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Abstract

We study the transfer of (co)silting objects in derived categories of module categories via
the extension functors induced by a morphism of commutative rings. It is proved that the
extension functors preserve (co)silting objects of (co)finite type. In many cases the bounded
silting property descends along faithfully flat ring extensions. In particular, the notion of
bounded silting complex is Zariski local.

2020 Mathematics Subject Classification: 13D09, 16E35, 18G10 (Primary);
13D30, 13C12, 16D40, 18G80 (Secondary)

1. Introduction

Silting theory provides useful tools in the study of various triangulated categories. We
refer to [2, 32] for details about the influence of this. In particular, it studies 7-structures with
special properties that provide good approximations. In the case of the unbounded derived
category of a module category these -structures are induced by some objects (called silting,
respectively cosilting, objects) that can be interpreted as generalisations of tilting complexes
(in particular, they also generalise the n-tilting modules), [5, 40]. In [4] it is shown that
if we are in the derived category of a commutative ring, the silting complexes of length
2 are related with other structures associated to that ring (Gabriel filters, torsion theories
of finite type, the spectrum, cf. [19]). Moreover, it was proved in [1, 3, 15, 16] that there
exists a strong connection between the spectrum of the ring and the ¢-structures associated
to (co)silting objects in the unbounded derived category.

Since we have such a connection, it is natural to ask if the silting property is Zariski
local or, even more, if it is an ad-property (see Section 2-2 for the relevant definitions).
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It is already known that the properties of being projective, 1-tilting and 2-silting are ad-
properties (cf. [8, 18 and 28]). The Zariski locality for n-tilting modules was also proved
in [18]. In order to provide answers for this question, we will study transfers, induced by a
morphism A : R — § of commutative rings, of the (co)silting properties of objects of D(R)
or D(S). More precisely, we will consider the algebraic transfer that uses the derived func-
tors — ®}§ S :D(R) — D(S) and RHomg(S, —) : D(R) — D(S) of the extension, respectively
coextension, functors associated to A, and the topological transfer (for cosilting objects of
cofinite type) via the canonical map A* : Spec(S) — Spec(R). In this way we continue the
investigations realised in [18] for the case of tilting modules and in [8] for silting complexes
of length 2. For other contributions in the study of the transfer of some related properties
via ring extensions we refer to the already mentioned paper [28] (projective modules), but
also to [12] (injective modules), [27] (compact tilting complexes) and [38] (n-tilting and
n-cotilting modules).

We will prove in Theorem 4-2 that the silting property ascends along A (i.e., the func-
tor — ®II§ S preserves silting objects), and that the same is true for pure-injective cosilting
objects via the functor RHompg(S, —). Moreover, these functors preserve the (co)finiteness
type properties, see Theorem 4-3. For (co)silting objects of (co)finite type we can also
apply a topological transfer since A* is continuous with respect to Hochster’s topology,
Theorem 5-4. In fact, this transfer coincides up to equivalence to that realised by using
the derived extension functors. Moreover, if A is faithfully flat then A* is also closed, and
this allows us to identify all (co)silting complexes of (co)finite type from D(S) that can be
obtained, up to equivalence, by ascending a (co)silting object from D(R).

On the other side, as in the case of n-tilting modules (cf. [18]), it is not clear if the descent
of the (co)silting property is valid for all commutative rings. More precisely, the (co)silting
property descends with respect to a faithfully flat morphism A : R — S of commutative rings
if the functor — ®}€ S reflects the silting objects (respectively, RHomg(S, —) reflects the
cosilting objects). In the last part of the paper we study the property for bounded (co)silting
complexes. Even though we are not able to prove the descent property for all bounded com-
plexes over commutative rings, we can indicate many situations when it is valid. We prove
in Theorem 5-12 that the cosilting property descends for complexes that are duals of com-
plexes of projectives. Note that this result is satisfactory for noetherian rings since in this
case all bounded cosilting complexes have this form, up to equivalence. For the silting case,
we prove in Corollary 6-9 that the bounded silting property is Zariski local. Moreover, we
provide in Remark 6-11 an extensive list of rings for which the silting property descends for
bounded complexes of projectives, cf. Proposition 6-4. This list includes all noetherian rings,
all rings that are of finite injective dimension or finite pure global dimension, in particular
all rings of cardinality &, for some integer n > 0. Also, the n-tilting property descends for
these rings (Corollary 6-5).

Unfortunately, we were not able to prove that the properties used in Lemma 3-2 to char-
acterise (co)silting objects in D(R) descend along faithfully flat morphisms (in [8, 18] it
is proved that these properties descend together for complexes of length 2 and for 1-tilting
modules, but the proofs cannot be extended to general bounded complexes). In order to avoid
this obstruction, we use two results that can be of independent interest. More precisely,
in Theorem 3-11 it is proven that for bounded silting complexes the closure of the class
T>0 with respect to direct sums can be replaced by the weaker condition Add(7T) € T->°.
This generalises a recent result proved for n-tilting modules by Positselski and St ovicek
[33, section 2]. The other one is presented in Theorem 6-10, where it is proved that if R is
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a commutative ring such that D(R) coincides with its smallest localising subcategory that
contains all pure-injective objects then for every injective morphism of rings A : R — § that
is pure, the smallest localising subcategory of D(R) that contains S is D(R).

Although in this paper we are mostly interested in commutative rings, for the descending
property of silting objects we also need to consider a non-commutative setting: Marks and
Vitéria had noticed in [26] that every bounded silting complex can be interpreted as a tilting
module in the category of representations of a Dynkin quiver. Therefore, in Section 3 the
results will be presented for general rings. In Section 4 we study the ascent properties for
silting and cosilting for some morphisms that are induced by a ring morphism whose domain
is commutative (note that for general rings the property of being silting does not ascend, e.g.
[8, example 2-5]). The next two sections are dedicated to extensions induced by morphisms
of commutative rings. In Section 5 we study the transfer of (co)silting complexes of cofi-
nite type by using both the algebraic and topological transfers mentioned above. In the last
section we study the descent property for bounded silting complexes.

If R is a ring then Mod-R will denote the category of all right R-modules, and D(R)
will be the unbounded derived category of Mod-R. We recall that D(R) is a triangulated
category, and we will denote by _[1] the shift. The i-th homology functor is denoted by
H':D(R) — Ab.

2. Preliminaries
2-1. Derived functors

Let R and S be two rings and let X € D(RP ®z S) be a complex of (R,S)-bimodules. Then
the derived tensor product

— ®% X :DR) — D(S)
is the left adjoint of the derived hom functor
RHomg(X, —) : D(S) — D(R).

The link between the right derived hom functor and the usual hom functor is expressed by
the natural isomorphism

H'RHomg(X, Y) = Hompg)(X, Y[i]).
Moreover the adjunction isomorphism
Hompys)( — ®kX, —) = Homp)(—, RHomg(X, —))
has an enriched version
RHomg( — ®%X, —) = RHomg(—, RHomg(X, —)),

the initial isomorphism being recovered by taking H". Letting X to run over all objects in
D(R? ®z S) we get two bifunctors. In particular, if R is commutative, the derived tensor
product induces a monoidal structure on the category D(R), the unit being R itself, and the
internal hom being RHomg(—, —).

Using these functors one can define two dualities on D(R), namely

()*: = RHomg(—, R) : D(R) — D(R°P)
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and
()*: =RHomz(—, Q/Z) : D(R) — D(RP).

We denote by the same symbols the respective dualities going in the other sense, namely
D(R°P) — D(R).

We record some basic properties of these functors. Recall that an object C € D(R) is com-
pact if the covariant functor Hompg)(C, —) commutes with respect to direct sums (this
definition is valid for general triangulated categories). In the case of D(R) the compact
objects are those objects that are isomorphic to bounded complexes of finitely generated
projective modules.

LEMMA 2-1. [3, Lemma 2-1]. Let X, C € D(R) and Y € D(R®P), with C compact. Then:

(i) foranyn € Z we have H"(X ) = H™(X)" and H"(X ) =0 ifand only if H"(X) = 0;

(i1) there are natural isomorphisms

RHomgop (Y, XT) = (X ®F ¥)* = RHomg(X, YT),

RHomg(C, X) = X ®k C*,
and

RHomg(C,X)* = C @k x*.

2.2. Local properties of objects of D(R)

Let B3 be some property which can be satisfied by an object of the unbounded derived cat-
egory of a commutative ring. Given a commutative ring R, let 3z denote the full subcategory
of objects of D(R) satisfying 3.

In general, it is possible to extend the consideration of the property P8 from the affine set-
ting of modules over commutative rings to the non-affine setting of the category Qcoh-X
of quasi-coherent sheaves over a scheme X in the following way. Given a scheme X,
let D(X) = D(Qcoh-X) denote the unbounded derived category of the category of quasi-
coherent sheaves over X. Let Oy denote the structure sheaf on X. For any open subset U C X
we have the module of sections functor _(U) : Qcoh-X — Mod-Ox(U). If U is open affine
then this functor is exact [42, Lemma 30-2-2.], and so it extends naturally to a triangle func-
tor _(U) : D(X) — D(Ox(U)). Then we say that an object M € D(X) satisfies the property
B if the section object M(U) € D(Ox(U)) belongs to ‘Boy(v) for any open affine subset U
of X.

Well-behaved properties of quasi-coherent sheaves are expected to be verifiable on any
choice of open affine cover of X. A property P8 is therefore called (Zariski) local if for any
scheme X, any open affine cover X = | J,.; U;, and any M € D(X), we have that M satisfies
B whenever M(U;) € ‘Boyw, for all i € I. Thanks to the following result, called the Affine
Communication Lemma, there is a purely module-theoretic criterion sufficient to check that
a property is local.

LEMMA 2-2. Let*B be a property of objects of D(R) where R runs over commutative rings.
Assume the following two conditions for any commutative ring R:
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(1) if X € D(R) satisfies B then X ®}§ R[f e P17 for any element f € R;
(i) let fo,fi,....fa—1 €R be elements such that R=7 ;_, fiR and consider the ring
homomorphism R — S: =1,_, R[ffl]. Then for any X e D(R), if X ®II§ S € Py then
Xe ‘BR.

Then the property B is local.

Proof. The proof is completely analogous to the non-derived version in [14, Lemma 3-5],
see also [18, Lemma 2-1].

It is often the case that a local property satisfies a stronger variant than the conditions
of Lemma 2-2. Following [14, Definition 3-4], we say that a property 33 is an ad-property
(=ascent-descent property) if the following two conditions hold for any commutative ring
R and X € D(R):

(1) it X €‘Pr then X ®Ilg S € P for any flat ring morphism R — S;
) ifX ®}§ S € By then X € P for any faithfully flat ring morphism R — S.

2-3. Phantoms
We say that a morphism ¢ : U — V in D(R) is a phantom if for every compact object

C € D(R) we have Hompg)(C, ¢) =0, [22]. A triangle X - Y — Z —8> X[1] is called pure if
4 is a phantom.

Remark 2-3. The notion of phantom is used in many triangulated categories. For instance,
in the homotopy category of spectra a map f is a phantom if and only if all maps induced
by f on homologies are zero. In the case of derived categories of modules this property is
not true. In order to see this, we consider in D(Z) the morphism ¢ induced by the following
morphism of complexes

2.
0 7Z——1Z 0
0

1z

0 Z 0

It is easy to see that H"(¢) =0 for all n € Z. But ¢ # 0 (since it is not equal to 0 in the
homotopy category), so it is not a phantom since its domain is a compact object.

LEMMA 2-4. [3, Lemma 2-6] A morphism ¢ : U — V in D(R) is a phantom if and only if
+
T =0.

Assume that A : R — S is a flat morphism of commutative rings and that A is an R-algebra.
We consider the S-algebra B=A ®g S. Applying the functor — ®I]§ S=—®sB:DA)—
D(B), we obtain a natural morphism (of R-modules) Homp4)(C, Y) — Hompg)(C ®],5
S, Y ®}§ S) that induces a natural morphism of S-modules

2 : Homp(4)(C, Y) ®& S — Hompg)(C ®% S, ¥ @k 9).

These morphisms are also described in [41, Lemma 3].
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The proof of the following lemma follows the lines of the proofs presented in [29, Lemma
2-2], [41, Lemma 3] for noetherian rings, where C may be a complex of finitely generated
modules.

LEMMA 2-5. Let A: R— S be a flat morphism of commutative rings. Suppose that A is an
R-algebra and that B=A ®g S. If C,X € D(A) are two complexes such that C is compact,
the natural morphism

E : Homp)(C, X) ®g S — Hompp)(C ®% S, X @% )
is an isomorphism.

Proof. Observe that we can assume that C is a bounded complex of finitely generated pro-
jective modules, so we can view the homomorphisms from Homp4)(C, X) as morphisms
in the homotopy category. As in the above mentioned proof we apply the induction on the
length of C. If C is of length 1, it follows that C is a finitely generated projective module
concentrated in a degree i. It follows that Homp)(C, X) = Homy(C!, H (X)) and, using the
flatness of S, we obtain the isomorphisms

Homp(a)(C ®F S, X ®F ) = Homp(C' ® S, H'(X ® S))
=~ Homp(C' @z S, H'(X) ®& ).

We apply [13, Lemma 3-2-4] to conclude that, in this particular case, E is an isomorphism.

Assume that the statement is valid for all bounded complexes of projectives of length at
most n — 1, and suppose that C has length n (n > 2). Using the brutal truncations we observe
that we can embed C in a triangle

C>Cc—>C'>5

such that C' and C” are complexes of finitely generated projective modules of length at most
n—1.
We obtain the commutative diagram
HOHlD(A)(C'/7 X[—ID Rr S = HOIHD(B)(C/ ®}% S7 X[—l] ®§‘? S)
Homp (4)(C", X) ®g S = Homp gy (C” @k S X @k 9)

HOInD(A)(C,X) Qr S —— HOHlD(B)(O ®Ié S, X ®II:3 S)

HOInD(A)(C/,X) Rr S - = HOHlD(B)(C/ ®% S, X ®II§ S)

Homp (4)(C", X[1]) @ § —— Homp (5)(C" @% S, X[1] @% ),

—~

where the horizontal arrows are the corresponding maps E. The conclusion follows from
five lemma.
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Remark 2-6. If A: R— S is faithfully flat then the derived functor — ®}§ S:D(R) — D(S)
does not reflect zero-morphisms. In order to see this, let us consider a prime p and the
faithfully flat inclusion Z,) — J,, where Zy) it the (local) ring of all rational numbers whose
denominator is coprime with p and J), is the ring of p-adic integers. Observe that

Hompz,,)(Q, Z,)[1]) = Extz,, (Q, Z)) # 0.

However,
Homp(,)(Q ®%,, Ip Z» ®7,, Jp[1) ZExty,(Q®F | J,.3,) =0,
since J, is pure-injective and Q ®Iz‘(m Jp is flat. However, — ®}§ S reflects the phantoms.

PROPOSITION 2-7. Let A:R— S be a faithfully flat morphism of commutative rings.
Suppose that A is an R-algebra and that B=A Qg S. If ¢ : Z — X[1] is a map in D(A) such
that the induced map Z ®}§ S— X[1] ®}Q‘ S is phantom in D(B) then ¢ is phantom too.

Proof. For every compact C in D(A) the object C®}§S is compact in D(B), hence
Hompg)(C ®K S, ¢ @K S) = 0. Using Lemma 2-5 it follows that Homp)(C, ¢) ®& S =0,
hence Homp4)(C, ¢) =0.

3. Silting and cosilting in D(R)
3-1. TTF-triples in triangulated categories
We recall some standard notions and notations in triangulated categories. Let D be a

triangulated category. For a subcategory C € D and a subset I C Z of the set of integers, we
denote

CY' ={X e D|Homp(C,X[i]) =0, forall C e C and all i € I}
and
L1¢ = (X e D |Homp(X, C[i]) =0, forall CeC and alli € I}.

Often the set [ is symbolised as <n, <n, =n or similar, where n € Z, with the obvious
meaning.
A torsion pair in D is a pair (U, V) of subcategories D such that:

() U=V andU =1oV;
(2) every objects X € D liesin atriangle U > X — V — U[l] with U el and V € V.

It is clear that if ({/, )) is a torsion pair, then both I/ and V are closed under direct summands,
U is closed under coproducts, and V is closed under products. A TTF-triple in D is a triple
that (U, V, W) such that both (4, V) and (V, W) are torsion pairs. Let S be a set of objects
of D. The TTF-triple is generated by S if ¥V = S10. An object C € D is called compact if
the covariant functor Homp(C, —) commutes with respect to direct sums. If S is a set of
compact objects then we will say that the TTF-triple is compactly generated.

A torsion pair is called #-structure (co-t-structure) if in addition I is closed under positive
(respectively negative) shifts. Note that the closure of I/ under positive (negative) shifts, that
is U[1] CU (respectively U[ — 1] CU) is equivalent to V[ — 1] C V (respectively V[1] C
V). In these cases, we say that Uf is the aisle, respectively V is the coaisle of the (co)-t-
structure (U4, V).
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3.2. Silting and cosilting objects in derived categories

In the rest of this section R will be a unital associative ring. Let T € D(R). We say that T
is a silting object if the pair (T+>0, T1=0) is a t-structure in D(R). In this case, the induced
t-structure is called the silting t-structure induced by T. A class of objects is a silting class
if it is an aisle of a silting t-structure. Dually, an object C € D(R) is called cosilting if
(LﬁOC, L>0C) is a t-structure, called the cosilting t-structure induced by C. A coaisle of a
cosilting t-structure is called a cosilting class. Two (co)silting objects are equivalent if they
induce the same (co)silting class.

Remark 3-1. We know by [34, Lemma 4-5] that two silting objects 77 and T, are equivalent
if and only if Add(T) = Add(7>). Similarly, two cosilting objects C; and C, are equivalent
if and only if Prod(Cy) = Prod(C»).

LEMMA 3-2. An object T € D(R) is silting if and only if:
(S1) T e T+>0;

(S2) T+>0 is closed under coproducts;
(S3) T generates D(R), that is Ttz = {0).

Dually, a pure-injective object C € D(R) is cosilting if and only if:

(Cl) Cet>0¢;
(C2) +>0C is closed under products;
(C3) C cogenerates D(R), that is -2C = {0}.

Proof. The characterisation of the silting complexes is a particular case of [34, Proposition
4-13]. For the cosilting case, the argument is dual, the only modification occurs when we
need to show that C induces a t-structure whose aisle is -<0C (and consequently the coaisle
is the smallest cosuspended and closed under products subcategory of D(R) containing C).
Here we use the additional hypothesis that C is pure-injective and then the claim follows
by [25, Corollary 5-11] (the main result of [31] is essentially the reason why no extra
assumption is needed on the silting side.)

Remark 3-3. (1) A t-structure (), 2) is silting if and only if it extends to a TTF-triple
(X, Y, Z) which is non-degenerate, suspended and generated by a set of objects in D(R),
[2, Theorem 4-11]. If (X, Y, Z) is induced by the silting object T, we will denote it by
(X7, V1, Z7)

(2) A silting object T is bounded, that is, isomorphic in D(R) to a bounded complex of
projectives, if and only if (X7, Vr, Z7) is intermediate, see [3, Theorem 2-11]. In particular,
it follows from [26, Theorem 3-6 and Proposition 3-10] that this TTF-triple is compactly
generated.

(3) Dually, a t-structure (U4, V) in D(RP) is induced by a pure-injective cosilting object
C if and only if it extends to a non-degenerate cosuspended TTF-triple ({/, V, VW) which
is homotopically smashing, [24, Theorem 4-6]. In this case we will write (U, V, W)=
Uc, Ve, We).

(4) A cosilting object C is bounded, that is, isomorphic in D(R) to a bounded complex
of injectives if and only if the associated TTF-triple (Uc, Ve, We) is cointermediate and
cosuspended, see [3, Theorem 2-12]. As before, in this case (Uc, V¢, W) is homotopically
smashing.

https://doi.org/10.1017/S0305004125101503 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004125101503

Silting, cosilting and extensions of commutative rings 9
3-3. (Co)Silting of (co)finite type

For a not necessarily commutative ring R, there is a 1-to-1 correspondence (see [3,
Theorem 3-1])

compactly generated TTF N compactly generated TTF
triples in D(R) triples in D(R°P)

which assigns the TTF-triple in D(R) generated by a set C of compacts in D(R) to the TTF-
triple in D(R°P) generated by the set of compacts C* = {C* | C € C}.

A silting object T € D(R) is of finite type if the TTF-triple (X7, Vr, Zr) is compactly gen-
erated. A cosilting object C is of cofinite type if the TTE-triple (Uc, Ve, YWc) is compactly
generated.

Remark 3-4. From [37] it follows that all compactly generated t-structures in D(R) are
homotopically smashing, hence in D(R) all cosilting objects of cofinite type are pure-
injective. The converse is not true in general, but it holds if R is commutative noetherian
[17, Corollary 2-14].

THEOREM 3-5. [3, Theorem 3-3] The assignment T — T induces:

(1) an injective map from the set of equivalence classes of silting objects of finite type
from D(R) to the set of equivalence classes of cosilting objects of cofinite type from
D(RP);

(1) a bijective map between the set of equivalence classes of bounded silting complexes
from D(R) and the set of equivalence classes of bounded cosilting complexes of
cofinite type from D(RP).

Remark 3-6. From the proof of [3, Lemma 3-2] it follows that in the above correspondences,
the classes V7 and Vr+ are dual definable classes, i.e. Y € Yy if and only if YT € Vr+ and
V € Vr+ if and only if V* € Yr.

LEMMA 3-7. For an object T € D(R) and a subset I C 7 we have:

(@) TH ={X e D(R) | H"RHomg(T,X) =0, forallnel};
(b) H(TT)={XeDR®) |H"(T ®%X)=0, forallnel}.

Proof. The equality (a) follows by the isomorphism
HOII’ID(R)(T, X[I’l]) = H”RHomR(T, X),

valid for any n € Z.
For the equality (), note that for all n € Z we have the isomorphisms:

Hompgor)(X, T+ [n]) = H"RHompgop (X, TT)
= H"RHomgop (X, RHomz(T, Q/Z))
~ H"RHomyz(T ®% X, Q/Z)
= H"(T % x)*

and H"(T ®% X)* =0 if and only if H"(T ®% X) =0.
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COROLLARY 3-8. Let T € D(R). If T is a silting object and (X1, Yr, Z71) is the TTF-triple
associated to T, then:

(a) Yr={X € D(R) | H'RHomg(T, X) =0, for all n > 0};
(b) Zr={X eD(R)| H'RHomg(T, X) =0, forall n <0}.

If T is cosilting (in D(RP)) and (Ur+, Vr+, Wri+) is the corresponding TTF-triple, then:

(¢) Ur+ ={X e D(RP) | H(T ®% X) =0, for all n>0};
(d) Vr+ ={X e D(R®P) | HY(T ®% X) =0, for all n < 0}.

COROLLARY 3-9. Let T € D(R) be an object such that T is cosilting in D(R). Then, for
every X € D(R°P) we have T ®}§ X=0ifand only if X =0.

Proof. The converse implication is obvious, so we need to prove only the direct one. Let X €
D(R°P) with the property T ®k X =0. Then H(T ®11; X)=0 for all n € Z and Lemma 3-8
implies that X € U+ N Vy+ = {0}.

3-4. Bounded (co)silting complexes

In what follows, we will be particularly interested in silting complexes which are bounded
in the sense that they are isomorphic in the derived category to bounded complexes of pro-
jective modules. This is a natural condition to consider since it is part of the definition of
n-tilting modules, and also it ensures a well-behaved theory of derived equivalences [34]. It
turns out that the characterisation of Lemma 3-2 simplifies considerably in this situation.

For a (full) subcategory C of D(R), let add(C) (resp., Add(C)) denote the subcategory
formed by all direct summands of finite coproducts (resp., all coproducts) of objects of
C. Similarly, Prod(C) is formed by all direct summands of arbitrary products of objects of
C. If C ={X} for some object X, we drop the curly brackets in the notation. We denote
by susp (C) (resp. cosusp (C)) the suspended (resp. cosupended) closure of C in D(R), that
is, the smallest full subcategory of D(R) containing C and closed under direct summands,
extensions and [1] (resp., [ — 1]). Both susp (C) and cosusp (C) admit an explicit description
as follows. Let EJ =add{C[n]| CeC,n>0} and & =add{C[n] | CeC,n <0}. Fori>0,
define inductively subcategory 51‘+ consisting of all X € D(R) fitting into a triangle Ey —
X — E;_1 — Ep[1] with Ey € 5; andE;_| € 8;:1; subcategories £, are defined in the anal-
ogous way. Then one can easily check that susp (C) = ;- 5,-+ and cosusp (C) = ;- &; -
This description has a consequence important in what follows: -

LEMMA 3-10. Suppose that C is a full subcategory of D(R) closed under products (resp.
coproducts). If X € susp (C) then X' € susp (C) (resp. XD e susp (C)) for any set I, and the
same holds for cosusp (C).

Proof. Assume C is closed under products and let I be a set. Since X € susp (C), there is
by the above description some i > 0 such that X € 5i+. We prove X! e €i+ by induction on
i>0.If i=0 then X € add{C[n] | C € C,n > 0}. Since C is closed under products, clearly
X! € add{C[n]|CeC,n>0}. If i>0 then there is a triangle Eg — X — Ej—1 — Ep[1]
with Ey € Sgr and E;_; € 5;:1. Then the triangle E(I) > x' - E{_l — E(I)[l] together with
the induction hypothesis shows that X! e 8,-+. The case of coproduct closure and/or the
cosuspended closure is handled the same way.
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The following result extends [33, Theorems 2-3 and 4-3] from the case of n-(co)tilting
modules, and the proof idea is similar to loc. cit. with some necessary modifications. For
basics on homotopy limits and colimits in triangulated categories we refer to [30, sec-
tion 1-6]. We will also use the notations D(R)=" = {X € D(R) | H(X) = 0 for all i < n} and
D(R)=" = {X e D(R) | H!(X) =0 for all i > n}.

THEOREM 3-11. Let T € D(R) be an object which is isomorphic to a bounded complex of
projective R-modules. Then T is silting if and only if:
(Sbl) Add(T) C T+>0;
(Sb2) T generates D(R), that is T2 = {0}.
Dually, let C € D(R) be an object which is isomorphic to a bounded complex of injective
R-modules. Then C is cosilting if and only if:
(Cb1) Prod(C) C +-0C;
(Cb2) C cogenerates D(R), that is +zC ={0).

Proof. We prove only the silting result, the cosilting one follows by a completely anal-
ogous argument. Put (), Z) = (T+>0, Tlﬁo) and our aim is to show that this constitutes
a t-structure in D(R). Without loss of generality, we may assume that 7 is a complex of
projective R-modules concentrated in degrees —n+ 1, —n+2, ..., —1,0 for some n > 0.

First, we show that for any X € D(R) there is a triangle Y - X — Z — Y[1] with Y €
and Z € Z. Put Xp: = X and define inductively a sequence of triangles

T B X L x - T 4,

where H; =Hompg)(T[i]l,X;) and h; is the canonical evaluation morphism. Since
Hompg)(T'[i], k;) is surjective for each i > 0 and by (Sb1), we see that

Hompp)(T[j], X;)) =0forall j=0,1,...,i— 1.
This construction defines an inductive system

Xof—0>X1£>X2f—2>X3§>-~-

and we consider its homotopy colimit Z = hocolim;>((X;). Recall that for any j > 0 we have
Z = hocolim;>;(X;), see [30, Lemma 1-7-1]. Considering X; as the trivial homotopy colimit
Xj = hocolim;=;(X;) of an inductive tower consisting of identities on Xj, [30, Lemma 1-6-6],
we obtain a commutative square

(1—shift(f;))
iz & —— Ilix X
>, fﬂT s fjiT

(lfshift(ldxj )

Hizj Xj —— HiZj Xi,

where fji =fi—1 0o fi10fj for j <iand fjj =Idx;. For each 0 <j <, let §j; be the cone
of fji. Then S; is an iterated extension of the objects T[k+ 11H0)  where k= J»
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j+1,...,i— 1. In particular, since T € D(R)=’, we have S;; e D(R)=7~!. By [6, 1-1-11],
the square above extends to a diagram

i, Sji N Hizj S50 — €
(1—shift(f;))
Hizy & == Uiz & —— 7

ILi>; fﬂw Uiz, fjiT T

(1—shift(Idx )

Hizj X ——— Hizj Xi — X
in which all squares commute and all rows and columns extend to triangles. Since
Sji e DR)=~1, we have [ [, Sji e D(R)=/~", and therefore C € D(R)=~/~!. Using that
Hompg) (T, D(R)="") =0, we argue from the rightmost vertical triangle of the diagram
that Hompg)(T[7], Z) = Hompg)(T'[i], Xi+-n+1) = 0 for any i > 0. This shows that Z € Z =
T+=0,

Now extend the map X = Xo — Z to a triangle Y — X — Z — Y[1] and let us show that
Y € ) = T+>0. The diagram above puts Y into a triangle

Y— ]_[izo Soi — ]_[izo Soi — Y[1].

Put Co; = Soi[ — 1] for all i > 0, so that Y is the mapping cone of | [,., Coi = [ ;- Coi-

Recall that Cy; is an iterated extension of objects THo) T WHi-D[j — 1], and therefore
Coi esusp(Add(T)) € Y =T >0, the latter inclusion follows from (Sbl) and the obvious
closure properties of ). It remains to show that also the coproduct [ [,.., Co; belongs to V.
Note that by the assumption on T, we clearly have D(R)=~" C ). Put m =n + 1. For any
i > m, there is a triangle Co,;, — Co; — Cyni — Com[1], and we know that C,,; € D(R)="".
Consider the coproduct triangle

]_[i>m Com — ]_[i>m Coi > ]_[i>m Cni — ]_[i>m Com[1].

Then [ ;-,, Cmi € DIR)="" =D(R)="""!. Since D(R)="" C ), we see that [ [;_,, Coi € Y
if and only if []._,, Com = C(()‘;:l) € ). But the latter inclusion follows from Lemma 3-10
because Co,, € susp (Add(T)) € V. Therefore, || Co; € Y. Since we already know that
[Li<,u Coi € Y, we showed that ¥ € ).

F_inally we need to show that Hompg) (), Z2) =0. Take X € ), and consider the same
triangle Y — X — Z — Y[1] as constructed above. Since Y, X € ), also Z € ). But then Z €
Y N Z =T+z Tt follows by (Sb2) that Z = 0 and so X = Y. By the construction, ¥ belongs to
the smallest suspended and coproduct closed subcategory of D(R) generated by T (since we
constructed Y from T by using extensions, [1], and coproducts). Since Hompg)(T, Z2) =0,
this shows Hompg)(Y, Z) = 0, which in turn renders (), 2) a t-structure.

i>m

We record here for further use a consequence of the above result that was already observed

in [33].

COROLLARY 3-12. [33, Corollary 3-6] Suppose that T € Mod-R is a module. Then T is
n-tilting (for a positive integer n) if and only if:
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(1) T is of projective dimension at most n;
(i) Add(T) C T+>0;
(iii) T generates D(R), that is T2 = {0}.

Proof. We apply Theorem 3-11 together with [40, Corollary 3-7].

4. Transfer of (co)silting objects using ring morphisms
In this section we will use the following.
Setting 1. Let A : R — § be a morphism of commutative rings. Suppose that A is an R-algebra
and that B=A ®g S. Then we have a ring morphism A — B. The change of scalars functors
induced by this morphism and their derivates can be described, up to natural isomorphism,
in the following ways (see [9, 39]):
(i) — ®4 B= — ®g S:Mod-A — Mod-B (the extension functor);

(i) — ®k B :D(A) — D(B) (the derived extension functor); if we assume that A or § is
flat over R then we have a natural isomorphism

(—®LkB) = (- @LA®r9) = (— %A RLS)
= ((— ®A) ®F ) = (— QS);

(ii1) Homy (B, —) = Homg(S, —) : Mod-A — Mod-B (the coextension functor);

(iv) RHomy (B, —) : D(A) — D(B) (the derived coextension functor); again, the supple-
mentary assumption that A or S is flat over R allows us to compute

RHomy (B, —) = RHom, (S ®g A, —) = RHomy (S @k A, —)
= RHomg(S, RHom4 (A, —)) = RHomg(S, —);

(v) Homp(B, —) = — ®p B=Homg(S, —) = — ®5 .5 : Mod-B — Mod-A (the restriction
functor);

(vi) RHomg(B, —) = — ®% B=RHomg(S, —) = — ®% S: D(B) > D(A) (the derived
restriction functor).

Note that the restriction functors do not change the module/complex. Therefore, there is
no danger of confusion if we write X instead of Homg(B, X) or RHomp(B, X), respectively.
Moreover, if A is a subcategory in D(A), we denote by A () D(B) the subcategory of D(B)
defined by

A[\D(B) = {X e D(B) | RHomp(B, X) = X ® B € A.

4-1. The extension of scalars functors applied on (co)silting objects

We will prove that the derived (co)extension functors defined above preserve the silting
(respectively, pure-injective cosilting) objects of D(R).

We start by observing that [1, Lemma 1-10] and [15, Proposition 2-3] are still valid in our
setting (with verbatim proofs).
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LEMMA 4-1. Let R be commutative and A be an R-algebra. Let (U, V) be a t-structure in
D(A). For every X € D=C(R) we have:

(i) IfUelU then U®% X eU;

@ii) IfV €V then RHomg(X, V) e V.

In the next theorem we will use the notation presented in Remark 3-3.

THEOREM 4-2. Assume that we are in the hypotheses of Setting 1, and A or S is flat over R.

(M Suppose that T € D(A) is silting.
(i) The complex T ®]1§ S is silting in D(B).
(ii) yT®%S =Yr(\D(B), and ZT®|§S = Z7 (" D(B).
(iii) X7 @ S S Xypgrs and Vr ®F S S Vygps.
@iv) If T is bounded then T ®11§ S has the same property.
(L) Suppose that C € D(A) is pure-injective cosilting.
(1) The complex RHomg(S, C) is pure-injective cosilting in D(B).
(i) UrHomg(s.c) =Uc (1 D(B), and VRuomg(s.c) = Vc [ 1 D(B).
(iii) RHomg(S, V) € VRHomg(s.0), and RHomg(S, We) € WRHomg(s.0)-
(iv) If C is bounded cosilting, then RHomg(S, C) has the same property.

Proof. (I) (i) The ring homomorphism A induces a structure of R-module on S, and as
a complex of R-modules it belongs to D=O(R). Since T is silting, it induces a t-structure
(T+>0, T+=0) in D(A). From T € T+>0 it follows by Lemma 4-1 that T ®% S € T+>0.

For every n € Z and every X € D(B), we have the adjunction isomorphism

Homp (T, X[n]) = Homps) (T ®% S), X[n]).

Using this isomorphism forn > 0Qand X =T ®II§ S, together with T ®Ilg Se TL>0, we deduce
that the B-complex T ®Ilg S belongs to (T ®1% S)L>o,

Further, the same isomorphism, applied for n =0 and X = | [,; X;, together with the fact
that (the derived functor of) the restriction of the scalars functor D(B) — D(A) preserves all
coproducts, shows that the class (T ®}§ $)1>0 C D(B) is closed under coproducts.

Finally, if X € D(B) and X € (T ®k )12, it follows that Homp)(T, X[n]) =0 for all
n € Z. Then X is acyclic as an A-complex, hence it is acyclic as a B-complex.

(i1) These equalities are consequences of the isomorphism
Homps)(T ®% S, ¥) = Hompg)(T ®% A ®k S, Y) = Homp)(T, RHomp(B, Y)).
(iii) LetY € YVr. Then RHomg(B, Y ®}§ SH=Y ®}§ S e Yr.Forall i > 0 we have

Hompp)(T ®% S, ¥ ®k S[i]) = Hompg)(T ®% B, Y ®F S[i])
=Hompa)(T, RHomp(B, Y ®F S)[i1) = Homp)(T, ¥ ®%K S[i]) =0.

LetXeXrandY € ywﬁs. Then RHomg(B, Y) € Vr, hence the property X ®k S=X ®II§
Be XT®k 5 can be obtained by applying the adjunction isomorphism.

(iv) If T is bounded, then obviously the same property holds true for T ®}§ S=ET ®,IL{ B.
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(IT) The functor RHomy (B, —) preserves all products, hence it preserves the pure-
injectivity property, [37, Lemma 5-3]. Therefore, using the natural isomorphisms

HOInD(A)(U ®§‘ S, V) = HomD(A)(U ®}§ B, V) = HomD(B)(U, RHomA(B, V)),

a proof can be done by following the lines of the proof for (I).

4.2. The transfer of (co)silting complexes of (co)finite type

In the following, we will study the transfer of (co)silting complexes of (co)finite type. In
this case, we have more connections between the associated TTF-triples.
THEOREM 4-3. Assume that we are in Setting 1, and A or S is flat over R.

(1) If C e D(A) is cosilting of cofinite type then RHomg(S, C) is cosilting of cofinite type
in D(B).

(1) If T € D(A) is silting of finite type then T ®k S is of finite type in D(B).

Proof. (1) Since all cosilting objects of cofinite type are pure-injective, it follows that
RHomg(S, C) € D(B) is cosilting.

There exists a set of compact objects P € Uc such that V¢ = P10, Using the fact the the
restriction functor preserves coproducts, it follows that P ®],§ S={P ®II§ S|PeP}isaset
of compact objects of D(B).

Using Theorem 4-2(IIii), we have V € VRHomgs,c) if and only if V ®f§ S=
RHomg(S, V) € V¢, and this is equivalent to

0 = Hompg(P, RHomg(S, V)) = Homps)(P ®K S, V).

This implies that VRHomg(s,c) = (P ®% $)10, hence RHomg(S, C) is of cofinite type.
(i) The proof is similar to the proof used for the cosilting case.

LEMMA 4-4. Suppose that we are in the hypothesis of Setting 1. Assuming that
A:R— Sis faithfully flat, T € D(A), and X € D(AP) then X € *1(T") if and only if X @k S €
(T ®F $)T] (in D(BP)).

Proof. Using Lemma 3.7, the equivalence is a consequence of the isomorphisms
H'(T ®% $) ®% (X ® $) = H'(T ®F X ®F 5) = H'(T ®% X) ® S,
that hold for all X € D(R).

PROPOSITION 4-5. Suppose that we are in the hypothesis of Setting 1 and that A : R — S
is faithfully flat. Let T € D(A) be a silting complex of finite type. Using the notations from
Remark 3-3, the following are true:

() Ur+ ={X eDAP) | X ®% S e Ugglsy+b
(i) Vr+ ={XeDAP) | X®L S e Virgksy+}:
(iii) Yr={YeD@)|Y ®kSe VrelLs)-

https://doi.org/10.1017/S0305004125101503 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004125101503

16 S. BREAZ, M. HRBEK AND G. C. MODOI

Proof. (i) and (ii) follow from Lemma 4-4.
(iii) The inclusion Yr C{Y e D(A) | Y ®}§ Se yT@;% ¢} already appeared in Theorem 4-2.

Conversely, since both 7" and T®II§ S are of finite type, the associated TTF-triples are
compactly generated. Let Y € D(A) be such that Y ®II§ Se yT®1§S. If C € X7 is a compact

: L
object then C ®f S € XT®}€S by Theorem 4-2, hence
L L ¢\ __
HOInD(A)(C QR S, Y ®g S)=0.
Using the isomorphism presented in Lemma 2-5 we get:
Homppy(C,Y) ®r S = 0,
hence Homp)(C, Y) =0, since S is faithfully flat. It follows Y € Vr.

COROLLARY 4-6. Suppose that we are in the hypothesis of Setting 1 and that > : R — S is
faithfully flat. If T1, T> € D(A) are silting objects of finite type such that the silting objects
T ®II§ Sand T, ®II§ S in D(B) are equivalent then T1 and T, are equivalent.

4.3. Ascend of n-tilting modules for R-algebras

We present here generalisations, for R-algebras, of some results proved in [18] that are
useful in our approach.

If S is a family of modules from Mod-A (A is a ring) then (s, Ls) denotes the cotor-
sion theory generated by S i.e., Ls=Ker[],.; Ext}(S, —). Recall that an A-module is
strongly finitely presented if it admits a projective resolution consisting of finitely generated
projective A-modules.

The proof of the following result follows verbatim from the argument presented in [18,
Proposition 2-3].

LEMMA 4-7. Suppose that we are in the hypothesis of Setting 1 and that ). : R — S is flat.
If § is a family of strongly finitely presented modules in Mod-A then Ks @r S C Ksggs and
Ls ®r S S Lsgys-

Moreover, if ) is faithfully flat, then

Ks={XeMod-A | X ®r S € Ksgps}
and
Ls={XeMod-A|XQrS e Lsggs}

PROPOSITION 4-8. Suppose that we are in the hypothesis of Setting 1 and that A : R — S is
flat. If T is an n-tilting module then T ®g S is n-tilting.
Moreover, if A is faithfully flat then

Kr={XeMod-A|XRQrS e ICT®R5}
and

Lr={XeMod-A|XRgSe€ ET®RS}'

https://doi.org/10.1017/S0305004125101503 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004125101503

Silting, cosilting and extensions of commutative rings 17

Proof. We work in D(A) and replace T by its (bounded) projective resolution. From
Lemma 4-1 it follows that T®}§S € T+>0. By Proposition 4-2 we know that T®}§ Se
(T ®}§ $)1>0, and that T®}§ S generates D(B). Since S is flat, T®}5 S=TQgS is also a
B-module, hence T ®}§ Se(T ®}§ $)1<0. The conclusion follows from Corollary 3-12.

The last part is a consequence of Lemma 4-7 since all tilting cotorsion pairs are generated
by families of strongly finitely presented modules.

5. Cosilting complexes of cofinite type over commutative rings

Let A:R— S be a morphism of commutative rings. In this section we consider the
transfers of (co)silting objects of (co)finite type provided by the functors associated to A.

5-1. Thomason filtrations.

Since R is a commutative ring, any compactly generated t-structure ({4, ) in D(R) is
parametrised by so called Thomason filtration on Spec(R). More precisely, we will say that
a subset of Spec(R) is Thomason (open) if it is a union of the subsets of the form V(I) = {p €
Spec(R) | I C p}, where [ is a finitely generated ideal of R (such a subset is called a basic
Thomason set). Note that the basic Thomason sets are closed in the Zariski topology, that is
the Thomason topology is the Hochster dual of the Zariski one.

A Thomason filtration on Spec(R) is a family X = (Xy)rez such that for every integer k we
have X; € Spec(R) is a Thomason set, and X1 C Xi. This filtration is called non-degenerate
if (), X» = @ and |J,, X;, = Spec(R). Moreover, we will say that X is bounded if there exist
two integers mq and ng such that X,,, = Spec(R) for all m <mg and X,, =@ for all n > ng. It
was proved in [16, Proposition 5-12] that non-degenerate Thomason filtrations parametrise
cosilting complexes of cofinite type. We record, for further use, this correspondence.

THEOREM 5-1. (I) There are bijective correspondences between the following classes:

(i) equivalence classes of cosilting complexes of cofinite type in D(R);
(1) compactly generated TTF-triples that are cosuspended and non-degenerate;

(iii) non-degenerate Thomason filtrations on Spec(R).

(IT) These bijections restrict to bijections between equivalence classes of bounded cosilt-
ing complexes of cofinite type, TTF-triples that are cointermediate and cosuspended, and
bounded Thomason filtrations.

Proof. The first part is proved in [16, Proposition 5-12]. These bijections extend the
bijections described in [15, Theorem 3-11].

The correspondence between bounded cosilting complexes and cointermediate, cosus-
pended TTF-triples is provided by [26, Theorem 3-13], see also [3, Corollary 2-14]. For the
correspondence between TTF-triples that are cointermediate and cosuspended and bounded
Thomason filtrations, let X = (X)xez be a bounded Thomason filtration. By [15, Theorem
3-11], the aisle of the corresponding #-structure is

Usx = {X € D(R) | Supp(H*(X)) C X for all n € Z}.

Since Xy = @ for all k > n, it follows that for every X € Ux we have H*(X) =0 for all k > n.
It follows that

D(R)Z" = {X e D(R) | H(X) = 0 for all i < n} CUL® = Vx,
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where U is the coaisle of the 7-structure associated to X. Conversely, it is easy to see that
if U, V,W) is a TTF-triple that is cointermediate and cosuspended TTF-triple then the
associated Thomason filtration is bounded.

5-2. A topological transfer.

If A:R— S is a morphism of commutative rings, we can use the topological properties
of the associated map A* : Spec(S) — Spec(R), A*(q) = A‘l(q), together with Theorem 5-1.
Therefore, we obtain a topological method to transfer the cosilting complexes of cofinite
type from D(R) to cosilting complexes of cofinite type in D(S). We start by recalling some
basic results.

LEMMA 5-2. Letf: &1 — &, be a surjective closed map between two topological spaces.
Iff~1(Y) C &/ is an open set, then Y is open in &».

Proof. Since f is surjective, we have f(S1\f~'(¥) =& \ff1(¥Y))=6,\ Y, hence
G, \ Y is a closed set.

LEMMA 5-3. (i) [36, Proposition 5-9] The map A* is continuous with respect to Thomason’s
topology.

(1) [18, Lemma 3-15] If A is faithfully flat then \* is a surjective closed map with respect
to Thomason’s topology.

We will say that a Thomason subset X C Spec(S) is Thomason saturated (with respect to
2) if X = 0~ 1(W*(X)). This means that for every q € Spec(S) we have q € X if and only if
A1) € 2 (X).

THEOREM 5-4. Suppose that A:R— S is a morphism of commutative rings. If X =
(Xnnez is a non-degenerate Thomason filtration in Spec(R) then Y = (OO XX )nez is
a non-degenerate Thomason filtration in Spec(S).

Therefore, X induces a map

® compactly generated compactly generated
: — >
t-structures in D(R) t-structures in D(S)

that is defined in the following way:

If U, V) is a compactly generated t-structure in D(R) and X = (X,))nez is the Thomason
filtration associated to it then ®U,V) is the t-structure in D(S) that is defined by the
Thomason filtrations Y = ()N X))ez. All components of Y are Thomason saturated
with respect to A.

Moreover, if A is faithfully flat then it induces a map V that associates to every com-
pactly generated t-structure (U',V") in D(S) with the property that all components Y,
of the associated Thomason filtration Y = (Y,)),e7 are Thomason saturated with respect
to A, the t-structure of D(R) that corresponds to X = (A*(Yy))nez. In this case we have
VOU,V)=U,V) for every compactly generated t-structure (U, V) € D(R)

Proof. Since A* is continuous with respect to Thomason’s topology it follows that Y is a
system of Thomason sets.

Observe that q € (A)~1(X,) if and only if A‘l(q) € X,,. Using this, it is easy to see that Y
is a Thomason filtration.
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For the last statement, we apply Lemma 5-3 and Lemma 5-2 to conclude that the terms
of the sequence X are Thomason sets. As before, it is an easy exercise to prove that X is a
Thomason filtration.

Remark 5-5. As we already mentioned in the introduction, ® induces a map

equivalence classes of equivalence classes of
P: cosilting objects — cosilting objects
of cofinite type in D(R) of cofinite type in D(S)

If X is faithfully flat, this map is injective.

5-3. The ascend of (co)silting complexes of (co)finite type via derived functors

We already proved in Theorem 4-3 that the (co)induction functor associated to A preserves
the (co)finite type property. In the following we will see that the map induced by the coin-
duction functor on the equivalence classes of cosilting objects of cofinite type is in fact the
map & described in Remark 5-5. We will need the following

LEMMA 5-6. Suppose that A : R — S is a morphism of commutative rings.

(1) If C e D(R) is an object such that RHomg(S, C) € D(S) is cosilting of cofinite type
and Y = (Yy)nez is the Thomason filtration associated to RHomg(S, C) then all sets
Y, are Thomason saturated with respect to .

(i) If T e D(R) is an object such that T®}§ S eD(S) is silting of finite type and Y =
(Yynez is the Thomason filtration associated to (T ®}§ S)T then all sets Y, are
Thomason saturated with respect to A.

Proof. (i) Let n€ Z. From [16, Lemma 3-7] and Theorem 4-2 (applied for A=R and,
consequently, B = S) it follows that

Y, = {q € Spec(S) | k()] — n] € UrHomg(s,0)}
= {9 € Spec(S) | k(@) — n] ®Y S € Uc}.
Note that for every ¢ e Spec(S) there exists a canonical morphism (of R-algebras)
k (A*(q)) = «(q) that is induced by the morphism R/~ !(q) — S/q. This morphism is uni-
tal, and k(A*(q)) and «(q) are fields. It follows that, as an R-module, «(q) is a direct sum of
copies of k(A*(q)). Then, for every V € D(R) we have Hompg)(k(¢), V) =0 if and only if
Hompg)(x(2*(q)), V) =0.
Since k (q)[ — 1] € UrHomg(s,c) if and only if for all i <0 we have

0= Homp(s)(k (q)[ — n], RHomg(S, O)[i]) = Hompgr)(«x (q)[ — n], C[i]),

we conclude that «(q)[ —n] € URHomg(s,c) if and only if for all i<0 we have
Hompg)(x (A*(q))[ — n], C[i]) = 0. Then Y,, is Thomason saturated with respect to A.
(ii) For this case we apply (i) and the isomorphism (7 ®% $)* = RHomg(S, 7).

THEOREM 5-7. Let A : R — S be a morphism of commutative rings.

(1) If C e D(R) is cosilting of cofinite type then RHomg(S, C) € ®(C), where ® is the
map described in Remark 5-5.

(i1) If T € D(R) is silting of finite type then (T ®II§ ST e ®(TH).
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Proof. (1) From Lemma 5-6 it follows that for all n € Z we have Y, = (A*)~1(X;,), where
X = (Xp)nez is the Thomason filtration associated to C, and the proof is complete.
(i1) This is also a consequence of Lemma 5-6.

If & is faithfully flat, we can apply Theorem 5-7 together with the second part of
Theorem 5-4 to obtain the following cosilting version of Corollary 4-6. We note that, in
view of [3, Theorem 3-3], in the commutative case this is a generalisation of Corollary 4-6,
and if we restrict to bounded complexes they are equivalent.

COROLLARY 5-8. Suppose that A:R— S is faithfully flat. If C1,Cy € D(R) are cosilt-
ing complexes of cofinite type such that the cosilting complexes RHompg(S, C1) and
RHomg(S, C3) are equivalent then C1 and C, are equivalent.

5-4. Some descent properties

If A:R— S is faithfully flat, we can use the above results to describe all cosilt-
ing complexes of cofinite type in D(S) that can be obtained as images of the functor
RHomg(S, —).

PROPOSITION 5-9. Let A :R— S be a faithfully flat morphism of commutative rings. If
C € D(S) is a cosilting complex of cofinite type and Y = (Y,))ne7, is the associated Thomason
filtration on Spec(S), the following are equivalent:

(i) there exists a cosilting complex of cofinite type C in D(R) such that C is equivalent to
RHomg(S, O);

(i1) all Y,, are Thomason saturated with respect to \.

Proof. (1)=(ii) follows from Lemma 5-6.

(i))=(i) From the proof of Theorem 5-4. it follows that X = (A*(Y;)),ez is a Thomason
filtration. Let C € D(R) be a cosilting complex that corresponds to X. It follows from
Theorem 5-7 that RHompg(S, C) is equivalent to C.

Using the equivalence described in Theorem 3-5(ii), we obtain:

COROLLARY 5-10. Let A:R— S be a faithfully flat morphism of commutative rings. If
T € D(S) is a bounded silting complex, the following are equivalent:

(i) there exists a (bounded) silting complex T in D(R) such that T is equivalent to T ®k S;

1) if Y= (Yp)uez is the Thomason filtration associated to T then all sets Y, are
Thomason saturated with respect to A.

Proof. The implication (i)=>(ii) is proved in Lemma 5-6. Conversely, since Y = (¥;,),ez is
a (bounded) Thomason filtration that is saturated with respect to A, there exists a bounded
cosilting complex C € D(R) such that RHompg(S, C) is equivalent to T Since Cis bounded,
it follows that C is equivalent to a complex of the form 7 with T € D(R) a bounded silting
complex. Applying Theorem 3-5(ii), it follows that the bounded silting complexes T and
T ®11§ S are equivalent.
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Remark 5-11. The above corollary is also valid for all silting complexes of finite type T €
D(S) if we assume that in D(R) all cosilting complexes of cofinite type are of the form T,
with T € D(R) a silting complex of finite type (e.g., if R is noetherian, cf. [3, Theorem 3-8]).

The above considerations let us prove a descend property for bounded cosilting com-
plexes:

THEOREM 5-12. Let T € D(R) be a bounded complex of projectives. If RHom(S, T™) is
cosilting in D(S) then T is cosilting in D(R).

Proof. Since the Thomason filtration of RHomg(S, T)= (T ®I,§ ST is bounded and
Thomason saturated with respect to A, we can apply Proposition 5-10 to observe that there
exists a bounded complex of projectives 7 in D(R) such that T is silting and (T ®% RST
is equivalent to (T ®% S)*. It follows that (T ®k ST and (T ®L $)*, induce the same
t-structure whose aisle and coaisle are

Virgksy = I(T @ ) 1="=[T @ 5)*1.
respectively
Wereksy ="l @ "1 =T @ $)"1.
Using Corollary 4-4 twice, we get
(T = (X €DR) | X ®F S € Vg } =T
and
T = (X DR | X ®F S € Wrgpsyr) =0T,

Therefore the pair (1=0(7), 1>0(T*)) coincides with the cosilting t-structure induced by
(T)*. Hence T is cosilting too and it is obviously equivalent to (7).

6. The descend property for bounded silting complexes

6-1. Bounded silting complexes as modules over Dynkin quivers

Let T be a bounded silting complex in D(R). We assume that it is concentrated in the
degrees —n+1,...,—1,0, and we will use the interpretation presented in [26]. In order to
do this, we consider the Dynkin quiver

—n+1 —n+2 —1 0
A, ¢ — o — .. —> 0 —> o0,
and we denote by A(R) the R-algebra RA, /I, where I is the ideal generated by all paths of
length 2. Note that A(R) = T,,(R)/J (T,(R))?, where T,,(R) denotes the ring of lower triangular
matrices over R and J(T,,(R)) is the corresponding Jacobson radical.

Let Rep(A(R)) be the category of representations bounded by / of A, in Mod-R. Then
Rep(A(R)) is equivalent to the category Mod-A(R), and it can be identified to the category
of complexes over R that are concentrated in —n+ 1, ..., —1, 0, so we have a fully faithful
functor from Rep(A(R)) to the category of complexes. If X is a complex concentrated in
—n+1,...,—1,0, we will denote by X the corresponding object of Rep(A(R)). The above
mentioned functor induces a functor Wg : Rep(A(R)) — D(R). We have the following useful
result.
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LEMMA 6-1. [26, Lemma 2-4] If W(T) is a complex of projectives then for every Xe
Rep(A(R)) and for every i > 0 we have

Hompg) (W g(T), Wr()[i1) = Extigepa gy (T> X)-

This correspondence is compatible with respect to change of rings.

LEMMA 6-2. Suppose that A : R — S is a flat morphism of commutative rings. Then A(S) =
A(R) ® S and we have a commutative diagram

Rep(A(R)) ——% Rep(A(S))
Up s
D(R) ~®kS D(S).

Proof. For the first isomorphism we observe that (RA,/I) @r S = (RA,, ®r S)/(I ®r S) =
SA, /K, where K is the ideal in SA,, generated by all paths of length 2. The commutativity
of the diagram can be checked by direct computations.

With these preparatory considerations in hand, we are ready to prove the following

PROPOSITION 6-3. Let A:R— S be a faithfully flat morphism of commutative rings.

Suppose that T is a bounded complex of projective R-modules that is concentrated in
—n+1,...,—1,0. If T @k S is silting then Add(T) C T+>°.

Proof. Since T ®g S is bounded silting, we can use Lemma 5-6 and Corollary 5-10 to
observe that there exists a silting complex P € D(R) such that P®}§ S is equivalent to
T®}§ S. Moreover, since A is faithfully flat, we can assume that P is concentrated in
—n+1,...,—1,0. We use [Zilheorem 2-10] to observe that P is an (n — 1)-tilting

—

module over A(R), and that P ®}§ S §ﬁ®R Sand T ®}§ S are equivalent (n — 1)-tilting
modules over A(S). From Proposition 4-8 it follows that 7 e K () Lp for all sets .
Then Extf;‘( R)(T, Add(T)) =0 for all i > 0. Since T is a complex of projectives, we can use
Lemma 6-1 to obtain the conclusion.

There, we now see that the condition (Sbl) of the characterisation of bounded silting
complexes from Theorem 3-11 descends along all faithfully flat morphisms. Although we
are not able to show an analogous result for (Sb2) in full generality, we shall show that it
holds in many situations.

Recall that a full subcategory C of D(R) is localising if it is a triangulated subcategory
closed under coproducts. If C is an arbitrary subcategory of D(R) we denote by Loc(C) the
smallest localising subcategory of D(R) containing C, and we write just Loc(X) if C = {X]}.
Recall from [2, Theorem 3-14] that (Loc(X), X12) is a t-structure. Therefore, Loc(X) = D(R)
if and only if X is a generator of D(R), that is, X% = 0. We will freely use the fact that any
localising subcategory C of D(R) is a tensor ideal, meaning that X ®}§ CeCforany CeC
and X € D(R), see [21, Lemma 1-1-8].
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PROPOSITION 6-4. Let R be a commutative ring and R — S a faithfully flat homomorphism
of commutative rings such that Loc(S) = D(R).

Suppose that T € D(R) is isomorphic to a bounded complex of projective R-modules. If
T ®}§ S is silting in D(S) then T is silting in D(R).

Proof. By Proposition 6-3, we already know that (Sbl) from Theorem 3-11 holds for 7.
It remains to show that (Sb2), that is, we need to check Loc(7T) = D(R). We have T®II§
S € Loc(T) and by the assumption, T ®II§ S is a silting in D(S). Since T ®1% S is silting, we
have (T ®],§ $)12 =0, hence Loc(T ®k S) = D(S). We obtain that S € Loc(T), and therefore
Loc(T) = D(R) by the assumption we made on S.

Using Corollary 3-12 we obtain

COROLLARY 6-5. Let R be a commutative ring and R — S a faithfully flat homomorphism
of commutative rings such that Loc(S) = D(R). If T € Mod-R is a module such that T Qg S €
Mod-S is n-tilting then T is n-tilting.

Remark 6-6. Following [34], a silting object T is called a tilting object if in addition we
have Add(T) € T+<0. If T € D(R) is bounded silting, then T is tilting precisely if the realiza-
tion functor from the bounded derived category of the heart of the silting t-structure to the
bounded derived category of R is an equivalence [34, Corollary 5-2]. Any n-tilting module
is a tilting object as an object of the derived category.

We don’t know if the descent (or even the ascent) properties we established for bounded
silting complexes restrict to tilting complexes, in general. In particular, our approach which
used the transfer to the category Rep(A(R)) does not offer information about the groups
Hom(T, T [k]) for k < 0.

An important example of a faithfully flat morphism is the so-called Zariski cover, that is,
aring morphism of the form R — ]_[;:01 R[fl-*l] for some finite generating set fy, f1, . . - , fn—1
of the regular module R, also see Section 2-2.

LEMMA 6-7. Let R — S be a Zariski cover of R, then Loc(S) = D(R).
Proof. This is essentially proved in [18, Lemma 4-1].
For the definition of a local property and an ad-property, see Section 2-2.

LEMMA 6-8. The property of X € D(R) of being isomorphic to a bounded complex of
projectives is an ad-property.

Proof. Clearly, if X is a bounded complex of projective R-modules then X ®r S is a bounded
complex of projective S-modules for any flat ring morphism R — S.

Let R — S be faithfully flat and assume without loss of generality that X ®g S is isomor-
phic to a complex of projective S-modules concentrated in degrees —n, —n+ 1, . .., 0. Since
R — Sis faithfully flat and X ®g S is bounded, we see immediately that homology of X van-
ishes outside of degrees —n, —n+ 1, ..., 0. There is a complex P of projective R-modules
concentrated in non-positive degrees which is isomorphic to X in D(R). Since P Qg S is
a complex of projective S-modules isomorphic in D(S) to X @ S, by the assumption on
X ®g S, the cokernel of the differential map X =l Qe §— X" ®p S, which is the same as
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Coker(X™"~! — X™™")®g S, is a projective S-module. Then by the result of Raynaud and
Gruson [42, Theorem 10-95-6, Tag 05A9], the cokernel of the differential Xl x g
a projective R-module. It follows that the soft truncation t=~"X, which is quasi-isomorphic
to X, is a bounded complex of projective R-modules.

COROLLARY 6-9. The property of an object T € D(R) being bounded silting is (Zariski)
local.

Proof. Combine Theorem 4-2, Lemma 6-7 and Lemma 6-8, and apply the Affine
Communication Lemma 2-2.

Denote by 7 the full subcategory of all pure-injective objects of D(R).

THEOREM 6-10. Let R be a commutative ring with the property that Loc(Z) = D(R). Then
any faithfully flat ring homomorphism R — S of commutative rings has the property that
Loc(S) =D(R).

Proof. Recall from [42, Lemma 35-4-8.] that the map A : R — S is a pure monomorphism
of R-modules. It follows that for any object X € D(R) the morphism X ®}5 rAX—>X ®k S
is a pure monomorphism in D(R) by [3, Lemma 2-6]. If X is pure-injective, then X ®k A s
a split monomorphism and so X is a direct summand in X ®}§ S. Since X ®}§ S € Loc(S), we
have X € Loc(S). Then Z C Loc(S) and so Loc(S) = D(R).

Remark 6-11. The condition Loc(Z) = D(R) holds in the following hypotheses:

(i) R noetherian, this follows from [35, Theorem 3-3];
(ii) R admits a finite injective resolution, in particular, if R has finite global dimension;
(i) more generally, if R is isomorphic to a bounded complex of pure-injectives, in par-
ticular, if R has finite pure global dimension, in particular, if R is countable or of
cardinality &, for some n > 0 [20, Proposition 10-5];

(iv) if D(R) is a compactly generated triangulated category of finite pure global dimension
in the sense of [7], in particular, if D(R) satisfies the “Brown representability for
homology of morphisms®, see [10];

(v) if R is such that every localising subcategory of D(R) is cohomological in the sense
of Krause, see e.g. [23, Section 3-2].

We also remark that in [11, Proposition 4-2] it is proved that if R — S is a faithfully flat
homomorphism of commutative rings such that S is of projective dimension at most 1 over
R, and such that the projective dimension of flat R-modules are bounded by some positive
integer, then Loc(S) = D(R).

Remark 6-12. Combining the above, we see that if Loc(Z) = D(R) holds for all commutative
rings then the property of being a bounded silting object is even an ad-property. We do not
know any ring for which Loc(Z) = D(R) fails. An example for which injective modules do
not generate D(R) is in [35]. If R is von Neumann regular then Loc(Z) = D(R) precisely if
injectives generate in the sense of [35].
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