© Canadian Mathematical Society 2021. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Galois-theoretic features for 1-smooth pro-*p* groups

Claudio Quadrelli

Abstract. Let p be a prime. A pro-p group G is said to be 1-smooth if it can be endowed with a continuous representation $\theta \colon G \to \operatorname{GL}_1(\mathbb{Z}_p)$ such that every open subgroup H of G, together with the restriction $\theta|_H$, satisfies a formal version of Hilbert 90. We prove that every 1-smooth pro-p group contains a unique maximal closed abelian normal subgroup, in analogy with a result by Engler and Koenigsmann on maximal pro-p Galois groups of fields, and that if a 1-smooth pro-p group is solvable, then it is locally uniformly powerful, in analogy with a result by Ware on maximal pro-p Galois groups of fields. Finally, we ask whether 1-smooth pro-p groups satisfy a "Tits' alternative."

1 Introduction

Throughout the paper p will denote a prime number, and \mathbb{K} a field containing a root of unity of order p. Let $\mathbb{K}(p)$ denote the compositum of all finite Galois p-extensions of \mathbb{K} . The maximal pro-p Galois group of \mathbb{K} , denoted by $G_{\mathbb{K}}(p)$, is the Galois group $\operatorname{Gal}(\mathbb{K}(p)/\mathbb{K})$, and it coincides with the maximal pro-p quotient of the absolute Galois group of \mathbb{K} . Characterising maximal pro-p Galois groups of fields among pro-p groups is one of the most important—and challenging—problems in Galois theory. One of the obstructions for the realization of a pro-p group as maximal pro-p Galois group for some field \mathbb{K} is given by the Artin–Scherier theorem: the only finite group realizable as $G_{\mathbb{K}}(p)$ is the cyclic group of order 2 (cf. [1]).

The proof of the celebrated *Bloch-Kato conjecture*, completed by Rost and Voevodsky with Weibel's "patch" (cf. [12, 27, 29]) provided new tools to study absolute Galois groups of field and their maximal pro-p quotients (see, e.g., [2, 3, 17, 21]). In particular, the now-called Norm Residue Theorem implies that the \mathbb{Z}/p -cohomology algebra of a maximal pro-p Galois group $G_{\mathbb{K}}(p)$

$$H^{\bullet}(G_{\mathbb{K}}(p),\mathbb{Z}/p) \coloneqq \bigoplus_{n\geq 0} H^{n}(G_{\mathbb{K}}(p),\mathbb{Z}/p),$$

with \mathbb{Z}/p a trivial $G_{\mathbb{K}}(p)$ -module and endowed with the cup-product, is a quadratic algebra: i.e., all its elements of positive degree are combinations of products of elements of degree 1, and its defining relations are homogeneous relations of degree 2 (see Section 2.3). For instance, from this property one may recover the Artin-Schreier obstruction (see, e.g., [17, Section 2]).

Received by the editors June 26, 2020; revised June 21, 2021; accepted June 23, 2021.

Published online on Cambridge Core June 29, 2021.

AMS subject classification: 12G05, 20E18, 20J06, 12F10.

Keywords: Galois cohomology, maximal pro-*p* Galois groups, Bloch–Kato conjecture, Kummerian pro-*p* pairs, Tits' alternative.

More recently, a formal version of *Hilbert 90* for pro-p groups was employed to find further results on the structure of maximal pro-p Galois groups (see [9, 19, 21]). A pair $\mathcal{G} = (G, \theta)$ consisting of a pro-p group G endowed with a continuous representation $\theta: G \to \mathrm{GL}_1(\mathbb{Z}_p)$ is called a *pro-p pair*. For a pro-p pair $\mathcal{G} = (G, \theta)$ let $\mathbb{Z}_p(1)$ denote the continuous left G-module isomorphic to \mathbb{Z}_p as an abelian pro-p group, with G-action induced by θ (namely, $g.v = \theta(g) \cdot v$ for every $v \in \mathbb{Z}_p(1)$). The pair \mathcal{G} is called a *Kummerian pro-p pair* if the canonical map

$$H^1(G, \mathbb{Z}_p(1)/p^n) \longrightarrow H^1(G, \mathbb{Z}_p(1)/p)$$

is surjective for every $n \ge 1$. Moreover the pair \mathcal{G} is said to be a *1-smooth* pro-p pair if every closed subgroup H, endowed with the restriction $\theta|_H$, gives rise to a Kummerian pro-p pair (see Definition 2.1). By Kummer theory, the maximal pro-p Galois group $G_{\mathbb{K}}(p)$ of a field \mathbb{K} , together with the pro-p cyclotomic character $\theta_{\mathbb{K}}: G_{\mathbb{K}}(p) \to \operatorname{GL}_1(\mathbb{Z}_p)$ (induced by the action of $G_{\mathbb{K}}(p)$ on the roots of unity of order a p-power lying in $\mathbb{K}(p)$) gives rise to a 1-smooth pro-p pair $\mathcal{G}_{\mathbb{K}}$ (see Theorem 2.8).

In [5]—driven by the pursuit of an "explicit" proof of the Bloch–Kato conjecture as an alternative to the proof by Voevodsky—De Clerq and Florence introduced the 1-smoothness property, and formulated the so-called "Smoothness Conjecture": namely, that it is possible to deduce the surjectivity of the norm residue homomorphism (which is acknowledged to be the "hard part" of the Bloch–Kato conjecture) from the fact that $G_{\mathbb{K}}(p)$ together with the pro-p cyclotomic character is a 1-smooth pro-p pair (see [5, Conjecture 14.25] and [15, Section 3.1.6], and Question 2.10).

In view of the Smoothness Conjecture, it is natural to ask which properties of maximal pro-p Galois groups of fields arise also for 1-smooth pro-p pairs. For example, the Artin–Scherier obstruction does: the only finite p-group which may complete into a 1-smooth pro-p pair is the cyclic group C_2 of order 2, together with the nontrivial representation $\theta: C_2 \to \{\pm 1\} \subseteq \operatorname{GL}_1(\mathbb{Z}_2)$ (see Example 2.9).

A pro-p pair $\mathcal{G} = (G, \theta)$ comes endowed with a distinguished closed subgroup: the θ -center $Z(\mathcal{G})$ of \mathcal{G} , defined by

$$Z(\mathfrak{G}) = \langle h \in \operatorname{Ker}(\theta) \mid ghg^{-1} = h^{\theta(g)} \forall g \in G \rangle.$$

This subgroup is abelian, and normal in G. In [10], Engler and Koenigsmann showed that if the maximal pro-p Galois group $G_{\mathbb{K}}(p)$ of a field \mathbb{K} is not cyclic then it has a unique maximal normal abelian closed subgroup (i.e., one containing all normal abelian closed subgroups of $G_{\mathbb{K}}(p)$), which coincides with the $\theta_{\mathbb{K}}$ -center $Z(\mathcal{G}_{\mathbb{K}})$, and the short exact sequence of pro-p groups

$$\{1\} \longrightarrow Z(\mathcal{G}_{\mathbb{K}}) \longrightarrow G_{\mathbb{K}}(p) \longrightarrow G_{\mathbb{K}}(p)/Z(\mathcal{G}_{\mathbb{K}}) \longrightarrow \{1\}$$

splits. We prove a group-theoretic analogue of Engler–Koenigsmann's result for 1-smooth pro-p groups.

Theorem 1.1 Let G be a torsion-free pro-p group, $G \not= \mathbb{Z}_p$, endowed with a representation $\theta: G \to \mathrm{GL}_1(\mathbb{Z}_p)$ such that $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair. Then $Z(\mathcal{G})$ is the

unique maximal normal abelian closed subgroup of G, and the quotient $G/Z(\mathfrak{G})$ is a torsion-free pro-p group.

In [28], Ware proved the following result on maximal pro-p Galois groups of fields: if $G_{\mathbb{K}}(p)$ is solvable, then it is locally uniformly powerful, i.e., $G_{\mathbb{K}}(p) \cong A \rtimes \mathbb{Z}_p$, where A is a free abelian pro-p group, and the right-side factor acts by scalar multiplication by a unit of \mathbb{Z}_p (see Section 3.1). We prove that the same property holds also for 1-smooth pro-p groups.

Theorem 1.2 Let G be a solvable torsion-free pro-p group, endowed with a representation $\theta: G \to GL_1(\mathbb{Z}_p)$ such that $\mathfrak{G} = (G, \theta)$ is a 1-smooth pro-p pair. Then G is locally uniformly powerful.

This gives a complete description of solvable torsion-free pro-*p* groups which may be completed into a 1-smooth pro-*p* pair. Moreover, Theorem 1.2 settles the Smoothness Conjecture positively for the class of solvable pro-*p* groups.

Corollary 1.3 If $G = (G, \theta)$ is a 1-smooth pro-p pair with G solvable, then G is a Bloch–Kato pro-p group, i.e., the \mathbb{Z}/p -cohomology algebra of every closed subgroup of G is quadratic.

Remark 1.4 After the submission of this paper, Snopce and Tanushevski showed in [24] that Theorems 1.2–1.1 hold for a wider class of pro-*p* groups. A pro-*p* group is said to be *Frattini-injective* if distinct finitely generated closed subgroups have distinct Frattini subgroups (cf. [24, Definition 1.1]). By [24, Theorem 1.11 and Corollary 4.3], a pro-*p* group which may complete into a 1-smooth pro-*p* pair is Frattini-injective. By [24, Theorem 1.4] a Frattini-injective pro-*p* group has a unique maximal normal abelian closed subgroup, and by [24, Theorem 1.3] a Frattini-injective pro-*p* group is solvable if, and only if, it is locally uniformly powerful.

A solvable pro-p group does not contain a free nonabelian closed subgroup. For Bloch–Kato pro-p groups—and thus in particular for maximal pro-p Galois groups of fields containing a root of unity of order p—Ware proved the following Tits' alternative: either such a pro-p group contains a free non-abelian closed subgroup; or it is locally uniformly powerful (see [28, Corollary 1] and [17, Theorem B]). We conjecture that the same phenomenon occurs for 1-smooth pro-p groups.

Conjecture 1.5 Let G be a torsion-free pro-p group which may be endowed with a representation $\theta: G \to GL_1(\mathbb{Z}_p)$ such that $\mathfrak{G} = (G, \theta)$ is a 1-smooth pro-p pair. Then either G is locally uniformly powerful, or G contains a closed nonabelian free pro-p group.

2 Cyclotomic pro-p pairs

Henceforth, every subgroup of a pro-*p* group will be tacitly assumed to be closed, and the generators of a subgroup will be intended in the topological sense.

In particular, for a pro-p group G and a positive integer n, G^{p^n} will denote the closed subgroup of G generated by the p^n th powers of all elements of G. Moreover, for two elements g, $h \in G$, we set

$$h^g = g^{-1}hg$$
, and $[h, g] = h^{-1} \cdot h^g$,

and for two subgroups H_1, H_2 of G, $[H_1, H_2]$ will denote the closed subgroup of G generated by all commutators [h, g] with $h \in H_1$ and $g \in H_2$. In particular, G' will denote the commutator subgroup [G, G] of G, and the Frattini subgroup $G^p \cdot G'$ of G is denoted by $\Phi(G)$. Finally, d(G) will denote the minimal number of generatord of G, i.e., $d(G) = \dim(G/\Phi(G))$ as a \mathbb{Z}/p -vector space.

2.1 Kummerian pro-p pairs

Let $1 + p\mathbb{Z}_p = \{1 + p\lambda \mid \lambda \in \mathbb{Z}_p\} \subseteq GL_1(\mathbb{Z}_p)$ denote the pro-p Sylow subgroup of the group of units of the ring of p-adic integers \mathbb{Z}_p . A pair $\mathfrak{G} = (G, \theta)$ consisting of a pro-p group G and a continuous homomorphism

$$\theta: G \longrightarrow 1 + p\mathbb{Z}_p$$

is called a *cyclotomic pro- p pair*, and the morphism θ is called an *orientation* of G (cf. [7, Section 3] and [21]).

A cyclotomic pro-p pair $\mathcal{G} = (G, \theta)$ is said to be *torsion-free* if $\operatorname{Im}(\theta)$ is torsion-free: this is the case if p is odd; or if p = 2 and $\operatorname{Im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$. Observe that a cyclotomic pro-p pair $\mathcal{G} = (G, \theta)$ may be torsion-free even if G has nontrivial torsion—e.g., if G is the cyclic group of order p and θ is constantly equal to 1. Given a cyclotomic pro-p pair $\mathcal{G} = (G, \theta)$ one has the following constructions:

- (a) if *H* is a subgroup of *G*, $Res_H(\mathfrak{G}) = (H, \theta|_H)$;
- (b) if *N* is a normal subgroup of *G* contained in $Ker(\theta)$, then θ induces an orientation $\bar{\theta}$: $G/N \to 1 + p\mathbb{Z}_p$, and we set $G/N = (G/N, \bar{\theta})$;
- (c) if *A* is an abelian pro-*p* group, we set $A \rtimes \mathcal{G} = (A \rtimes G, \theta \circ \pi)$, with $a^g = a^{\theta(g)^{-1}}$ for all $a \in A$, $g \in G$, and π the canonical projection $A \rtimes G \to G$.

Given a cyclotomic pro-p pair $\mathcal{G} = (G, \theta)$, the pro-p group G has two distinguished subgroups:

(a) the subgroup

(2.1)
$$K(\mathfrak{G}) = \left\langle h^{-\theta(g)} \cdot h^{g^{-1}} \middle| g \in G, h \in \text{Ker}(\theta) \right\rangle$$

introduced in [9, Section 3];

(b) the θ -center

(2.2)
$$Z(\mathfrak{G}) = \langle h \in \operatorname{Ker}(\theta) | ghg^{-1} = h^{\theta(g)} \, \forall \, g \in G \rangle$$

introduced in [17, Section 1].

Both $Z(\mathfrak{G})$ and $K(\mathfrak{G})$ are normal subgroups of G, and they are contained in $Ker(\theta)$. Moreover, $Z(\mathfrak{G})$ is abelian, while

$$K(\mathfrak{G}) \supseteq \operatorname{Ker}(\theta)'$$
, and $K(\mathfrak{G}) \subseteq \Phi(G)$.

Thus, the quotient $Ker(\theta)/K(\mathfrak{G})$ is abelian, and if \mathfrak{G} is torsion-free one has an isomorphism of pro-p pairs

$$(2.3) G/K(\mathfrak{G}) \simeq (\operatorname{Ker}(\theta)/K(\mathfrak{G})) \rtimes (\mathfrak{G}/\operatorname{Ker}(\theta)),$$

namely, $G/K(\mathfrak{G}) \simeq (\text{Ker}(\theta)/K(\mathfrak{G})) \rtimes (G/\text{Ker}(\theta))$ (where the action is induced by θ , in the latter), and both pro-p groups are endowed with the orientation induced by θ (cf. [18, Equation 2.6]).

Definition 2.1 Given a cyclotomic pro-p pair $\mathcal{G} = (G, \theta)$, let $\mathbb{Z}_p(1)$ denote the continuous G-module of rank 1 induced by θ , i.e., $\mathbb{Z}_p(1) \simeq \mathbb{Z}_p$ as abelian pro-p groups, and $g.\lambda = \theta(g) \cdot \lambda$ for every $\lambda \in \mathbb{Z}_p(1)$. The pair \mathcal{G} is said to be *Kummerian* if for every $n \geq 1$ the map

$$(2.4) H^1(G, \mathbb{Z}_p(1)/p^n) \longrightarrow H^1(G, \mathbb{Z}_p(1)/p),$$

induced by the epimorphism of *G*-modules $\mathbb{Z}_p(1)/p^n \to \mathbb{Z}_p(1)/p$, is surjective. Moreover, \mathfrak{G} is *I-smooth* if $\mathrm{Res}_H(\mathfrak{G})$ is Kummerian for every subgroup $H \subseteq G$.

Observe that the action of G on $\mathbb{Z}_p(1)/p$ is trivial, as $\operatorname{Im}(\theta) \subseteq 1 + p\mathbb{Z}_p$. We say that a pro-p group G may complete into a Kummerian, or 1-smooth, pro-p pair if there exists an orientation $\theta: G \to 1 + p\mathbb{Z}_p$ such that the pair (G, θ) is Kummerian, or 1-smooth.

Kummerian pro-p pairs and 1-smooth pro-p pairs were introduced in [9] and in [5, Section 14] respectively. In [21], if $G = (G, \theta)$ is a 1-smooth pro-p pair, the orientation θ is said to be 1-cyclotomic. Note that in [5, Section 14.1], a pro-p pair is defined to be 1-smooth if the maps (2.4) are surjective for every open subgroup of G, yet by a limit argument this implies also that the maps (2.4) are surjective also for every closed subgroup of G (cf. [21, Corollary 3.2]).

Remark 2.1 Let $\mathcal{G} = (G, \theta)$ be a cyclotomic pro-p pair. Then \mathcal{G} is Kummerian if, and only if, the map

$$H^1_{\mathrm{cts}}(G,\mathbb{Z}_p(1))\longrightarrow H^1(G,\mathbb{Z}_p(1)/p),$$

induced by the epimorphism of continuous left *G*-modules $\mathbb{Z}_p(1) \twoheadrightarrow \mathbb{Z}_p(1)/p$, is surjective (cf. [21, Proposition 2.1])—here H_{cts}^* denotes continuous cochain cohomology as introduced by Tate in [26].

One has the following group-theoretic characterization of Kummerian torsion-free pro-*p* pairs (cf. [9, Theorems 5.6 and 7.1] and [20, Theorem 1.2]).

Proposition 2.2 A torsion-free cyclotomic pro-p pair $\mathfrak{G} = (G, \theta)$ is Kummerian if and only if $Ker(\theta)/K(\mathfrak{G})$ is a free abelian pro-p group.

Remark 2.3 Let $\mathcal{G} = (G, \theta)$ be a cyclotomic pro-p pair with $\theta \equiv 1$, i.e., θ is constantly equal to 1. Since $K(\mathcal{G}) = G'$ in this case, \mathcal{G} is Kummerian if and only if the quotient G/G' is torsion-free. Hence, by Proposition 2.2, \mathcal{G} is 1-smooth if and only if H/H' is torsion-free for every subgroup $H \subseteq G$. Pro-p groups with such property are called

absolutely torsion-free, and they were introduced by Würfel in [30]. In particular, if $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair (with θ nontrivial), then $\operatorname{Res}_{\operatorname{Ker}(\theta)}(\mathcal{G}) = (\operatorname{Ker}(\theta), 1)$ is again 1-smooth, and thus $\operatorname{Ker}(\theta)$ is absolutely torsion-free. Hence, a pro-p group which may complete into a 1-smooth pro-p pair is an absolutely torsion-free-by-cyclic pro-p group.

- *Example 2.4* (a) A cyclotomic pro-p pair (G, θ) with G a free pro-p group is 1-smooth for any orientation $\theta: G \to 1 + p\mathbb{Z}_p$ (cf. [21, Section 2.2]).
- (b) A cyclotomic pro-p pair (G, θ) with G an infinite Demushkin pro-p group is 1-smooth if and only if $\theta: G \to 1 + p\mathbb{Z}_p$ is defined as in [14, Theorem 4] (cf. [9, Theorem 7.6]). E.g., if G has a minimal presentation

$$G = \left(x_1, \dots, x_d \mid x_1^{p^f} [x_1, x_2] \cdots [x_{d-1}, x_d] = 1\right)$$

with $f \ge 1$ (and $f \ge 2$ if p = 2), then $\theta(x_2) = (1 - p^f)^{-1}$, while $\theta(x_i) = 1$ for $i \ne 2$.

(c) For $p \ne 2$ let G be the pro-p group with minimal presentation

$$G = \langle x, y, z \mid [x, y] = z^p \rangle.$$

Then the pro-p pair (G, θ) is not Kummerian for any orientation $\theta: G \to 1 + p\mathbb{Z}_p$ (cf. [9, Theorem 8.1]).

(d) Let

$$H = \left\{ \left(\begin{array}{ccc} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right) \mid a, b, c \in \mathbb{Z}_p \right\}$$

be the Heisenberg pro-p group. The pair (H,1) is Kummerian, as $H/H' \simeq \mathbb{Z}_p^2$, but H is not absolutely torsion-free. In particular, H can not complete into a 1-smooth pro-p pair (cf. [18, Example 5.4]).

(e) The only 1-smooth pro-p pair (G, θ) with G a finite p-group is the cyclic group of order $2 G \simeq \mathbb{Z}/2$, endowed with the only nontrivial orientation $\theta \colon G \twoheadrightarrow \{\pm 1\} \subseteq 1 + 2\mathbb{Z}_2$ (cf. [9, Example 3.5]).

Remark 2.5 By Example 2.4(e), if $\mathcal{G} = (G, \theta)$ is a torsion-free 1-smooth pro-p pair, then G is torsion-free.

A torsion-free pro-p pair $\mathcal{G} = (G, \theta)$ is said to be θ -abelian if the following equivalent conditions hold:

- (i) $\operatorname{Ker}(\theta)$ is a free abelian pro-*p* group, and $\mathfrak{G} \simeq \operatorname{Ker}(\theta) \rtimes (\mathfrak{G}/\operatorname{Ker}(\theta))$;
- (ii) $Z(\mathfrak{G})$ is a free abelian pro-p group, and $Z(\mathfrak{G}) = \operatorname{Ker}(\theta)$;
- (iii) \mathcal{G} is Kummerian and $K(\mathcal{G}) = \{1\}$

(cf. [17, Proposition 3.4] and [20, Section 2.3]). Explicitly, a torsion-free pro-p pair $\mathcal{G} = (G, \theta)$ is θ -abelian if and only if G has a minimal presentation

$$(2.5) G = \langle x_0, x_i, i \in I \mid [x_0, x_i] = x_i^q, [x_i, x_j] = 1 \ \forall \ i, j \in I \rangle \simeq \mathbb{Z}_p^I \rtimes \mathbb{Z}_p$$

for some set I and some p-power q (possibly $q = p^{\infty} = 0$), and in this case $\text{Im}(\theta) = 1 + q\mathbb{Z}_p$. In particular, a θ -abelian pro-p pair is also 1-smooth, as every open subgroup U of G is again isomorphic to $\mathbb{Z}_p^I \rtimes \mathbb{Z}_p$, with action induced by $\theta|_U$, and therefore $\text{Res}_U(\mathfrak{G})$ is $\theta|_U$ -abelian.

Remark 2.6 From [9, Theorem 5.6], one may deduce also the following group-theoretic characterization of Kummerian pro-p pairs: a pro-p group G may complete into a Kummerian oriented pro-p group if, and only if, there exists an epimorphism of pro-p groups $\varphi: G \twoheadrightarrow \bar{G}$ such that \bar{G} has a minimal presentation (2.5), and $\mathrm{Ker}(\varphi)$ is contained in the Frattini subgroup of G (cf., e.g., [22, Proposition 3.11]).

Remark 2.7 If $G \simeq \mathbb{Z}_p$, then the pair (G, θ) is θ -abelian, and thus also 1-smooth, for any orientation $\theta: G \to 1 + p\mathbb{Z}_p$.

On the other hand, if $\mathcal{G} = (G, \theta)$ is a θ -abelian pro-p pair with $d(G) \geq 2$, then θ is the only orientation which may complete G into a 1-smooth pro-p pair. Indeed, let $\mathcal{G}' = (G, \theta')$ be a cyclotomic pro-p pair, with $\theta' \colon G \to 1 + p\mathbb{Z}_p$ different to θ , and let $\{x_0, x_i, i \in I\}$ be a minimal generating set of G as in the presentation (2.5)—thus, $\theta(x_i) = 1$ for all $i \in I$, and $\theta(x_0) \in 1 + q\mathbb{Z}_p$. Then for some $i \in I$ one has $\theta'|_H \neq \theta|_H$, with H the subgroup of G generated by the two elements x_0 and x_i . In particular, one has $\theta([x_0, x_i]) = \theta'([x_0, x_i]) = 1$.

Suppose that \mathfrak{G}' is 1-smooth. If $\theta'(x_i) \neq 1$, then

$$x_i^q = x_i \cdot x_i^q \cdot x_i^{-1} = (x_i^q)^{\theta'(x_i)} = x_i^{q\theta'(x_i)},$$

hence $x_i^{q(1-\theta'(x_i))} = 1$, a contradiction as G is torsion-free by Remark 2.5. If $\theta'(x_i) = 1$ then necessarily $\theta'(x_0) \neq \theta(x_0)$, and thus

$$x_i^{\theta(x_0)} = x_0 \cdot x_i \cdot x_0^{-1} = x_i^{\theta'(x_0)},$$

hence $x_i^{\theta(x_0)-\theta'(x_0)}=1$, again a contradiction as G is torsion-free. (See also [21, Corollary 3.4].)

2.2 The Galois case

Let \mathbb{K} be a field containing a root of 1 of order p, and let $\mu_{p^{\infty}}$ denote the group of roots of 1 of order a p-power contained in the separable closure of \mathbb{K} . Then $\mu_{p^{\infty}} \subseteq \mathbb{K}(p)$, and the action of the maximal pro-p Galois group $G_{\mathbb{K}}(p) = \operatorname{Gal}(\mathbb{K}(p)/\mathbb{K})$ on $\mu_{p^{\infty}}$ induces a continuous homomorphism

$$\theta_{\mathbb{K}}: G_{\mathbb{K}}(p) \longrightarrow 1 + p\mathbb{Z}_p$$

—called the *pro- p cyclotomic character of* $G_{\mathbb{K}}(p)$ —as the group of the automorphisms of $\mu_{p^{\infty}}$ which fix the roots of order p is isomorphic to $1 + p\mathbb{Z}_p$ (see, e.g., [8, p. 202] and [9, Section 4]). In particular, if \mathbb{K} contains a root of 1 of order p^k for $k \ge 1$, then $\text{Im}(\theta_{\mathbb{K}}) \subseteq 1 + p^k\mathbb{Z}_p$.

Set $\mathcal{G}_{\mathbb{K}} = (G_{\mathbb{K}}(p), \theta_{\mathbb{K}})$. Then by Kummer theory one has the following (see, e.g., [9, Theorem 4.2]).

Theorem 2.8 Let \mathbb{K} be a field containing a root of 1 of order p. Then $\mathcal{G}_{\mathbb{K}} = (G_{\mathbb{K}}(p), \theta_{\mathbb{K}})$ is 1-smooth.

1-smooth pro-*p* pairs share the following properties with maximal pro-*p* Galois groups of fields.

- *Example 2.9* (a) The only finite p-group which occurs as maximal pro-p Galois group for some field \mathbb{K} is the cyclic group of order 2, and this follows from the pro-p version of the Artin–Schreier Theorem (cf. [1]). Likewise, the only finite p-group which may complete into a 1-smooth pro-p pair, is the cyclic group of order 2 (endowed with the only nontrivial orientation onto $\{\pm 1\}$), as it follows from Example 2.4(e) and Remark 2.5.
- (b) If x is an element of $G_{\mathbb{K}}(2)$ for some field \mathbb{K} and x has order 2, then x self-centralizes (cf. [4, Proposition 2.3]). Likewise, if x is an element of a pro- 2 group G which may complete into a 1-smooth pro-2 pair, then x self-centralizes (cf. [21, Section 6.1]).

2.3 Bloch-Kato and the Smoothness Conjecture

A non-negatively graded algebra $A_{\bullet} = \bigoplus_{n \geq 0} A_n$ over a field \mathbb{F} , with $A_0 = \mathbb{F}$, is called a *quadratic algebra* if it is one-generated—i.e., every element is a combination of products of elements of degree 1—and its relations are generated by homogeneous relations of degree 2. One has the following definitions (cf. [5, Definition 14.21] and [17, Section 1]).

Definition 2.2 Let G be a pro-p group, and let $n \ge 1$. Cohomology classes in the image of the natural cup-product

$$H^1(G, \mathbb{Z}/p) \times \ldots \times H^1(G, \mathbb{Z}/p) \stackrel{\cup}{\longrightarrow} H^n(G, \mathbb{Z}/p)$$

are called *symbols* (relative to \mathbb{Z}/p , wieved as trivial *G*-module).

(i) If for every open subgroup $U \subseteq G$ every element $\alpha \in H^n(U, \mathbb{Z}/p)$, for every $n \ge 1$, can be written as

$$\alpha = \operatorname{cor}_{V_1,U}^n(\alpha_1) + \cdots + \operatorname{cor}_{V_r,U}^n(\alpha_r),$$

with $r \ge 1$, where $\alpha_i \in H^n(V_i, \mathbb{Z}/p)$ is a symbol and

$$\operatorname{cor}_{V_i,U}^n: H^n(V_i,\mathbb{Z}/p) \longrightarrow H^n(U,\mathbb{Z}/p)$$

is the *corestriction map* (cf. [16, Chapter I, Section 5]), for some open subgroups $V_i \subseteq U$, then G is called a *weakly Bloch–Kato pro- p group*.

(ii) If for every closed subgroup $H \subseteq G$ the \mathbb{Z}/p -cohomology algebra

$$H^{\bullet}(H,\mathbb{Z}/p)=\bigoplus_{n\geq 0}H^n(H,\mathbb{Z}/p),$$

endowed with the cup-product, is a quadratic algebra over \mathbb{Z}/p , then G is called a Bloch- $Kato\ pro$ - $p\ group$. As the name suggests, a Bloch- $Kato\ pro$ - $p\ group$ is also weakly Bloch-Kato.

By the Norm Residue Theorem, if \mathbb{K} contains a root of unity of order p, then the maximal pro-p Galois group $G_{\mathbb{K}}(p)$ is Bloch–Kato. The pro-p version of the "Smoothness Conjecture," formulated by De Clerq and Florence, states that being 1-smooth is a sufficient condition for a pro-p group to be weakly Bloch–Kato (cf. [5, Conjugation 14.25]).

Conjecture 2.10 Let $\mathfrak{G} = (G, \theta)$ be a 1-smooth pro-p pair. Then G is weakly Bloch-Kato.

In the case of $\mathcal{G} = \mathcal{G}_{\mathbb{K}}$ for some field \mathbb{K} containing a root of 1 of order p, using Milnor K-theory one may show that the weak Bloch–Kato condition implies that $H^{\bullet}(G, \mathbb{Z}/p)$ is one-generated (cf. [5, Rem. 14.26]). In view of Theorem 2.8, a positive answer to the Smoothness Conjecture would provide a new proof of the surjectivity of the norm residue isomorphism, i.e., the "surjectivity" half of the Bloch–Kato conjecture (cf. [5, Section 1.1]).

Conjecture 2.10 has been settled positively for the following classes of pro-p groups.

- (a) Finite *p*-groups: indeed, if $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-*p* pair with *G* a finite (nontrivial) *p*-group, then by Example 2.4–(e) p = 2, *G* is a cyclic group of order two and θ : $G \to \{\pm 1\}$, so that $\mathcal{G} \simeq (\operatorname{Gal}(\mathbb{C}/\mathbb{R}), \theta_{\mathbb{R}})$, and *G* is Bloch–Kato.
- (b) Analytic pro-p groups: indeed if $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair with G a p-adic analytic pro-p group, then by [18, Theorem 1.1] G is locally uniformly powerful and thus Bloch–Kato (see §3.1 below).
- (c) Pro-p completions of right-angled Artin groups: indeed, in [25], it is shown that if $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair with G the pro-p completion of a right-angled Artin group induced by a simplicial graph Γ , then necessarily θ is trivial and Γ has the diagonal property—namely, G may be constructed starting from free pro-p groups by iterating the following two operations: free pro-p products, and direct products with \mathbb{Z}_p —and thus G is Bloch–Kato (cf. [25, Theorem 1.2]).

3 Normal abelian subgroups

3.1 Powerful pro-p groups

Definition 3.1 A finitely generated pro-p group G is said to be *powerful* if one has $G' \subseteq G^p$, and also $G' \subseteq G^4$ if p = 2. A powerful pro-p group which is also torsion-free and finitely generated is called a *uniformly powerful* pro-p group.

For the properties of powerful and uniformly powerful pro-*p* groups, we refer to [6, Chapter 4].

A pro-*p* group whose finitely generated subgroups are uniformly powerful, is said to be *locally uniformly powerful*. As mentioned in Section 1, a pro-*p* group *G* is locally

uniformly powerful if, and only if, G has a minimal presentation (2.5)—i.e., G is locally powerful if, and only if, there exists an orientation θ : $G \to 1 + p\mathbb{Z}_p$ such that (G, θ) is a torsion-free θ -abelian pro-p pair (cf. [17, Theorem A] and [3, Proposition 3.5]).

Therefore, a locally uniformly powerful pro-p group G comes endowed automatically with an orientation $\theta: G \to 1 + p\mathbb{Z}_p$ such that $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair. In fact, finitely generated locally uniformly powerful pro-p groups are precisely those uniformly powerful pro-p groups which may complete into a 1-smooth pro-p pair (cf. [18, Proposition 4.3]).

Proposition 3.1 Let $\mathcal{G} = (G, \theta)$ be a 1-smooth torsion-free pro-p pair. If G is locally powerful, then \mathcal{G} is θ -abelian, and thus G is locally uniformly powerful.

It is well-known that the \mathbb{Z}/p -cohomology algebra of a pro-p group G with minimal presentation (2.5) is the exterior \mathbb{Z}/p -algebra

$$H^{\bullet}(H,\mathbb{Z}/p) \simeq \bigwedge_{n>0} H^{1}(H,\mathbb{Z}/p)$$

—if p = 2 then $\bigwedge_{n \geq 0} V$ is defined to be the quotient of the tensor algebra over \mathbb{Z}/p generated by V by the two-sided ideal generated by the elements $v \otimes v$, $v \in V$ —so that $H^{\bullet}(G, \mathbb{Z}/p)$ is quadratic. Moreover, every subgroup $H \subseteq G$ is again locally uniformly powerful, and thus also $H^{\bullet}(H, \mathbb{Z}/p)$ is quadratic. Hence, a locally uniformly powerful pro-p group is Bloch–Kato.

3.2 Normal abelian subgroups of maximal pro-p Galois groups

Let \mathbb{K} be a field containing a root of 1 of order p (and also $\sqrt{-1}$ if p = 2). In Galois theory, one has the following result, due to Engler et al. (cf. [11] and [10]).

Theorem 3.2 Let \mathbb{K} be a field containing a root of 1 of order p (and also $\sqrt{-1}$ if p=2), and suppose that the maximal pro-p Galois group $G_{\mathbb{K}}(p)$ of \mathbb{K} is not isomorphic to \mathbb{Z}_p . Then $G_{\mathbb{K}}(p)$ contains a unique maximal abelian normal subgroup.

By [21, Theorem 7.7], such a maximal abelian normal subgroup coincides with the $\theta_{\mathbb{K}}$ -center $Z(\mathcal{G}_{\mathbb{K}})$ of the pro-p pair $\mathcal{G}_{\mathbb{K}} = (G_{\mathbb{K}}(p), \theta_{\mathbb{K}})$ induced by the pro-p cyclotomic character $\theta_{\mathbb{K}}$ (cf. §2.2). Moreover, the field \mathbb{K} admits a p-Henselian valuation with residue characteristic not p and non-p-divisible value group, such that the residue field κ of such a valuation gives rise to the cyclotomic pro-p pair \mathcal{G}_{κ} isomorphic to $\mathcal{G}_{\mathbb{K}}/Z(\mathcal{G}_{\mathbb{K}})$, and the induced short exact sequence of pro-p groups

$$(3.1) \{1\} \longrightarrow Z(\mathcal{G}_{\mathbb{K}}) \longrightarrow G_{\mathbb{K}}(p) \longrightarrow G_{\kappa}(p) \longrightarrow \{1\}$$

splits (cf. [10, Section 1] and [8, Example 22.1.6]—for the definitions related to p-henselian valuations of fields, we direct the reader to [8, Section 15.3]). In particular, $G_{\mathbb{K}}(p)/Z(\mathcal{G}_{\mathbb{K}})$ is torsion-free.

Remark 3.3 By [21, Theorems 1.2 and 7.7], Theorem 3.2 and the splitting of (3.1) generalize to 1-smooth pro-*p* pairs whose underlying pro-*p* group is Bloch–Kato.

Namely, if $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair with G a Bloch–Kato pro-p group, then $Z(\mathcal{G})$ is the unique maximal abelian normal subgroup of G, and it has a complement in G.

3.3 Proof of Theorem 1.1

In order to prove Theorem 1.1 (and also Theorem 1.2 later on), we need the following result.

Proposition 3.4 Let $\mathcal{G} = (G, \theta)$ be a torsion-free 1-smooth pro-p pair, with d(G) = 2 and $G = \langle x, y \rangle$. If [[x, y], y] = 1, then $Ker(\theta) = \langle y \rangle$ and

$$xyx^{-1}=y^{\theta(x)}.$$

Proof Let H be the subgroup of G generated by y and [x, y]. Recall that by Remark 2.5, G (and hence also H) is torsion-free.

If d(H)=2, then H is abelian by hypothesis, and torsion-free, and thus (H,θ') is θ' -abelian, with $\theta'\equiv 1$: $H\to 1+p\mathbb{Z}_p$ trivial. By Remark 2.7, one has $\theta'=\theta|_H$, and thus $y,[x,y]\in \mathrm{Ker}(\theta)$. Now put z=[x,y] and $t=y^p$, and let U be the open subgroup of G generated by x,z,t. Clearly, $\mathrm{Res}_U(\mathfrak{G})$ is again 1-smooth. By hypothesis one has $z^y=z$, and hence commutator calculus yields

$$[x, t] = [x, y^p] = z \cdot z^y \cdots z^{y^{p-1}} = z^p.$$

Put $\lambda = 1 - \theta(x)^{-1} \in p\mathbb{Z}_p$. Since $t \in \text{Ker}(\theta)$, by (2.1) $[x, t] \cdot t^{-\lambda}$ lies in $K(\text{Res}_U(\mathcal{G}))$. Since t and z commute, from (3.2) one deduces

$$(3.3) [x,t]t^{-\lambda} = z^p t^{-\lambda} = z^p t^{-\frac{\lambda}{p}p} = (zt^{-\lambda/p})^p \in K(\operatorname{Res}_U(\mathfrak{G})).$$

Moreover, $zt^{-\lambda/p} \in \text{Ker}(\theta|_U)$. Since $\text{Res}_U(\mathcal{G})$ is 1-smooth, by Proposition 2.2, the quotient $\text{Ker}(\theta|_U)/K(\text{Res}_U(\mathcal{G}))$ is a free abelian pro-p group, and therefore (3.3) implies that also $zt^{-\lambda/p}$ is an element of $K(\text{Res}_U(\mathcal{G}))$.

Since $K(\operatorname{Res}_U(\mathfrak{G})) \subseteq \Phi(U)$, one has $z \equiv t^{\lambda/p} \mod \Phi(U)$. Then by [6, Proposition 1.9] d(U) = 2 and U is generated by x and t. Since $[x, t] \in U^p$ by (3.2), the pro-p group U is powerful. Therefore, $\operatorname{Res}_U(\mathfrak{G})$ is $\theta|_U$ -abelian by Proposition 3.1. In particular, the subgroup $K(\operatorname{Res}_U(\mathfrak{G}))$ is trivial, and thus

$$[x, y] = z = t^{\lambda/p} = y^{1-\theta(x)^{-1}},$$

and the claim follows.

Proposition 3.4 is a generalization of [18, Proposition 5.6].

Theorem 3.5 Let $\mathcal{G} = (G, \theta)$ be a torsion-free 1-smooth pro-p pair, with $d(G) \geq 2$.

- (i) The θ -center Z(G) is the unique maximal abelian normal subgroup of G.
- (ii) The quotient $G/Z(\mathfrak{G})$ is a torsion-free pro-p group.

Proof Recall that *G* is torsion-free by Remark 2.5. Since $Z(\mathcal{G})$ is an abelian normal subgroup of *G* by definition, in order to prove (i) we need to show that if *A* is an abelian normal subgroup of *G*, then $A \subseteq Z(\mathcal{G})$.

First, we show that $A \subseteq \operatorname{Ker}(\theta)$. If $A \simeq \mathbb{Z}_p$, let y be a generator of A. For every $x \in G$ one has $xyx^{-1} \in A$, and thus $xyx^{-1} = y^{\lambda}$, for some $\lambda \in 1 + p\mathbb{Z}_p$. Let H be the subgroup of G generated by x and y, for some $x \in G$ such that d(H) = 2. Then the pair (H, θ') is θ' -abelian for some orientation $\theta' \colon H \to 1 + p\mathbb{Z}_p$ such that $y \in \operatorname{Ker}(\theta')$, as H has a presentation as in (2.5). Since both $\operatorname{Res}_H(\mathfrak{G})$ and (H, θ') are 1-smooth pro-p pairs, by Remark 2.7, one has $\theta' = \theta|_H$, and thus $A \subseteq \operatorname{Ker}(\theta)$.

If $A \not= \mathbb{Z}_p$, then A is a free abelian pro-p group with $d(A) \ge 2$, as G is torsion-free. Therefore, by Remark 2.3 the pro-p pair (A, 1) is 1-smooth. Since also Res_A(\mathcal{G}) is 1-smooth, Remark 2.7 implies that $\theta|_A = 1$, and hence $A \subseteq \text{Ker}(\theta)$.

Now, for arbitrary elements $x \in G$ and $y \in A$, put z = [x, y]. Since A is normal in G, one has $z \in A$, and since A is abelian, one has [z, y] = 1. Then Proposition 3.4 applied to the subgroup of G generated by $\{x, y\}$ yields $xyx^{-1} = x^{\theta(x)}$, and this completes the proof of statement (i).

In order to prove statement (ii), suppose that $y^p \in Z(\mathfrak{G})$ for some $y \in G$. Then $y^p \in Ker(\theta)$, and since $Im(\theta)$ has no nontrivial torsion, also y lies in $Ker(\theta)$. Since G is torsion-free by Remark 2.5, $y^p \ne 1$. Let H be the subgroup of G generated by Y and Y, for some $Y \in G$ such that Y be the subgroup of Y commutator calculus yields

$$(3.4) y^{p(1-\theta(x)^{-1})} = [x, y^p] = [x, y] \cdot [x, y]^y \cdots [x, y]^{y^{p-1}}.$$

Put z = [x, y], and let S be the subgroup of H generated by y, z. Clearly, $Res_S(\mathfrak{G})$ is 1-smooth, and since $y, z \in Ker(\theta)$, one has $\theta|_S = 1$, and thus S/S' is a free abelian pro-p group by Remark 2.3. From (3.4) one deduces

(3.5)
$$y^{p(1-\theta(x)^{-1})} \cdot z^{-p} \equiv \left(y^{1-\theta(x)^{-1}} \cdot z^{-1} \right)^p \equiv 1 \bmod S'.$$

Since S/S' is torsion-free, (3.5) implies that $z \equiv y^{1-\theta(x)^{-1}} \mod \Phi(S)$, so that S is generated by y, and $S \simeq \mathbb{Z}_p$, as G is torsion-free. Therefore, $S' = \{1\}$, and (3.5) yields $[x, y] = y^{1-\theta(x)^{-1}}$, and this completes the proof of statement (ii).

Remark 3.6 Let G be a pro-p group isomorphic to \mathbb{Z}_p , and let $\theta: G \to 1 + p\mathbb{Z}_p$ be a nontrivial orientation. Then by Example 2.4(a), $\mathcal{G} = (G, \theta)$ is 1-smooth. Since G is abelian and $\theta(x) \neq 1$ for every $x \in G$, $x \neq 1$, $Z(\mathcal{G}) = \{1\}$, still every subgroup of G is normal and abelian.

In view of the splitting of (3.1) (and in view of Remark 3.3), it seems natural to ask the following question.

Question 3.7 Let $\mathcal{G} = (G, \theta)$ be a torsion-free 1-smooth pro-p pair, with $d(G) \geq 2$. Is the pro-p pair $\mathcal{G}/Z(\mathcal{G}) = (G/Z(\mathcal{G}), \bar{\theta})$ 1-smooth? Does the short exact sequence of pro-p groups

$$\{1\} \longrightarrow Z(\mathfrak{G}) \longrightarrow G \longrightarrow G/Z(\mathfrak{G}) \longrightarrow \{1\}$$

split?

If $\mathcal{G}=(G,\theta)$ is a torsion-free pro-p pair, then either $\operatorname{Ker}(\theta)=G$, or $\operatorname{Im}(\theta)\simeq\mathbb{Z}_p$, hence in the former case one has $G\simeq\operatorname{Ker}(\theta)\rtimes(G/\operatorname{Ker}(\theta))$, as the right-side factor is isomorphic to \mathbb{Z}_p , and thus p-projective (cf. [16, Chapter III, Section 5]). Since $Z(\mathcal{G})\subseteq Z(\operatorname{Ker}(\theta))$ (and $Z(\mathcal{G})=Z(G)$ if $\operatorname{Ker}(\theta)=G$), and since $\operatorname{Ker}(\theta)$ is absolutely torsion-free if \mathcal{G} is 1-smooth, Question 3.7 is equivalent to the following question (of its own group-theoretic interest): if G is an absolutely torsion-free pro-G group, does G split as direct product

$$G \simeq Z(G) \times (G/Z(G))$$
?

One has the following partial answer (cf. [30, Proposition 5]): if G is absolutely torsion-free, and Z(G) is finitely generated, then $\Phi_n(G) = Z(\Phi_n(G)) \times H$, for some $n \ge 1$ and some subgroup $H \subseteq \Phi_n(G)$ (here $\Phi_n(G)$ denotes the iterated Frattini series of G, i.e., $\Phi_1(G) = G$ and $\Phi_{n+1}(G) = \Phi(\Phi_n(G))$ for $n \ge 1$).

4 Solvable pro-p groups

4.1 Solvable pro-p groups and maximal pro-p Galois groups

Recall that a (pro-p) group G is said to be meta-abelian if there is a short exact sequence

$$\{1\} \longrightarrow N \longrightarrow G \longrightarrow \bar{G} \longrightarrow \{1\}$$

such that both N and \bar{G} are abelian; or, equivalently, if the commutator subgroup G' is abelian. Moreover, a pro-p group G is solvable if the derived series $(G^{(n)})_{n\geq 1}$ of G—i.e., $G^{(1)}=G$ and $G^{(n+1)}=[G^{(n)},G^{(n)}]$ —is finite, namely $G^{(N+1)}=\{1\}$ for some finite N.

Example 4.1 A nonabelian locally uniformly powerful pro-p group G is meta-abelian: if $\theta: G \to 1 + p\mathbb{Z}_p$ is the associated orientation, then $G' \subseteq \text{Ker}(\theta)^p$, and thus G' is abelian.

In Galois theory, one has the following result by Ware (cf. [28, Theorem 3], see also [13] and [17, Theorem 4.6]).

Theorem 4.2 Let \mathbb{K} be a field containing a root of 1 of order p (and also $\sqrt{-1}$ if p = 2). If the maximal pro-p Galois group $G_{\mathbb{K}}(p)$ is solvable, then $G_{\mathbb{K}}$ is $\theta_{\mathbb{K}}$ -abelian.

4.2 Proof of Theorem 1.2 and Corollary 1.3

In order to prove Theorem 1.2, we prove first the following intermediate results—a consequence of Würfel's result [30, Proposition 2] —, which may be seen as the "1-smooth analogue" of [28, Theorem 2].

Proposition 4.3 Let $\mathcal{G} = (G, \theta)$ be a torsion-free 1-smooth pro-p pair. If G is meta-abelian, then \mathcal{G} is θ -abelian.

Proof Assume first that $\theta = 1$ —i.e., G is absolutely torsion-free (cf. Remark 2.3). Then G is a free abelian pro-p group by [30, Proposition 2].

Assume now that $\theta \neq 1$. Since \mathcal{G} is 1-smooth, also $\operatorname{Res}_{\operatorname{Ker}(\theta)}(\mathcal{G})$ and $\operatorname{Res}_{\operatorname{Ker}(\theta)'}(\mathcal{G})$ are 1-smooth pro-p pairs, and thus $\operatorname{Ker}(\theta)$ and $\operatorname{Ker}(\theta)'$ are absolutely torsion-free. Moreover, $\operatorname{Ker}(\theta)' \subseteq G'$, and since the latter is abelian, also $\operatorname{Ker}(\theta)'$ is abelian, i.e., $\operatorname{Ker}(\theta)$ is meta-abelian. Thus $\operatorname{Ker}(\theta)$ is a free abelian pro-p group by [30, Proposition 2]. Consequently, for arbitrary $y \in \operatorname{Ker}(\theta)$ and $x \in G$, the commutator [x, y] lies in $\operatorname{Ker}(\theta)$ and [[x, y], y] = 1. Therefore, Proposition 3.4 implies that $xyx^{-1} = y^{\theta(y)}$ for every $x \in G$ and $y \in \operatorname{Ker}(\theta)$, namely, \mathcal{G} is θ -abelian.

Note that Proposition 4.3 generalizes [30, Proposition 2] from absolutely torsion-free pro-p groups to 1-smooth pro-p groups. From Proposition 4.3, we may deduce Theorem 1.2.

Proposition 4.4 Let $G = (G, \theta)$ be a torsion-free 1-smooth pro-p pair. If G is solvable, then G is locally uniformly powerful.

Proof Let N be the positive integer such that $G^{(N)} \neq \{1\}$ and $G^{(N+1)} = \{1\}$. Then for every $1 \leq n \leq N$, the pro-p pair $\operatorname{Res}_{G^n}(\mathfrak{G})$ is 1-smooth, and $G^{(n)}$ is solvable, and moreover $\theta|_{G^{(n)}} \equiv 1$ if $n \geq 2$.

Suppose that $N \ge 3$. Since $G^{(N-1)}$ is meta-abelian and $\theta|_{G^{(N-1)}} \equiv 1$, Proposition 4.3 implies that $G^{(N-1)}$ is a free abelian pro-p group, and therefore $G^{(N)} = \{1\}$, a contradiction. Thus, $N \le 2$, and G is meta-abelian. Therefore, Proposition 4.3 implies that the pro-p pair G is θ -abelian, and hence G is locally uniformly powerful (cf. §3.1).

Proposition 4.4 may be seen as the 1-smooth analogue of Ware's Theorem 4.2. Corollary 1.3 follows from Proposition 4.4 and from the fact that a locally uniformly powerful pro-*p* group is Bloch–Kato (cf. §3.1).

Corollary 4.5 Let $\mathfrak{G} = (G, \theta)$ be a torsion-free 1-smooth pro-p pair. If G is solvable, then G is Bloch–Kato.

This settles the Smoothness Conjecture for the class of solvable pro-*p* groups.

4.3 A Tits' alternative for 1-smooth pro-p groups

For maximal pro-*p* Galois groups of fields one has the following Tits' alternative (cf. [28, Corollary 1]).

Theorem 4.6 Let \mathbb{K} be a field containing a root of 1 of order p (and also $\sqrt{-1}$ if p = 2). Then either $\mathcal{G}_{\mathbb{K}}$ is $\theta_{\mathbb{K}}$ -abelian, or $G_{\mathbb{K}}(p)$ contains a closed nonabelian free pro-p group.

Actually, the above Tits' alternative holds also for the class of Bloch–Kato pro-p groups, with p odd: if a Bloch–Kato pro-p group G does not contain any free nonabelian subgroups, then it can complete into a θ -abelian pro-p pair $\mathcal{G} = (G, \theta)$ (cf. [17, Theorem B], this Tits' alternative holds also for p = 2 under the further assumption that the Bockstein morphism $\beta: H^1(G, \mathbb{Z}/2) \to H^2(G, \mathbb{Z}/2)$ is trivial, see [17, Theorem 4.11]).

Clearly, a solvable pro-p group contains no free nonabelian subgroups.

A pro-p group is p-adic analytic if it is a p-adic analytic manifold and the map $(x, y) \mapsto x^{-1}y$ is analytic, or, equivalently, if it contains an open uniformly powerful subgroup (cf. [6, Theorem 8.32])—e.g., the Heisenberg pro-p group is analytic. Similarly to solvable pro-p groups, a p-adic analytic pro-p group does not contain a free nonabelian subgroup (cf. [6, Corollary 8.34]).

Even if there are several p-adic analytic pro-p groups which are solvable (e.g., finitely generated locally uniformly powerful pro-p groups), none of these two classes of pro-p groups contains the other one: e.g.,

- (a) the wreath product $\mathbb{Z}_p \wr \mathbb{Z}_p \simeq \mathbb{Z}_p^{\mathbb{Z}_p} \rtimes \mathbb{Z}_p$ is a meta-abelian pro-p group, but it is not p-adic analytic (cf. [23]) and
- (b) if *G* is a pro-*p*-Sylow subgroup of $SL_2(\mathbb{Z}_p)$, then *G* is a *p*-adic analytic pro-*p* group, but it is not solvable.

In addition, it is well-known that also for the class of pro-*p* completions of right-angled Artin pro-*p* groups one has a Tits' alternative: the pro-*p* completion of a right-angled Artin pro-*p* group contains a free nonabelian subgroup unless it is a free abelian pro-*p* group (i.e., unless the associated graph is complete)—and thus it is locally uniformly powerful.

In [18], it is shown that analytic pro-p groups which may complete into a 1-smooth pro-p pair are locally uniformly powerful. Therefore, after the results in [18] and [25], and Theorem 1.2, it is natural to ask whether a Tits' alternative, analogous to Theorem 4.6 (and its generalization to Bloch–Kato pro-p groups), holds also for all torsion-free 1-smooth pro-p pairs.

Question 4.7 Let $G = (G, \theta)$ be a torsion-free 1-smooth pro-p pair, and suppose that G is not θ -abelian. Does G contain a closed nonabelian free pro-p group?

In other words, we are asking whether there exists torsion-free 1-smooth prop pairs $\mathcal{G} = (G, \theta)$ such that G is not analytic nor solvable, and yet it contains no free nonabelian subgroups. In view of Theorem 4.6 and of the Tits' alternative for

Bloch–Kato pro-*p* groups [17, Theorem B], a positive answer to Question 4.7 would corroborate the Smoothness Conjecture.

Observe that—analogously to Question 3.7—Question 4.7 is equivalent to asking whether an absolutely torsion-free pro-p group which is not abelian contains a closed nonabelian free subgroup. Indeed, by Proposition 3.4 (in fact, just by [18, Proposition 5.6]), if $\mathcal{G} = (G, \theta)$ is a torsion-free 1-smooth pro-p pair and $\operatorname{Ker}(\theta)$ is abelian, then \mathcal{G} is θ -abelian.

Acknowledgment The author thanks I. Efrat, J. Minac, N.D. Tân, and Th. Weigel for working together on maximal pro-*p* Galois groups and their cohomology; and P. Guillot and I. Snopce for the interesting discussions on 1-smooth pro-*p* groups. Also, the author wishes to thank the editors of CMB-BMC, for their helpfulness, and the anonymous referee.

References

- [1] E. Becker, Euklidische Körper und euklidische Hüllen von Körpern. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II. J. Reine Angew. Math. 268/269(1974), 41–52.
- [2] S. Chebolu, I. Efrat, and J. Mináč, Quotients of absolute Galois groups which determine the entire Galois cohomology. Math. Ann. 352(2012), no. 1, 205–221.
- [3] S. Chebolu, J. Mináč, and C. Quadrelli, Detecting fast solvability of equations via small powerful Galois groups. Trans. Amer. Math. Soc. 367(2015), no. 12, 8439–8464.
- [4] T. Craven and T. Smith, Formally real fields from a Galois-theoretic perspective. J. Pure Appl. Algebra. 145(2000), no. 1, 19–36.
- [5] C. De Clercq and M. Florence, Lifting theorems and smooth profinite groups. Preprint, 2017, arXiv:1711.06585
- [6] J. Dixon, M. du Sautoy, A. Mann, and D. Segal, Analytic pro-p groups. Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, Cambridge, 1999.
- [7] I. Efrat, Small maximal pro-p Galois groups. Manuscripta Math. 95(1998), no. 2, 237-249.
- [8] I. Efrat, Valuations, orderings, and Milnor K-theory. Mathematical Surveys and Monographs, 124, American Mathematical Society, Providence RI, 2006.
- [9] I. Efrat and C. Quadrelli, The Kummerian property and maximal pro-p Galois groups. J. Algebra 525(2019), 284–310.
- [10] A. Engler and J. Koenigsmann, *Abelian subgroups of pro-p Galois groups*. Trans. Amer. Math. Soc. 350(1998), no. 6, 2473–2485.
- [11] A. Engler and J. Nogueira, Maximal abelian normal subgroups of Galois pro-2-groups. J. Algebra. 166(1994), 481–505.
- [12] C. Haesemeyer and C. Weibel, The norm residue theorem in motivic cohomology. Annals of Mathematics Studies, 200, Princeton University Press, Princeton NJ, 2019.
- [13] J. Koenigsmann, *Solvable absolute Galois groups are metabelian*. Invent. Math. 144(2001), no. 1, 1–22.
- $[14] \ \ \textit{J. Labute, Classification of Demushkin groups. Canad. J. Math. 19} (1967), 106-132.$
- [15] J. Mináč, F. Pop, A. Topaz, and K. Wickelgren, Nilpotent Fundamental Groups. Report of the workshop "Nilpotent Fundamental Groups", Banff AB, Canada, 2017. https://www.birs.ca/workshops/2017/17w5112/report17w5112.pdf
- [16] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields. Grundlehren der Mathematischen Wissenschaften, 323, Springer-Verlag, Berlin, 2008.
- [17] C. Quadrelli, Bloch-Kato pro-p groups and locally powerful groups. Forum Math. 26(2014), no. 3, 793–814.
- [18] C. Quadrelli, 1-Smooth pro-p groups and Bloch-Kato pro-p groups. Preprint, 2019. arXiv:1904.00667
- [19] C. Quadrelli, Two families of pro-p groups that are not absolute Galois groups. J. Group Theory (2021), to appear.
- [20] C. Quadrelli, Chasing maximal pro-p Galois groups with 1-cyclotomicity. Preprint, 2021. arXiv:2106.00335

- [21] C. Quadrelli and T. Weigel, Profinite groups with a cyclotomic p-orientation. Doc. Math. 25(2020), 1881–1916.
- [22] C. Quadrelli and T. Weigel, Oriented pro-\ell groups with the Bogomolov property. Preprint, 2021. arXiv:2103.12438
- [23] A. Shalev, Characterization of p-adic analytic groups in terms of wreath products. J. Algebra 145(1992), no. 1, 204–208.
- [24] I. Snopce, S. Tanushevski, Frattini-injectivity and maximal pro-p Galois groups. Preprint, 2020. arxiv:2009:09297
- [25] I. Snopce and P. Zalesskii, Right-angled Artin pro-p-groups. Preprint, 2020. arXiv:2005.01685
- [26] J. Tate, Relations between K₂ and Galois cohomology. Invent. Math. 36(1976), 257–274.
- [27] V. Voevodsky, On motivic cohomology with Z/l-coefficients. Ann. Math. (2) 174(2011), no. 1, 401–438.
- [28] R. Ware, Galois groups of maximal p-extensions. Trans. Amer. Math. Soc. 333(1992), no. 2, 721–728.
- [29] C. Weibel, 2007 Trieste lectures on the proof of the Bloch-Kato conjecture. ICTP Lect. Notes 23, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, 277–305.
- [30] T. Würfel, On a class of pro-p groups occurring in Galois theory. J. Pure Appl. Algebra 36(1985), no. 1, 95–103.

Department of Mathematics and Applications, University of Milano-Bicocca, Milano I-20125, Italy e-mail: claudio.quadrelli@unimib.it