ideal of a naring in $ is itself a naring in $. 
(2) Every homomorphic image of a naring in $ is also a naring in $ . 
Thus $ may be many different classes of narings. In particular it might be 

the class of all narings, or all alternative narings, or all associative narings 
(i.e. rings!). 

Let us now take Ë to be the class of all narings. The notion of a hereditary 
radical property is well defined and even the example of a non-hereditary 
radical property holds, for the notion of an upper radical property and its 
construction goes through for narings. The notion of adjoining a unity element 
to a naring in the natural way does not require any associativity. We observe, 
however, that if $ is some subclass of the class of all narings, then it is im
portant to check that the naring obtained by adjoining a unity element is 
again in the class $ . For example, if $ is the class of all Lie narings, then 
adjoining a unity gives a naring which is not a Lie naring, i.e. is outside of $ . 

Lemmas 1 and 2, with their proofs, hold in their entirety, for the class of all 
narings. 

Theorem 1, however, presents three associative difficulties. The first is the 
statement that x-S(I) + S (I) is an ideal of / . The second is the statement that 

0(yi y2) = x-yt y2 + 5(7) = 0 + 5(7). 

The third is the statement that 

0(yi)-d(y2) = xyvxy2 + S (I) = 0 + S(I). 

At the present time we are unable to overcome these difficulties for the class 
of all narings, and we suspect they are false. 

3. Alternative narings. Following common practice we shall call alternative 
narings, alternative rings. 

We propose to show that the three associative difficulties of Theorem 1 can 
be overcome for the class of alternative rings. 

We remind the reader that a naring R is said to be an alternative ring if 
XX-y = x-xy and y-xx = yx-x, for every x and y of R. The associator (x, y, z) 
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is defined to be xy-z — x-yz, and for alternative rings it can be shown (2) that 
for every x, y, 2, a, and b of R we have: 

(l) {%, y, z) = (*, X, y) = (y,*, *) 

= - f a * » ? ) = - (?>*>*) = - (*>y>*) -
(2) (x, ry, 2) = (x, y,z)-x (2, p. 880, formula 2.13). 

(3) (x, yx, z) = x- (x, j , z) (2, p. 880, formula 2.14). 

(Note that formula 2.14 referred to in (3) appears in (2) with a misprint. A 
correct version appears in Studies in Modern Algebra (ed. A. A. Albert), 
(Menasha, Wis., 1963), p. 130, formula (5).) 

(4) xy-x = x-yx. 

(5) a(xy)a = ax-ya (3, Lemma 3). 

By letting x = a + b in (2) and using (2) we obtain : 

(6) (a, by, z) + (6, ay, 2) = (a, y, 2) • ft + (6, y, 2) -a. 

By letting x = a + b in (3) and using (3) we obtain : 

(7) (a, ye, 2) + (i, ya, 2) = J- (a, y, 2) + a- (A, y, 2). 

We now require: 

LEMMA 3. If I is an ideal of an alternative ring R and if M is an ideal of 7, then: 
(8) MM-R C M. 
(9) (m, x, 7) Ç M + Mx for every x in R. 
(10) I f + Mx is an ideal of I for every x in R. 
(11) M + Mx- Mx is an ideal of I for every x in R, and 

M + Mx • Mx Ç M + Mx. 

(12) MR-IIQM. 
(13) (Mx • Mx) (Mx • Mx) Ç M/or ez;ery x in R. 

Remark. Mx-Mx is of course defined as the set of all finite sums of the form 
t 

/ j m 1 x ' n ï x, 

for m i and n t in M f or a l i i = 1, . . . , /. 
Generally speaking this causes no difficulty in the proof. We may often just 

consider a single term of the form mx • nx to establish properties about Mx • Mx, 
when it is clear that the property extends to finite sums. 

Proof. Let m, n be in M and x in R. Then 

mn-x — m-nx + (m, w, x) ~ m-nx — (w, x, w) 

by (1) and this equals m-nx — mx-n + m-xn. Since m is in 7, mx is in 7 and 
therefore mx • w is in M. Similarly m • nx and m • xn are both in M. Thus mn • x 
is in M and therefore (8) is established. 

Let m be in M, x in i£, and i in 7. Then (m, x, i) = — (w, i, x) by (1) and 
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this is equal to — mi - x + m • ix. Now m • ix is in M and — mi • x is in Mx and 
this proves (9). 

A typical element of M + Mx is m + nx. Now 

(m + nx)i = mi + nx-i = mi + w-xi + (^, ^, i). 

Since (n, x, i) is in M + Mx by (9), and both mi and ?z-xi are in M, M + Mx 
is a right ideal of 7. Similarly 

i{m + nx) = im -\- i-nx = im + in-x — (i, n, x) 
= im + in-x — (n, x, i) by (1). 

Again by (9) this triple sum is in M + Mx, and thus M + Mx is an ideal of i\ 
Thus we have (10). 

To establish (11) we consider: 

(M + Mx-Mx)I C M + (Mx-Mx)I 
Ç I + Mx- (Mx-I) + {Mx, Mx, I) 
QM+ Mx- (Mx-I) + (Mx, I, Mx) by (1), 
C M + Mx-(Mx-I) + (Mx-I)(Mx) + Mx-(I-Mx). 

Since M + Mx is an ideal of I, Mx-I C M + Mx and J-MJC Ç Af + Mar. 
Thus 

(M+Mx-Mx)I Q M+Mx-(M+Mx) + (M + Mx) (Mx) + Mx - (M + Mx) 
C M + Mx-Mx. 

Similarly I-(M + Mx-Mx) C M + Mx-Mx and thus M + Mx-Mx is an 
ideal of / . Since Mx C 7 and M + Mx is an ideal of I, (M + Mx) - Mx C 
M + Mx and therefore M + Mx-Mx ^ M + Mx. This establishes (11). 

To establish (12) we shall make use of (6). Take in (6), a in M, b and z in / , 
and y in R. Then (a, fry, z) is in (M, 7,1) C M. Also (6, y,z)-a is in 

(I,R,I)-MQIMŒ M. 

Therefore by (6), (5, ay, 2) — (a, y,z)-b is in M. By (1) we get 

(ay, z, b) - (a, y,z)-b 

in M and this means that 

(ay-z)b — ay-zb — (ay-z)b + (a-yz)b = (a-yz)b — ay-zb 

is in M. However, yz is in I, a-yz is in M, and (a-yz)b is in M. Thus ay -so is in 
M, for every a in M, y in i?, z, b in 7. Therefore MR -II Q M and we have (12). 

Finally 

(Mx-Mx)(Mx-Mx) Q (M + Mx)(Mx-Mx) by (11) 
Ç M(Mx-Mx) + Mx-(Mx-Mx) 
ç M + MR-II 
Ç M by (12). 

This gives us (13) and completes the proof of Lemma 3. 

https://doi.org/10.4153/CJM-1965-059-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-059-x


6 0 0 T. ANDERSON, N. DIVINSKY, AND A. SULINSKI 

LEMMA 4. If I is an ideal of an alternative ring R and if M is an ideal of 7, 
then: 

(80 R-MMQM. 
(90 (7, x, M) C M + xM for every x in R. 

(100 M + %M is an ideal of I for every x in R. 
(11') M + xM'xM is an ideal of I for every x in R, and 

M + xM-xM C M + xM. 
(120 II-RMQ M. 
(130 (xM-xM) (xM-xM) C M/or e^ry x i» J?. 

Proof. The proof is almost a mirror image of the proof of Lemma 3, where 
(7) is used instead of (6). 

Before we make use of Lemmas 3 and 4, we need 

LEMMA 5. If S is any radical property defined for the class of all alternative 
rings, if R is any alternative ring and I is an ideal of R such that II = 0, then 
S (I) is an ideal of R. 

Proof. In this case, wThen II = 0, the three associative difficulties do not 
pose a problem. The set x-S(I) + S (I) is an additive subgroup, and since 
it is in I, with II = 0, it is obviously an ideal of I. 

Secondly, 
6(yi y2) = x-yi y2 + S(I) = 0 + S(I) 

since yi y2 is in II = 0. 
Finally, 

0(yi)-0(y2) = xyvxy2 + S(I) = 0 + S(I) 

since xy\ and xy2 are both in I and II — 0. 
Thus the associative proof of Theorem 1 goes through and Lemma 5 is true. 

Remark. Since nothing alternative was used, Lemma 5 holds in the class 
of all narings. 

THEOREM 2 . 7 / 5 is any radical property defined for the class of all alternative 
rings, if R is any alternative ring, and I any ideal of R, then S (I) is an ideal of R. 

Proof. Let 5(7) be called M. If M is not an ideal of R, then there exists an 
element x of R such that either xM or Mx is not contained in M. Assume first 
that Mx is not contained in M. Then M + Mx properly contains M and is 
an ideal of I by (10). 

Since I/M is, by (c), 5-semi-simple, the non-zero ideal (M + Mx)/M 
cannot be an 5-ring. We plan to proceed as in the proof of Theorem 1. 

We shall attempt to set up a homomorphism from M onto (M + Mx)/M, 
and if we can do this, then (M + Mx)/M will have to be an 5-ring, by (a). 
This contradiction will ensure that Mx C M. 

Let y be any element of M and define 

6(y) = yx + M. 
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Then 0 is a mapping from M to (M + Mx)/M. It is clearly an onto mapping 
and preserves addition. To show that B(yxy2) = 0(y1)-6(y2)t we shall again 
show that they are both the zero coset. 

Since 6(yx y2) = 3>i y2-x + M, using (8), we can conclude that yi y2-x is in 
M and thus 6(yx y2) = 0 + M. On the other hand 

B(yi)-e(y2) = yix-y2x + M. 

If Mx-Mx C Mf then yi x • y2 x is in M and 

0(yi)-0(y2) = 0 + M = d(yiy2). 

In that case 6 is a homomorphism, and the contradiction yields the fact that 
Mx C M. 

We shall therefore assume that Mx-Mx is not contained in M. Then 
M + ikfx-ikfx properly contains Af, and by (11) it is an ideal of / . Thus 
(M + Mx-Mx)/M is a non-zero ideal in the 5-semi-simple ring I/M. By (13) 
we see that this non-zero ideal is a zero ring, i.e., 

(M + Mx-Mx)/M- (M + Mx-Mx)/M = 0 + M. 

By Lemma 5, S[(M + Mx-Mx)/M] is an ideal of I/M. Since I/M is S-semi-
simple, S[(M + Mx-Mx)/M] must be 0 and thus (M + Mx-Mx)/M is an 
S-semi-simple ring. 

Since Mx-Mx is not contained in M, there exist elements mt and pi in M, 
for i = 1, . . . , n, such that 

n 

^2 MiX-piX 

is not in M, and in fact for some k, 1 < & < w, mk x-pk x is not in ikT. 
We now define a mapping, for any ^ in M, as 

^ (?) — Jx ' Pk % + M. 

This is a map from M onto (Mx-pkx + M)/M, and it clearly preserves 
addition. Furthermore, 

^(^13^2) = (yiy2-x)-pkx + M = 0 + M 

by (8). And 

h(yi)-h(y2) = (yix-pkx)-(y2x-pJcx) + M = 0 + M 

by (13). Therefore ^ is a homomorphism from the 5-ring Tkf onto the ring 
{Mx-pk x + M)/M. Since mkx-pkx is not in ikf, the image is a non-zero ring. 
Also the image is an ideal of (Mx-Mx + M)/M, since it is closed under 
addition, and multiplication is always zero. Thus, by (a), the image is a non
zero S-ideal in the 5-semi-simple ring (Mx-Mx + M)/M. This is a contra
diction and thus Mx • Mx C M, in which case Mx C M 

Similarly, using Lemma 4, we obtain xM C M. This proves the theorem. 
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COROLLARY l.IfS is any radical property defined for the class of all alternative 
rings, then for any ideal I of an alternative ring R, we have 

S(I) QinS(R). 

Proof. Since S (I) is an ideal of R, and it is an S-ring, it must, by (b), be 
contained in S(R). It is certainly contained in / and thus S (I) Ç1 I C\ S(R). 

COROLLARY 2. If S is any radical property defined for the class of all alternative 
rings, then every ideal of an S-semi-simple alternative ring is itself S-semi-simple. 

This follows from Corollary 1 and Lemma 2. 
Kaplansky (3, Theorem 1) has shown that the Jacobson radical property, 

for alternative rings, satisfies condition (d), i.e. is hereditary. We shall now 
show that several other radical properties, including the Brown-McCoy 
radical property (5), are also hereditary. 

LEMMA 6. Let Q be any class of simple alternative rings with unity elements. 
If I is an alternative ring which can be mapped homomorphically onto a ring A 
in O , and if I is an ideal of an alternative ring R, then R can be mapped homo
morphically onto A. 

Proof. Let h be the homomorphism from / onto A. Let i be any element in / 
such that h(i) = e, the unity element of A. Then for any x in R we define the 
mapping 

h(x) = h(ixi). 

Note that ixi is uniquely defined, by (4). Then h preserves addition because 

h(x + y) = h(i[x + y]i) = h (ixi + iyi) = h (ixi) + h (iyi), 

since h preserves addition. Thus h(x + y) = h(x) + h(y). 

To show that h preserves multiplication, we note by (5) that 

h (xy) = h(i (xy)i) = h(ix- yi) = h (ix) • h (yi) 
= [h(ix)-e]'[e-h(yi)] = [h(ix)-h(i)]'[h(i)-h(yi)] 
= h (ixi) - h (iyi) = h(x)- h (y). 

Therefore h is a homomorphism. 
For x in / , 

h(x) = h(ixi) = h(i)h(x)h(i) = eh(x)e = h(x). 

Thus the image of h is precisely A. Therefore h is a homomorphism from R onto 
A and the lemma is established. 

THEOREM 3. If O is any class of simple alternative rings with unity elements, 
then the upper radical property determined by O is hereditary. 

Proof. Let R be an 5o-nng and I a non-zero ideal of R. If I is not an 5o-ring, 
then it can be mapped homomorphically onto a ring in Q . By Lemma 6, R 
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can be mapped homomorphically in this way. But this is impossible since R is 
an So-ring. Therefore / is an So-ring. By Lemma 1, we then have 

for any ideal / of any alternative ring R. 
Then <SJQ is hereditary by Theorem 2, Corollary 1. 
If we now take Q to be the class of all simple alternative rings with unity 

elements, and define the upper radical property determined by Q , i.e. a ring R 
is an 5o-ring if it cannot be mapped homomorphically onto a ring in G, then 
it is known (5) that this is the Brown-McCoy radical property for alternative 
rings. We then have: 

COROLLARY. The Brown-McCoy radical property for alternative rings is 
hereditary. 

We can also use Lemma 6 to obtain: 

THEOREM 4. Every SQ-semi-simple alternative ring can be subdirectly embedded 
into a direct sum of rings from Q . 

Proof. Let R be an 5o-semi-simple alternative ring, and let A be the inter
section of all ideals I of R such that R/I is in O . We shall show that , 4 = 0 and 
this will prove the theorem. 

If A 9^ 0, then A is not an .So-ring, because R is 5o-semi-simple. Therefore 
there exists a homomorphism h of A onto a ring T in Q . By Lemma 6, there 
must exist a homomorphism h from R onto T. Let K be the kernel of h. Then 
K is an ideal of R such that R/K is in Q. Thus A C K. However, A cannot be 
contained in the kernel K because h coincides with h on A and if h(A) = 0 , 
then h (A) = 0 and thus T = 0, a contradiction. Therefore ^ 4 = 0 and the 
theorem is true. 
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