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A 3-MANIFOLD WITH A NON-SUBGROUP-SEPARABLE
FUNDAMENTAL GROUP

SABURO MATSUMOTO

We examine a 3-manifold F whose fundamental group is known to be non-
subgroup-separable (non-LERF). We show that this manifold F is a graph manifold
and that the subgroup known to be non-separable is not geometric. On the other
hand, there are incompressible surfaces immersed in the manifold which do not lift
to embeddings in any finite-degree covering space. We then prove that these bad
incompressible surfaces must have non-empty boundary.

1. PRELIMINARIES

A group G is said to be residually finite (RF) if, for any 7 £ G\{1}, there exists
a finite-index subgroup G\ not containing 7 . If 5 is a subgroup of G, then G is
said to be S-residually finite (S-RF) if, for any 7 e G\S, there exists a finite-index
subgroup G\ of G containing 5 but not 7 . We say that G\ separates S from 7
and that 5 is a separable subgroup of G. G is called locally extended residually finite

(LERF) if G is S-RF for every finitely generated subgroup S of G. LERF groups are
sometimes referred to as subgroup separable groups. In this paper, the terms "LERF"
and "subgroup separable" are used interchangeably.

If G is LERF, then so are any subgroups of G (this is obvious) and any finite

extensions of G (Scott [13]). See Allenby and Gregorac [1], Magnus [11], and Scott

[13] for various nice properties of these groups.

The following lemma, a direct corollary to a result in [13], provides an essential

link between group theory and geometric topology.

LEMMA 1 . 1 . Let M be a. topological 3-manifold with Wi(M) = G. If G is

LERF, then any incompressible surface F immersed in M by f : F —» M can be Hfted

to an embedding f\ : F —> M, where M is a finite-degree covering space for M.

REMARK. By incompressible surface, we mean that the map / induces a TTi-injective

map /»: F —> M.

We say that a compact irreducible 3-manifold M is a graph manifold if each compo-

nent of M\T is a Seifert fibre space, where T is the family of tori in the canonical torus
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262 S. Matsumoto [2]

decomposition. Each Seifert fibre piece is often called a vertex manifold. In this class
we include those manifolds that are obtained by gluing a pair (or pairs) of boundary
torus components of one single Seifert fibre space.

In 1978, Scott showed that all surface groups, all Fuchsian groups, and the fun-

damental groups of Seifert fibre spaces are LERF [13] (also, see Hempel [7], Hall [5],

Burns [2], and Karrass and Burns [8]). This, of course, implies that any circle bundle

over a surface has a LERF fundamental group. However, Scott wrote, "I am unable to

decide whether the same holds for bundles over 5 1 with fibre a surface. It seems quite

possible that this is false" (p.565).

As Scott speculated, almost ten years later, Burns, Karrass, and Solitar [3] found

a non-LERF group which is the fundamental group of a surface bundle over S1. This

resulted in the discovery of more 3-manifolds with non-LERF fundamental groups (see

Long and Niblo [9], for example). In this paper we shall study the example given in [3].

2. N O N - L E R F GROUP K

We begin by presenting the group K proved non-LERF in [3]. Their paper specifies
a finitely generated subgroup H of K and an element 7 £ K\H which cannot be
separated from H by a finite-index subgroup of K containing H. In their presentation,

K = (y,a,0 I y^ay = a/3, : y^py = /?),

H = (a-1, ya^y-^a) = {a, ya^y'2},

and 7 = [y, a~2ya2].

Here, [3:1,2:2] denotes the commutator x^x^xixz. For details of their proof, see

[3]. Note that, since /3 = a~1y~1ay, the group K can be presented by 2 elements and

1 relation instead.

This particular presentation of K suggests a non-closed 3-manifold T with 7Ti(r) =

K, obtained as follows:

Let F be the punctured torus, and let •Ki(F) — (a, f3), where a represents the

longitude and /3 represents the meridian of F. Consider F x I. Identify F x {0} and

F x {1} with the homeomorphism of F prescribed by the two relations

t/~1ay = a/? and t/"1/?!/ = /?•

The construction is shown in Figure 1. The gluing homeomorphism determined by these
relations is a Dehn twist along the meridian curve 0:
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F x { l

F x { 0

Figure 1. Non-LERF 3-manifold F

The resulting F is simply a surface bundle over S1. Note that dT is the torus,
and if this is "capped off" in the obvious manner, we get a closed manifold F' having
the Nil geometry [14].

The following lemma is useful in analysing F.

LEMMA 2 . 1 . F is a graph manifold consisting of one Seifert fibre space with
three boundary components, two of which are identified.

Figure 2. F as a graph manifold

PROOF: Let F denote the punctured torus. The description above for F shows
that F is obtained from F x I by the Dehn twist along the meridian, defined by the
matrix

G ! ) •
Now, one can cut F along the meridian curve \i and get the "pair of pants" S2 — ZD2 ,
which we denote by P. Consider PxS1, the solid torus with the interior of two disjoint
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solid tori Ti and T2 removed (Figure 2). For i = 1,2, let

where Xi is the meridian (horizontal in P X S1 ) and the U is the longitude (vertical
in P x S1). We shall identify Ti and Ti in such a way that the resulting manifold is
homeomorphic to F . As one can see in Figure 2, the Dehn twist performed to make F
corresponds to "turning" xi one complete rotation and gluing the two tori together. In
other words, by identifying 2\ and Ti by the homeomorphism h : T\ —» T2 inducing

h,: 7T! (Ti) -» TTJ(T2) defined by

tl I > S2 + ^2)

one gets a manifold homeomorphic to T. The space P x S1 is clearly a Seifert fibre
space, so F is a graph manifold. D

We now give yet another presentation of K.

LEMMA 2 . 2 . The presentation

K = (y,a,/3 | y^cty = a/3, y^fiy = /3),

is Tietze equivalent to (and thus isomorphic to) the presentation

(y,yi,a \a~1ya = y1, [y,yi] = 1).

PROOF: Simply substitute /? = yy^1, and verify that

K = (y,a,/3\y-1ay = al3, \/3,y] = l)

= {y,<*,yyil Iy - 1 «

= (y,a,yi I y~locy

= (y,Vi,a I y~xay = ayf'y.fy.yi] = 1)

= (y,Vi,a |a"1yo=y1,[y,yi] = 1)

is indeed a sequence of Tietze transformations (and obvious substitutions and manipu-
lations). U

With this new presentation of K, we can now realise F in yet another way. Since
y and y\ commute in G, let T be the torus whose meridian curve is represented by
y and longitude curve by yi. Start with T x I, and take the regular (2-dimensional)
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T«(0)

C,

Figure 3. The two annuli to be identified

neighbourhood No of the meridian curve on T x {0} (see Figure 3). 8N0 is two circles
Si and 52 . Similarly, take the neighbourhood JVi of the longitude curve of T x {1}.
Refer to the two boundary circles of dNi as C\ and Ci.

Now take an annulus A with dA = dx Udi, and construct Ax I. Identify A x {0}
with No and A x {1} with Ni such that for i — 1,2,

Ai — di x I joins Si with Cf.

Since the 9,- are circles, the Ai are also annuli. We shall refer to these as connecting
annuli (See Figure 4).

Figure 4. The connecting annuli Ai, A2

The resulting manifold M is a 3-manifold with boundary, and TT^M) = G, where
y, 2/1 € Ti (T), and a is a primitive loop going through the attached annuli, carrying y to
2/1. Note that we may have actually constructed two distinct manifolds here, depending
on how we labelled the Si and the d. Indeed, Theorem 2.3 below shows that two
distinct manifolds can be constructed this way and that one of them is homeomorphic
to F. Here, we are assuming that the circles Si are oriented in the same way, and so
are the Ct. Observe that, in either way,

dM = ((T x {O})\JVo) UAjU ((T x {l})\iV1) U A2,
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where Ai is the annulus connecting Si to Cj. This is a union of four annuli making up
a single torus boundary component.

THEOREM 2 . 3 . The above construction gives two distinct 3-manifolds, Mi and
M2 , and one of them is homeomorphic to V.

PROOF: After fixing the d and the 5,-, one gluing (taking C\ to S\) gives an
orientable manifold while the other gluing gives a non-orientable one, so it is clear that
we get two distinct manifolds. Let M\ be the manifold constructed with the labeling
given in Figure 5, and the annuli join S\ with C\ and 52 with C^ . Pick a base point of
Mi as shown in Figure 5, and orient each generator curve as indicated by the arrows.
We see that

= (<*,y,yi =l,a 1ya = yx) ^ K,

as required. Consider now dT = T2 . 7Ti(dF) is generated by y and af3a~10~1. On the
other hand, as stated before, d Mi is also homeomorphic to the torus, diagrammatically
shown in Figure 6. TTI(9MI) is thus generated by y and aya~1yi.

TxlO)
M,

Txlll

Figure 5. T and 7Ti(r) as an HNN extension
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Using the identity /3 — a~1y~1ay in if, we get

Ti(dr) = (y) © (a/ScT1/?"1)

267

— (y) © (aya~1yiy~1)

= (y) ©

since y and j/i commute

Tx(0)\No

Ti ( l ) \N ,

Figure 6. The boundary dT

Hence, we have a group isomorphism 7ri(F) —» 7Ti(Mi) such that it maps
isomorphically onto ni(dMi). By Waldhausen's Theorem, we conclude that

3. T H E NON-SEPARABLE SUBGROUP OF K

As mentioned in Section 1, one of the implications of TTI(M) being non-LERF
is that there may be an incompressible surface 5 (immersed in M) not lifting to an
embedding in any finite cover of M. If so, 7rj(5) C TT\{M) is non-separable. Thus, if
F does contain such a surface 5 , then H is a candidate for 7Ti(5). We shall see later
that this is not the case (see Theorem 3.4), but before proving it, we must examine H

further. The key machinery used here is the following, due to Britton [10].

LEMMA 3 . 1 . Suppose G is a group with subgroups A and B, TJ: A —> B is an
isomorphism, and G is an HNN extension of G defined as

G = (G,t = T](a),ae A).
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Let gi £ G and e< = ± 1 , and suppose the word

w =9ot'lgi...w =9ogi

(where n ^ 1) does not contain any subword t~1git, gi £ A, or tgjt*1, gj 6 B. Then
w is not the identity in G .

An immediate corollary is the following:

COROLLARY 3 . 2 . Let G and G be defined as above, and let g 6 G be an
element such that gk £ (A U B) for all k ̂  0. Then, the subgroup (g,t) of G is free
of rank 2.

PROOF: We need to show that the homomorphism

$ : {g,t) (as a free group) —> {g,t) (as a subgroup of G )

is injective. So let w be a word in the free group (g, t), reduced in the "free-group
sense," and suppose $(to) = 1 in G. Clearly w ̂  gk (k ^ 0), since gk £ AUB. Hence,
w = 1 already, or w contains at least one t, so we can apply Britton's Lemma 3.1 (as
n ^ 1) and conclude that w contains a subword t~1g{t or tgj t~l (gi £ A or gj € B).
Now gi, gj must be gk for some k ^ 0, since w is a reduced word in g and t. But
gk G A or B is contrary to our hypothesis. Hence, w = 1, and $ is injective. U

COROLLARY 3 . 3 . H is isomorphic to the free group of rank 2.

PROOF: Using the identity j/i = a~1ya, we see that the subgroup H is generated
by a and ya~1y~2a = y^a^ya) — yj/j"2 .

K is an HNN extension of the torus group generated by y and yi. Let G =
{y} © (yi) > a11^ let A = (y), B = (i/i); define 7/(y) = a~1i/a = yi. Then, K — G in the
notation of Lemma 3.1, and we can apply Corollary 3.2 since there is no k ^ 0 such
that (yyi2)k EAorBinG. Hence, H = (yy^2, a) is free of rank 2. D

Now, the classification result for compact connected surfaces gives all the surfaces
5 such that TTI(5) = F2 , the free group of rank 2. dS ^ 0 , so we get

H0{S) = Z, H^S) =Z@Z, and#2(S) = 0,

and thus x(^) = ~ 1 - Hence, S is homeomorphic to the pair of pants, the punctured
torus, the punctured Moebius band, or the punctured Klein bottle.

Now, we are ready to prove the main result of this section.

THEOREM 3 . 4 . Let T be the manifold described in Section 2, and present

7ri(r) = K as above. Suppose f : S —* F is a proper two-sided immersion of a com-

pact connected surface such that /» : tti(S) —> 7ri(F) is an injection. Then,

cannot be H.
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REMARK. By •proper immersion, we mean that / is a local embedding such that

PROOF: Of the four surfaces 5 whose fundamental group is free of rank 2, the
two non-orientable ones cannot be immersed in a two-sided way. Hence, we need to
consider only the following two cases.

CASE 1. First, suppose 5 is the pair of pants. Since / is a proper map, dS, which is
three disjoint circles, must be mapped into the boundary torus of F . Let

Ma)=a, f*(b)=b,

where a, b are shown in Figure 7, and a, b are their images in 7Ti(r). The base point of
7Ti(S) is on the boundary component associated with a, so o £ 7ri(c?r). As for 6, since
a conjugate of b represents a boundary component of 5 , b is conjugate to c £ 7Ti (SF)
by some g £ 7ri(F). Hence, b = g~1cg. Note that g may not be in iri(dT). However,
we know that [a,c] = 1 since a,c £ Tfi(dT), an Abelian group. Therefore, we have
/»(7r!(5)) = (a, g^cg), a subgroup of K.

Figure 7. 5 , the "pair of pants"

Now, let A: K -+ K/K' be the Abelianisation map. Then, K/K' = Z2 is generated
by the images of y and a, and A(j3) = 1. Note that

- Adapa-'p-1) ® (y)) = (y) = z.

Now, consider the image of the subgroup /%(7Ti(5)) under A in K/K'.

AiMn^S))) = A((a, g^cg)) = A{(a, c)) C ^ ( d T ) ) = (y).

On the other hand,

A(H) = A({a, ya^y-2)) = A((a, y)) = (a) @ (y).

Hence, /»(7Ti(S)) / I as their images under A are not even isomorphic.
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CASE 2. Next, suppose 5 is the punctured torus. Let iti(S) — (a, b), and so

ni(dS) = {aba~1b~1). Since iri(dS) lies in the commutator subgroup of 7Ti(5), its

image /.(ir^aS)) C vi(8T) H K' = (afla^0-1).

Now, consider a new (closed) 3-manifold N obtained by "capping off" the boundary

torus of F in such a way that [a, /?] gets "killed" in 7Ti(JV). In other words, we attach

a solid torus on dT so that

N is a torus bundle over S1, obtained by filling in the "puncture" of the fibre of F.

Now,

- (V, «, P | y^ay = a/3, y~lpy = /3, [a, 0\ = 1),

so /3 commutes with everything. As S is mapped properly to V , this "capping off"
process will close up f{S), and TTI(S) will become TTI(S U D2) = TTI (T2). AS the result,
we have the following commutative diagram:

MS) — ^

- I {-

where j * is induced by /» , and c\, C2 are induced by the capping operation. Note that

c\, C2 are surjective. Now, TTI (T2) = Z ©Z, SO j * • ci(xi(5)) is an Abelian subgroup of

7Ti(iV). Thus, C2 • /*(7Ti(5)) is also Abelian.

Now, suppose H = (a, ya~ly~2) = / . (TT^S)) in ni(T). Then, clearly c2(H) must

be Abelian as well, that is, [a,ya~1y~2] — 1 in TTI(JV) with the additional relation.

Observe that the question is now reduced to the algebraic problem of H : whether

or not H becomes Abelian when the relation [a, /?] = 1 is added. Denote TTI(JV) by

K. If H = /«(TTI(S)), then C2(H) is Abelian, and we have

[a, i/a"1!/"2] = a~1y2ay~1aya~1y~2 = 1

in K. Recall that in K, /9 commutes with both a and y. So we get
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Now, since /3" 1 = y~1a~1ya, commuting with a and y, we have

= a~1ya2y(y~1a~1ya)a~1y~2

— a~ yay~ .

By taking the inverse, we get 1 = ya~1y~1a, and thus y~1ay = a. But y-1ay — a(3,
so these two equations imply that /? = 1, which is impossible since j3 is the meridian
of the fibre T2 — D2 in F, which is not capped off by the process. Hence, H cannot
be the subgroup /»(TTI(S)) in 7Ti(r) when S is the punctured torus. This completes
the proof of Theorem 3.4. D

Actually the argument of Case 1 can be modified for the punctured Moebius band
case, also. However, we are not very much concerned with this case since the punctured
Moebius band would be one-sided.

4. SEPARABILITY OF CLOSED SURFACES IN r

A natural question to ask next is the following: does every incompressible immer-
sion of a surface in F lift to an embedding in some finite cover of F ? We begin with
the following definition.

DEFINITION 4.1: Let / : 5 —» M be a proper, TTi-injective immersion of a connected
surface S into a 3-manifold M. 5 is called separable if there is a finite cover M of M
such that / lifts to / : S —> M as an embedding.

We shall assume that all such immersions are least-area maps in their homotopy
classes. Let us first consider closed surfaces. We begin with the following, somewhat
surprising lemma.

LEMMA 4 . 2 . Suppose f: S —> F is a iti-injective proper immersion of a. con-

nected closed orientable surface into F , and S is not S2 . Then, S must be the torus.

PROOF: We use the graph-manifold description of F (Lemma 2.1 and Figure 2).
Cut open F along the glued torus T to get F' = P x S1, where P is the pair of pants.
Define f':S'->r', where S' = S-f'1^), possibly disconnected. Each component of
f'{S') is 7Ti-injective (by least area) in F ' , so assume it is either horizontal or vertical
in F ' . But if a component is horizontal, it must be transverse to every fibre of F ' ,
meeting every component of dT'. This contradicts the hypothesis that S is a proper
immersion of a closed surface. Hence, each component is vertical. This implies that
f(S) is disjoint from T since the gluing does not preserve the vertical fibres. Hence,
S = S' and is immersed in F ' , and it is a union of Seifert fibres; therefore, it must be
the torus. U
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This lemma means that f(S) is a product of some closed (but not necessarily
simple) curve c on the fibre P with an n-degree covering of S1. (c represents the
meridian of S). We now state one of the main theorems about surfaces in F.

THEOREM 4 . 3 . Suppose f : S —> F is a TTI -injective proper immersion of an
orientable closed connected surface S into F . Then, S is separable.

PROOF: The result is trivial if 5 = S2 , so by Lemma 4.2, we may suppose that 5
is the torus. This time, use the HNN-extension model of F (Theorem 2.3 and Figure
5). Denote T x {0} by To and T x {1} by Ti. With this description (Figure 3 and
Figure 4), we use the term "connecting annulus" A to refer to the thickened annulus
A x I connecting the 2-dimensional neighbourhoods No of /J. in^Zo and Ni of A in
Ti. Let us refer to T x I as F ' . This is obtained after F is cut along the middle of the
connecting annulus A. We have the following two cases.

CASE 1. S fl A = 0 . Here, 5 C F ' . In this case, S can be homotoped to cover the

torus T x {1/2} in F ' . Let p: S -> T x {1/2} be this covering. P»(TTI(S)) is some Z ©Z

subgroup in 7Ti(T) = Z © Z. Then, since Z © Z is LERF, there exists a finite cover

f' of F' = T x / in which p lifts to p: S -» f1 as an embedding. Let df' = T̂  U T{.

There are some mo and /o , positive integers, such that on TQ we see mg copies of the

meridian curves ^i\,fi'2,... , A4^, , each covering the original meridian fi CTQ with some

degree /o . On 2\ , then, there are l\ copies of the longitude curves \\, X'2,..., AJ , each

covering the original A C Ti with degree mi (and we have mill — molo). Next, we

create the "dual space" F* , a covering space of F' just like F' except the meridian and

the longitude are reversed. Let 9F* = To* U Tx*. As before, TJ,* has l\ copies of the

meridian curves j i j , . . . ,/xĴ  , each covering fj. with degree mi, and Tx* has mo copies

of the longitude curves AJ, . . . , A^o , each covering A with degree /o . These degrees on

dV and dT* match up, so we can join the fj,[ with the AJ (m0 of these), and the X[

with the ii*{ {h of these). The result, F, is a finite covering space for F in which 5 is

embedded.

This procedure will be used in Case 2 as well. In fact, it is highly useful to de-

scribe this process using graphs with edges and half-edges. F' can be represented by

a finite graph with one vertex v (for F'), mo incoming half-edges labelled Zo (for

Hi,fi2i • • • ip'mo )> a n ( i 'i outgoing half-edges labelled mi (for A^,... AJ ). Note that

the incoming half-edges represent the curves on dV covering the meridian of dV with

the labelled degrees, and the outgoing half-edges represent the curves on dY' covering

the longitude of dV with the labelled degrees. In this way, each covering space F1

of F' can be represented by a vertex with an appropriate number of labelled, directed

half-edges (see Figure 8 for F' when mo = mi = Z, IQ =l\ — 2).

Note that the dual space F* has the graph representation where all the edges are
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Figure 8. F' when m0 = mi = 3, lo = h = 2

reversed; therefore, we can connect the half-edges to "close up" the space (see Figure
9) and obtain a covering space F of F . Note that the surface S is embedded entirely
in F', and the sole purpose for constructing F* is to close up the space F' so that F
becomes a covering space of F. The covering projection F —> F is an extension of the
covering F' —» F'; the covering F* —» F' is defined naturally as the dual of F', and the
degree-m^ (and -U) maps of the annuli joining F' and F* cover the connecting annuli
Ai (see Figure 4), making the map F —> F a covering projection.

Figure 9. Covering Space F of F

CASE 2. S n A ± 0 . Assume that / is transverse to A. Let 5' = S - f~l{A),
and cut F open along A to get f':S' —> F'. Observe that we can now identify A as
•Wo C To and Ni C 2i as in Section 2. Now, f~1(A) is a 1-manifold on 5, so by making
both A and / least area in their homotopy classes (so none of the circles are trivial),
we may assume f~1(A) is a disjoint union of essential circles of the torus 5 . Each
component C of S' is immersed properly and 7ri-injectively in F', and dC C A. All
these circles are parallel in the torus 5, implying that each C is an annulus. Denote the
two boundary components of the annulus C by doC and d\C. f(doC) and f(d\C) are
in the same component of dV since otherwise C would be an annulus in F' joining A
to i± in 7Ti(r'), which is impossible. Suppose for now that f(diC) are both homotopic
to nd G 7Ti(To) for some d. Again, by least area, C cannot be homotopic rel dC into
A = NQ . So C must go around To at least once in the longitude direction. Hence, C
is an annulus "beginning" at d0C on No C To, going "around" T (in T x I = V) a
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number of times, and "ending" at d\C, also on No C To- Clearly, a similar condition
holds if the boundary curves of C are in N\ C T\. In fact, as 5 is a torus, these must
match together to close up. So 5 ' = S\f~1(A) consists of an even number of annuli,
where the annuli have their boundary circles in TQ and I \ alternatingly. Let us refer to
those annuli with boundary in No ("the left-hand side" of A) as the "meridian annuli,"
and the other ones on Ni as the "longitude annuli." We can then write 5 ' = \JCi,

where an odd index indicates a meridian annulus and an even index indicates a longitude
annulus.

We can describe each component d of 5 ' by a pair (mi,It) as follows. Suppose
d is a meridian annulus. Then, rrn is the integer such that each component of f(dCi)

covers the meridian of the fibre torus T of F' by the degree- m.j cover, and U indicates
how many times the /-factor of Ci = S1 x / goes around the longitude of T. If C; is a
longitude annulus, one can similarly describe it by (TOJ,/ , ) ; each component of f(dCi)

covers the longitude of T by the degree- U cover, and the /-factor of d goes around
the meridian m* times.

We now return to the construction of a finite-degree cover F of F . The procedure is
similar to that of Case 1. Say there are 2k components of S\f~1(A). Since C\,C$,...

are the meridian annuli while C2,Ci,... are the longitude ones, we must have mi =

l2 — mz = U = • • • = hk- Let this number be d £ Z + (for "degree").

Now, define the (z,t/)-cover of T to mean the covering torus T" defined by the
map Z 0 Z —> Zx © Zy, sending each generator to the corresponding generator. For d,

described by (m;,Zj), where i is odd, take FJ to be T[ X I, where T[ is the (<f,Z; + 1)-
cover of T. We use U + 1 so that we can be sure that Ci is embedded in FJ. Ci enters
FJ at one component of the pre-image of fi and leaves FJ at another, which will later
enable us to join the embedded Ci together. For d, i even, let T[ — T- X I, where T[

is the (m; + l,<i)-cover of T. Again, Ci embeds in T\. We obtain 2fc distinct covering
spaces of F ' , possibly of different degrees. But the embedded Cj can be connected by
appropriate covers Ai of A because d = mi — I2 = • • • = hk • So, the 2k covering
spaces FJ of F ' , joined together by the Ai, contain an embedded copy of S.

We now need to make this object into a covering space for F by "closing up" those

pre-images of No and Ni. Again, we reverse the longitude and the meridian of FJ to

create the covering spaces F^ of F ' , dual to T[. Now, \J T[ can be represented by

the graph seen in Figure 10, where the vertex v,- represents FJ, the cover of I" having
the right number of incoming and outgoing edges of appropriate degrees and two of the
edges are connected to the adjacent vertices u^-i and Vi+i just as the Ai connect the
Ci. The fact that the Ai join the Ci to complete the embedded torus S is reflected
by the fact that there is a complete circle connecting the Vi by edges labelled d. We

https://doi.org/10.1017/S0004972700033931 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033931


[15] A 3-manifold 275

.NS/ A .
d outgoing edges of

degree i

/, incoming edges of
degree d

Figure 10. Space containing S as an embedded surface

may have many half-edges now. But once again, the dual spaces FJ" are represented
by the same graph except that the orientations of the edges are reversed. Join the
F< (1 ^ i Sj 2k) exactly as the T't so that the F? also makes a circle. We can now pair
up the "open" half-edges of FJ with those of F? to create F, a covering space of F, since
the degrees, orientations, and the number of the half-edges match up by construction.
5 is embedded in (J FJ C F, so F is a desired finite cover of F. Incidentally, the degree

^ / 2k 2k s

of F over F is 2d[2k + £ l{ + £ mi) . D
* todd ieven '

5. SEPARABILITY OF NON-CLOSED SURFACES IN F

The next question is for properly immersed incompressible surfaces with boundary.
If / : 5 —> M is a proper immersion of a compact orientable surface into a graph manifold
M = \jMi, we say 5 is horizontal if f(S) (~1 Mi is horizontal or empty for all i. Of
course, many immersed surfaces are neither horizontal nor vertical, but we can assume
that each non-empty intersection f(S) fl M, is either horizontal or vertical (up to
homotopy) by the theory of least-area maps (see Hass and Scott [6] and Freedman,
Hass, and Scott [4]). We now need one more definition to state the crucial criterion
proved by Rubinstein and Wang [12].

DEFINITION 5.1: Suppose f:S —* M is a TTi-injective horizontal proper immersion
into a graph manifold M, where M = \J Mj, glued along a family T of tori. Assume
transversality so that f~x (T) is a family C of disjoint simple closed curves c on 5 . Let
7 be an oriented simple closed curve on 5 , parameterised by t (E [0, 1]. As t increases,
7 can meet f~l{T) at c G C. Say at c, f(f) goes from M,- to Mj, where /j(c) = /(c)
on dMi and fj(c) - f(c) on dMj. Then, define

Pc

\unfj(c)\
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where U (and tj) is a regular fibre of M{ (and of Mj). If 7 intersects C at C\, C2,..., cj.
in that order, then define

Hence, for any c £ C intersecting 7, pc is a ratio: the numerator measures how
many times /,-(c) intersects a regular fibre of dMi and the denominator similarly mea-
sures how many times fj(c) intersects a regular fibre of dMj , the "other side." For 7
not intersecting C, define s-y = 1. For every oriented simple closed curve 7 C S, then,
s-f is well-defined.

As 7 goes from M; to Mj at c € C, /»(c) is often represented (up to homotopy)
by a pair of coordinates (a , /?) on 9M^. The corresponding coordinates (a' , /?') for
fj(c) on dAfj can be obtained by

where the 2 x 2 matrix represents the gluing. If we use the convention that the first
coordinate is the meridian (horizontal), then |<»n/j(c)| = a, and \tj(^fj{c)\ = a',

making pc = a/a'. Then, we can write

Jfcn a{

and the Pi and /3? are irrelevant.

Now, we are ready to state Rubinstein and Wang's criterion [12]:

THEOREM 5 . 2 . Suppose f:S —> M is a 7Ti-injective proper horizontal immer-

sion of a compact connected surface S into a graph manifold M. Then, S is separable

if and only if s7 = 1 for each oriented simple closed curve 7 C 5 .

We shall soon use this criterion to construct a surfaces not separable in T; however,

the construction requires some more definitions.

DEFINITION 5.3: Let f:S—*M be a proper map of a connected surface (not D2 )
into some 3-manifold. S is called arc-incompressible if the following holds: suppose
there is a disk D in M with the boundary consisting of a proper arc 8 in f(S) and
an arc 7 in dM sharing the same endpoints such that D D f(S) = 6. Then, there is a
path 6' in f(dS) C dM such that 6 U 6' bounds a disc in 5 .

If S is not arc-incompressible, S is said to be arc-compressible, and the disc D

such that dD = 8 U 7 is called a compressing disc.

We shall use this to prove the following.
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L E M M A 5 . 4 . S u p p o s e M — \J Mi i s a g r a p h manifold. L e t f : S — * M be a
T

proper immersion of a connected compact surface. If each component of S — f~1(T) is
a TTI -injective horizontal surface in the corresponding M,-, then S is also a TTI -injective
horizontal surface in M.

PROOF: By definition, S is horizontal. Suppose S fails to be 7rj-injective in M.
Then, there is a compressing disc D in M. But D cannot be disjoint from all the tori in
T since that would make a component of 5 \ / - 1 (T) compressible in Mj, contrary to the
hypothesis. So the compressing disc D intersects some torus T £ T. In D, D n(\JT)
is a disjoint collection of proper arcs and circles. But by least area of the map and the
tori in T, there are no circles and that any outermost arc represents a compressing disc
Di. Now, a horizontal surface d lifts to an embedding ei'.Ci -^ Ci X S1 = Mi in a
finite cover Mj of M,-, and Di also lifts to a disc Di in CiX S1. But this implies that
Ci is arc-compressible in d x S1, which is absurd. D

To give an explicit description of a surface which is not separable in F, we shall need
the following construction. Let M — FxS1, where F is some compact surface. Suppose
/: 5 —> M is a proper immersion such that f(S)cFx {0} ("really horizontal"), and
let 7 C f(S) be a simple closed curve or a simple proper arc in f{S). Then, by the
Dehn twist along 7 of degree d (d 6 Z), we mean the following modification of / to
obtain f':S -> M.

Take a regular neighbourhood 7 x / of 7, with two boundary components 70 and
71. Fix a point 1 of 7, and let Sx be the path x x I from (x,0) to (a;,l) in F x {0}.
Now, replace Sx with 6'x , the path from (x, 0), traveling in the S1 -direction d times and
terminating at (x,l). This is also referred to as a "ei-floor staircase construction" for
an obvious reason. Now, replace 7 x / C F x {0} with (J S'x (homeomorphic to 7 x / ) ,

x€-Y

and take this new image to be f'{S). This resulting map / ' is still horizontal because
the image of the immersed surface is still transverse to the fibres. Being horizontal, / '
is still TTI-injective.

THEOREM 5 . 5 . There is a proper immersion f: S —» F, TTI -injective, where S is
a connected orientable surface and is not separable.

PROOF: S = SI li S2 is constructed as follows. Let P denote the pair of pants
described as a disk with two holes labelled Tx and Ty , corresponding to the generators
x and y of TTI(P). Let Si be the double cover of P defined by the homomorphism
0:TTI(P) = (x,y) —> Z2 sending x 1—> 0 and y 1—> 1. This defines pi:Si —> P such
that p^"1(z) is two disjoint circles each covering x by degree 1, and pf 1(y) is one circle
covering y by degree 2. This map pi describes a really horizontal surface in I" = Px S1

(as described in Figure 2) so these pre-image circles have coordinates (1,0), (1,0) for
pj"1(a;) and (2,0) for pf1(j/)- Now, do the Dehn twist of degree 1 as shown (Figure
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11) along two paths of Si . Now the coordinates are (1,0), (1,1), and (2,1), where the
first one is the circle left untouched in Figure 11. For S2, reverse x and y. Define
P2- S2 —» P by 0':7ri(P) —> Z2 sending x 1—> 1, and y 1—> 0. Do the Dehn twist as
shown (Figure 12) of degree —1 to get the coordinates (2, —1) for p^"1(a;) and (1,0) and
(1, —1) for p^"1(j/)- Now, in P x S1, we see two surfaces Si, i = 1,2 with coordinates
shown (Figure 13).

Figure 11. Si in the construction

Figure 12. S2 in the construction

Immerse 5 = Si U S2 such that the circle (1,1) is glued (correctly) to (2,1) by

h = ( J, (1,0) is glued to (1,0), and (2,-1) is glued to (1,-1). Note that

this surface is the connected sum of two punctured tori properly immersed in F. This
immersion is TTi-injective by Lemma 5.2 above.

Consider 7 shown in Figure 13. s7 = 1/2 (or 2, depending on the orientation of
7). By Rubinstein and Wang's criterion (Theorem 5.2), S is not separable. D

It is clear that the criterion gives many other horizontal surfaces that are not
separable in F. All one needs to do is to construct surfaces similar to the one in
Theorem 5.5 with a loop 7 such that sy ^ 1. This suggests that graph manifolds have
many immersed surfaces that are not separable in them.
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Figure 13. Non-separable surface in F
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