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Abstract

Suppose that a graph process begins with n isolated vertices, to which edges are added randomly one
by one so that the maximum degree of the induced graph is always at most d. In a previous article, the
authors showed that as n —* oo, with probability tending to 1, the result of this process is a d-regular
graph. This graph is shown to be connected with probability asymptotic to 1.

2000 Mathematics subject classification: primary 05C80, 60K99.

1. Introduction

A random d-process begins with n isolated vertices, to which edges are added randomly
one by one so that the maximum degree of the induced graph is always at most d.
Multiple edges are always forbidden. The process effectively stops when no more
edges can be legally added, which must happen after at most N = \_dn/2\ steps. Let
G o , . . . , GN be the (random) graphs obtained in the course of such a process, where,
if the process stops with less than N edges, the sequence is padded out with copies of
the last graph. In [4] the authors showed that with probability tending to 1 as n —> oo,
the result of this process is a cf-regular graph (except for one vertex of degree d — 1
when dn is odd). More precisely, the following result was proved.

THEOREM 1. For d > I, in a random d-process

Urn P(\E(GN)\ = [{dn}) = 1.
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68 A. Ruciriski and N. C. Wormald [2]

In this paper we consider the connectedness of a random (/-process.

THEOREM 2. For d > 3, l i m , , ^ P(GN is connected) = 1.

In fact, we show that with probability asymptotic to 1, the graph G, becomes
connected already for / = [dn/2 — log1/8 n j .

For d = 1 (and n > 3) GN is always disconnected, while for d = 2, P(GN is con-
nected) = P(GN is Hamiltonian), and this was shown in [6] to be ®(\/^/n).

One is easily led to conjecture the result of Theorem 2 from simulation results,
although for Theorem 1 this is not the case, the reason being that the convergence in
Theorem 1 is only at the rate of 1/logn (approximately—the true rate is not known
exactly). We briefly mention here some results obtained from simulating a random
3-process. The events in Theorem 1 and Theorem 2 seem to be highly correlated; no
doubt the easiest way for a 3-process to produce a disconnected GN is for it to have
two components, one 3-regular and the other a triangle. (No more edges can then be
added by the process.) One of our main interests is in comparing the regular graphs
produced by ^-processes with other models of random regular graphs, such as the
uniform model. To this end, we carried out simulation of random 3-processes on even
numbers of vertices to estimate the probability that GN is disconnected, conditional
on it being 3-regular.

This was done with two computer programs, one of which repeatedly simulated the
random 3-process and recorded the number of times GN was both disconnected and
3-regular, and the other recording how many times it was 3-regular. It was done this
way because the former was essentially slower, but savings could be made by noting
that each single run did not have to go to the end but could be terminated as soon as the
graph became connected. To make errors fairly uniform, the disconnectedness testing
went for each number n of vertices until 10,000 successes. We denote by id the number
of iterations, or runs of the process, required to achieve this. Consequently we get the
probability of success (10000/ id) with expected error of only a couple of percent. The
second program was much faster and so could afford to test for regularity until 106

successes, that is, regular final graphs. The number of iterations for this is denoted by
ir. Finally we estimate P(®\£?,), where 3) is the event that GN is disconnected and S&
that it is regular. The programs took a few days to run on a DEC Alpha station. The
results are in the following table.

Setting p = P(@\&), and graphing — log/? against logn gives an almost perfect
straight line with slope approximately 2 and (—logp)-intercept about 1.4. So we
conjecture the probability of GN being disconnected, given that it is 3-regular, is
about cn~2 where c % e~tA & 0.25.

It is interesting to compare this with the uniform model of random 3-regular graphs,
where the probability of disconnectedness is asymptotic to ^n~2 as n —> oo. This
can be calculated by showing that the major contribution comes from graphs with a
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TABLE 1. Simulation estimates for the probability that a random 3-process produces a disconnected graph,
given that it produces a 3-regular graph.

n
20
30
40
50
60
70
80

id

24342275

61121366

110628317

169726426

237254000

314481451

408520743

U
1613430

1535365

1492160

1461720

1439774

1423049

1407122

P(0|#)
0.00066281
0.00025120
0.00013488
0.000086122
0.000060685
0.000045251
0.000034444

component isomorphic to K4.
Indeed, the natural line of attack for the connectivity question, which has been

successful for uniform regular models as well as for ordinary random graphs (see
[2]), relies on ruling out the presence of components of order s = 1, 2 , . . . , n/2.
Due to Theorem 1, this has been checked already for the random rf-process for
i = 1,2,... , d. For any fixed s it is tedious, but possible to rule out components
of order s. We include calculations for d — 3 and s = 4 in Section 2. However, for
larger s—say around -Jn—it seems to be a very difficult approach.

In the proof of Theorem 1, a keyhole was played by isolated vertices. Their
disappearance early in the process was crucial there. Let /, denote the number of
isolated vertices in G,. The analysis of the behaviour of /,, carried out in Section 3,
will be crucial for the present proof too. In the evolution of the ordinary random
graph (which is the same as a ^-process except that there is no upper bound on vertex
degree), connectedness occurs, with high probability, at the same moment as the last
isolated vertex disappears (see [2] or [1]). We are unable to verify if this phenomenon
holds also for rf-processes.

Besides /,, another important random variable of the process is Ut—the number of
unsaturated vertices in G,; that is, vertices with current degree less than d. These are
the vertices which are still 'in the game', contrary to the vertices of degree d, which
remain 'dead' till the end of the process.

We classify connected components occurring in the course of the d-process ac-
cording to the number of unsaturated vertices in them. This is called the active size
of a component. Components of active size 0 will be called dead. Once a dead
component is created, it remains such till the very end, and, if its order is less than n,
the final graph GN is bound to be disconnected. This 'irreversibility of death' is a new
feature as compared to the ordinary model of random graphs, where at any time any
component can be linked to another one. It contributes to the higher level of difficulty
one encounters when studying the connectedness of a random J-process.
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A component is said to be in danger if its active size is 1 or 2, but it is not an
isolated vertex K\ or an isolated edge K2. A component in danger may become dead,
or contained in a dead one, in a single step of the process (unless its active size is 2
and the two vertices of degree less than d are already adjacent, but it turns out that
such components cause no problems). Let D, be the number of components in danger
belonging to the graph G;. In Section 4 we carefully analyse the behaviour of D,
making almost sure that the number of components in danger is kept low throughout
the process and thus no edge hits and kills any of them.

The fact that components in danger almost never become dead is to a large extent
caused by the presence of giant components which 'attract small fry', catching them
before they 'die'; that is, catching any components in danger before a single edge can
have both ends in them. For technical convenience, any component of G, with active
size at least | \J{ will be called a giant. The existence of giant components is established
with some help from a supermartingale concentration inequality in Section 5. The
proof of Theorem 2 is completed in Section 6.

As most of the interesting things (from our perspective in this paper) happen toward
the end of the process, we quite often prefer to measure the remaining (residual) time;
that is, N — i rather than i. The same happens with a runner who measures distance
from the start when near the start, but distance-to go when near the end. In order to
smoothly shift between the two modes of counting, for any i we define r(i) = N — i.
Thus at time i there are at most r(i) steps to go. This remaining time will be referred
to as r-time. That is, at time i, the r-time is r(i). Similarly let i(r) = N — r. If
symbols / and r appear in the same expression or sentence, it will be always assumed
that r = r(i), and thus i = i{r). Also, phrases such as 'before time x' have the
obvious meaning ('up to time I* J') f ° r x a non-integer.

We now state a simple fact which bounds the number of unsaturated vertices [/, in
terms of the r-time r. Note that dn — 2i = 2r if dn is even and dn — 2i = 2r + 1
otherwise.

FACT 1. For all d > 1 and all i = 0 , . . . , N,

2r/d < Ut<dn- 2/ - (d - 1)/, <dn-2i <2r+l.

PROOF. The proof is immediate by suitably bounding from below and from above
the quantity ^Be[n](d ~ degGf (v)) = dn - 2i. •

As a corollary, observe that the (conditional) probability of inserting the (i + l)-st
edge of the ^-process into a given place (a pair of unsaturated vertices not being an
edge of G,) is at most

1

(uj)-(d-l)Ui/2
 =
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Throughout we have d > 3 fixed, and n always denotes the number of vertices. We
will be using the phrase asymptotically almost surely, abbreviated to a.a.s., to indicate
the fact that the probability of the event in question converges to 1 as n —> oo. When
saying that a.a.s. a random variable X is o(an) we mean that for some function co{n)
which goes to infinity with n, a.a.s. X < an/a>. For our purposes here it is sufficient
to set co(n) = log log log n.

2. Deadend

Here we examine the connectivity question, using an approach successful for
ordinary random graphs (see [2]). In this, we try to rule out the presence of components
of order 5 = 1 , 2 , . . . , n/2, by showing that the implied separation of the graph does
not occur. Let &/s be the event that there is a component of order s in the final
graph GN. It follows from Theorem 1 that P(Uf=i -sO = ° 0 ) - We will now show
calculations leading to bounding the term P (M) in the smallest case when d = 3.
After this experience we will be happy to give up this approach, though it is a gentle
introduction to computing probabilities with this model of a random graph process.

Let P4 be the probability that the set of vertices T = {1, 2, 3, 4} forms a component
of GN. By symmetry,

(2.1)

Observe that the only way the vertices of T can form a component is when T spans
the complete graph K4. Let n = (n\,... , n6) be a permutation of the six edges
in T, and let it < i2 < • • • < if, be the times of appearance of these edges in the
3-process in the order determined by n. Furthermore, let ^ be the event that the j-th
edge of the process will be 7r; for i — i}•, j = 1 , . . . , 6, and that it will have both
endpoints outside the set T otherwise. Note that here Af = \2>n/2\, and set r, = r(ij),
j = 1 , . . . , 6, and

Then, by the chain formula,

P;{rx,..., r6) = P ^ O P O ^ K ) • • •PO&l^i n • • • n <^_,).

In order to estimate P(<£|<?i fl • • • n <£_,), let J% = ( G o , . . . , G,_i) be the history of
the process up to time i — 1. Setting & = ^ f) • • • D ^_ i for brevity, we then have
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and

where the lower case letters represent concrete values of random variables designated
by upper case counterparts, thus h; = (g0,... , g*-i). We know already that for
/ = i , , . . . , / 6 ,

P(4|G,-_, =*,-_,) = 0 ( l / r 2 ) .

In order to handle the remaining cases, we need to know how many vertices of T
have been saturated so far during the process. Let sk, k = 1, 2, 3,4, be the element
of the set [ru ... , r6] which is the r-time of saturation of the k-th vertex of T. The
values of Si depend on the permutation n, but we always have st, s2 e {r3,rA,r5) and
s3 = s4 = r6. Let us set s0 = N for convenience. Then, for i(sk) < i < i(sk+l),
k = 0, 1, 2, as h, e S{ implies that g,_i has no edges from T to outside T, we have

Hence

( r 1 r 2 . . . r 6 ) 2
J P ; ( r 1 , . . . , r 6 ) = O ( l ) e x p ( -

= 0(l)exp{-41ogn

7 ~ E 7 " E 7

Our goal, in view of (2.1), is to prove that n4P4 = o(l), and we have just shown
that

E
It can be verified that for any n, and thus for any particular values of s\ and s2, the
above quantity converges to 0 provided that the range of rx can be bounded from below
by any function of n tending with n to oo. Consider, for example, the case that s^ = r3

and s2 = r5. Then

I \ I ' > I \ I A I ' \ i \ i •> i it a. / i f }

ri>->r6

Can we actually restrict the range of r\ ? Some extra knowledge is needed here.
With some sweat it was proved in [4] (and it will be sketched in the next section)

https://doi.org/10.1017/S1446788700003591 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003591


[7] Connectedness of a random ^-process 73

that a.a.s. the last isolated vertex disappears by r-time around log n/log log n. Before
r-time n all vertices in T are still isolated and we obtain the desired lower bound on r{.

Nevertheless this straightforward approach to proving the connectedness of GN via
estimating P(M) seems very hard to push through for higher values of s, in particular
for s = nc, say s = y/ii.

Hence, we give up this approach, turning our attention to analysing the behaviour
of /, throughout the d-process, as the early disappearence of isolated vertices will play
a crucial role in our proof, as it did in [4] where we proved Theorem 1.

3. Isolated vertices

In this section we take d > 2. We begin with the expected number of vertices
which remain isolated throughout a certain time interval. It was proved in [4] that
the conditional probability that a given vertex v is isolated at time i2, given that it
was isolated at time /,, is at most 0{r(i2)/r(ix)). Applying this for ix = 0, we find
that the expected number of isolated vertices at time i is O(r), which is in any case a
deterministic bound on this number. On the other hand, if we know that at some time
i, a.a.s. there are o(r) isolates, then we can use this property to conclude that at some
later r-time r -*• oo they will disappear a. a. s. It will turn out that a. a. s. /, becomes
o(r) at any r-time o(n). By Fact 1, this implies that /, will be dropping significantly
as compared to Uh the number of unsaturated vertices. We collect together all the
required facts about isolates (and isolated edges) in the next lemma.

LEMMA 1. The following are true a.a.s. (for some constant c < 1 in (i)).

(a) For all r in the range r(0.1n) > r > n9lw, we have /, < cUj.
(b) For all r in the range n9/w > r > log n/log log n, we have /, < £/,/ l og" n.
(c) For all r satisfying log n/log log n > r, there are no isolated vertices.
(d) For all r satisfying log13 n > r, there are no isolated edges.

PROOF. First consider (a). Define the functions b = b(x) and q = q(x) as in [4] by

(3.1) b'(x) = ~2b , 6(0) = 1
d — 2x — (d — \)b

and

(3.2, d-2x

for 0 < x < d/2. As was shown in [4, Section 2], q'(x) is negative on the interval
(0, d/2), and so there is some e > 0 such that q(x) < 2/d — efor, say, 0.1 < x < d/2.
Then [4, Lemma 3.2] implies that a.a.s.

(3.3) /, < nb (i/n) + o (n9/I0) = rq (i/n) + o (n9/i0)
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for all / = 0 , . . . , dn/2 - [n9/l0}. Thus we obtain that for some e' > 0, a.a.s.

h < (2r(i)/d)(l - e')

from time 0.1« to r-time n9/i0. On the other hand, Ut > 2r(i)/d by Fact 1. This
proves (a).

We turn to the proof of (b). From [4, equation (2.3)] we have

( 1 4 ) M

as x -*• d/2. Thus from (3.3) we obtain that a.a.s. with r0 = L"1O/1IJ.

, , c . . Ur0 + o(r0) \2r0

(3-5) lHn) < : < •
log n log n

Define the function

s =

Choose m < \2r0/\ogn. For i > dn/2 — n9/{0, let P, be the conditional probability
that /, > s(i) given that /,(ro, = m.

At time i, the probability that the next edge is incident with some vertex from a
given set of s isolates is at least

(Tl. — cU -4- ts\ c / c 2 \

Thus, for a given set of s(i) isolates at time i0 = i(r0), the probability that all vertices
in this set remain isolated until time i is at most

1 ~ -7777 I I <exp{- j 7 7 + 0 ( - ) = •

Hence, multiplying by (™),

p = (O(mr(i))\s __ ( 0(1) V°

Thus if r\ = |_logn/loglograj,

'•=''1 r=l.log2 n\
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Since this bound is uniform over m < 12r0/log n, by (3.5) a.a.s. /, < s(i) for all i
in the range i(r,) > / > z'(n9/l0). This gives (b).

For (c), define P, as above in (b), but with s = 1. Then as before we obtain

_(O(mrl)\_

This shows that /,(r,) = 0 a.a.s.
Finally, we prove (d). We will focus on three r-times:

r, = logJ n, r2 = log1 y n, r3 = log1 n.

By part (b), there are a.a.s. O(log201 n) isolated vertices in G,(r,), and the number
of isolated edges is at most \ £/,. = O(log3 n) by Fact 1. The isolated edges present
at r-time r2 may have one of two origins: either they are survivors from r-time rx

or they were created since. The expected number of surviving isolated edges from
r-time rx until r-time r2 is, by calculations similar to those in (b) (see also [4]),
0{r\{r2l>i)2) = <9(log08n), while the expected number of isolated edges created
between r-times rx and r2 is, again using (b),

O(n-r2) max (^A-L- = O{rx/{\ogn)x9t) = 0((logn)102) .
r[>r>r2 \ 2 / r(l)

Thus, by Markov's inequality a.a.s. there are at most (logn)103 isolated edges at r-
time r2. Similar arguments show that a.a.s. none of these will survive until r-time r3

(since (logn)103(r3/r2)2 = o{\)). On the other hand, there are a.a.s. too few isolated
vertices at r-time r2 to create any isolated edges before r-time log n/log log n (since
r2/( logn) '9 8 = <?(1), again using (b)), nor at any time afterwards (when, by (c), a.a.s.
there are no isolated vertices at all). •

4. Components in danger

In this section we take d > 3. Recall that a component is said to be in danger if
its active size is 1 or 2 but it is different from Kx and K2. In the previous section
we verified that isolated copies of Kx and K2 (which are themselves dangerous rather
than in danger, because components in danger can quickly be created from them) will
vanish after r-time log n/ log log n. We shall now take a firm grasp of the components
in danger, showing that throughout the process there are not too many of them. As
an eventual consequence, it will follow that a.a.s. there is no dead component formed
before the end of the process; that is, GN is connected.

The following section will examine the components of very large active size. In
each of these two sections, the results about the process after r-time log3 n depend on
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the results in the other section before r-time log3 n, so a logical development would
reorder them, dealing first with early time, and then with later time in the process.
However, we do not follow this path because the arguments concerning one type of
component (in danger or giant) before and after r-time log3 n tend to be similar and
better kept together. The effect of this is that the proof of Lemma 3 depends on
Corollary 4 in the later section.

Let D, be the number of components in danger in graph G,, and let f̂ i and @2 be
the events that Dt < co log n for all i = 0 , . . . , N, and that Z), < w log log n for all
i > /(log3 n), respectively. Here and in the rest of the paper, 00 stands for log log log n.
The following lemma implies that the event @x holds a. a. s.

LEMMA 2. The expected number of times that the number of components in danger
rises, or an edge is inserted into a component in danger, between time i\ and time i2

is O(log(r(/1)/r(/2))).

PROOF. The number of components in danger can only rise when an edge is inserted
into a component of active size 3 or 4. So, let 7, be the indicator variable of the event
that the (i + l)-st edge of the ^-process is inserted into a component of active size at
most 4 (and at least 2, of course). By Fact 1, there are at most f/,/2 < r + 1/2 such
components in G,, and each has at most 6 places for an edge. Thus, by using Fact 1
again,

P(7, = 1) = £>( . / , = 1|G, = gi)¥(Gt = gi) = 0(l/r(/))

The lemma follows on summing this bound over i\ < i < i2 - 1. •

COROLLARY 1. The event &, holds a.a.s.

PROOF. Since Do = 0, then, for each /, D, is not greater than the number D of
times that the number of components in danger rises during the entire process. By
Lemma 2 with ij = 0 and i2 = N — 1, E(£>) = O(logn), and the corollary follows
by Markov's inequality. D

COROLLARY 2. There are a.a.s. no dead components in G, for any i < /(log3 n).

PROOF. We define ^ to be the event that the (i + l)-st edge of the ^-process
creates a dead component. (This may only happen if it has both ends in components
in danger.) Then with rx = dn/2 and r2 = log3 n,
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t

1
r2

r=r2

= O(co2 / log n) + o(l) = o(l). •

Thus, we have gained a brief respite until r-time log3 n. The following lemma
pushes this up a little further. Its proof depends on Corollary 4 from the next section.

LEMMA 3. The event ®2 holds a.a.s.

Before proving this, let us extend the 'dead-component-free zone' of the ^-process
using Lemma 3. The choice of log1/8 n below is arbitrary and certainly not best
possible, but easily sufficient for our task.

COROLLARY 3. There are a.a.s. no dead components in Gifor any i < i(logl/8 n).

PROOF. In view of Corollary 2, we may focus on the range of r-time between log3 n
and logl/8 n and repeat the calculations of Corollary 2 with % replaced by Q2 (here
we apply Lemma 3) and the log n term replaced with log log n. •

The strategy for our proof of Theorem 2 can now be described as follows: along
with proving Lemma 3 and hence Corollary 3, we will show that a.a.s. at r-time
logl/8 n all unsaturated vertices belongto the same component, and thus the graph G,,
i = i(logl/8 n), is connected.

PROOF OF LEMMA 3. Let r, = log6n and r2 = log3n, and set i, = i{rx) and

i2 = i(r2). By Lemma 2, a.a.s. Dt rises at most colog logn times after r-time rx.
Hence we are done if we show that the event 38, that all components in danger at
time i\ will cease to be in danger by time i2, holds a.a.s. The presence of the giants will
help to achieve this task. We will bound Y{38) by the probability that all components
in danger at time i\ will join a giant sometime before time i2. Note that a giant at
time / may no longer be a giant (and also may be contained in a larger component) at
time i + 1.

For any /, denote by < l̂i(- the event D, < &>(log n), and by -£?u the event that for all
j in the range J'I < j < i there is a giant in G7. We have ^i,,, a.a.s. by Corollary 1,
and Corollary 4 gives JS?MJ a.a.s. (this is called S£\ in Section 5). Thus it is enough to
show

for any g,, € ^i,,-, nj£fM2. The following argument is in this conditional space. Noting
that the proofs of Lemma 2 and Corollary 2 are valid conditional on G,, = gh, a.a.s.
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no component which was in danger at r-time r{ becomes dead before r-time r2. We
will show that the probability that at least one component in danger at time it does not
become dead and does not join a giant by time i2, is o(l), thereby establishing (4.1)
as required.

Consider a fixed component C which is in danger at time it, and define St to be the
event that no edge from time i\ up to time i either makes the component containing
C dead or joins it to a giant. Since we have assumed that P(-> HlLl' - ^u ) =

suffices to show that

- 1

,)=o(-i-).

Note that the probability of an active non-giant component joining to a given giant
in one step is at least

2 £4/5 2

by Fact 1. Thus we have

nj2f,,i l+2) •

5. The giants

In this section we will derive some crucial facts concerning the presence of large
active components during the rf-process (see Corollary 4). Recall that any component
of G, with active size at least | £/, is called a giant.

Let L, denote the greatest active size of a component in G,. We now introduce the
following events:

j£?o is the event that L, > c'Ui from r-time n/6 until r-time log6n, where
d = 0.99 min{0.5 - c/2, 0.19), with c defined as in Lemma 1 (a).

Jz?! is the event that L, > 2Ut/5 from r-time log6 n until r-time log3 n.

-£f2 is the event that L, > 2f/,/5 from r-time log3 n until r-time log1/8 n.

It turns out that showing that these events hold a. a. s. is easier once we show that a
large component exists early in the rf-process. Twice along the way we will use the
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following result from [7]. The proof is not given since it is exactly the same as that of
Azuma's inequality (see [3, Lemma 4.1] or [5, Theorem 3]).

LEMMA 4. Let YQ,Y\,... be a supermartingale with respect to a sequence ofa-
algebras {O,} with 4>0 empty, and suppose Yo = 0 and \Yk+i — Yk\ < c for k > 0
always. Then for all a > 0, P(Yi > ac) < exp(—a2/2i).

Now we will establish the existence of a large component in an early phase of the
J-process.

LEMMA 5. A.a.s. at some time i\, n/10 < i\ < N — n/6, there exists a component
with active size at least f/,,/5.

PROOF. Let X, denote the number of components in G,. If L, < U(/5, then the
conditional expectation of Xi+] — X, given G, is at most —4/5. This is because the
next edge can be selected by choosing first one unsaturated vertex u, and then another
v, and then repeating both selections if uv is already an edge. No matter where u is,
it has at least 4f/,/5 unsaturated vertices outside its component, and so the probability
that v lies in some other component is at least 4/5. In this case the selections are
not repeated. Alternatively, we may argue that the probability that the number of
components will drop by 1 is

If this trend was maintained for at least i2 = N — n/6 initial steps of the J-process
then E(Xh) would drop below n — 4/2/5 < 0—an obvious contradiction. To formalise
this heuristic, let us say that the J-process is successful at time i > 0 if L, > [ Uj /5J
for some 0 < j < i. Define

Y, = Xt + 4i/5 - n

provided the ^-process is not successful at time i, and Yt = ^_, otherwise.
We will apply Lemma 4 to Yt. For a process which is not successful at time i, it

follows from the above calculations that E(y;+i|G,) < Yh On the other hand, if the
process is successful then E(^ + 1 |G , ) = Y, because Yi+l = Y{. Hence the sequence
[Yk] is a supermartingale with respect to the sequence of a -algebras o(Jf?k+l) (the
history of the process).

Applying Lemma 4 with c = 1 and i = i2, we deduce that

> n2/3) =
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But for any process not successful at time i2,

Yh = Xi2 + 4i2/5 - n > n /15 .

Thus the process is a.a.s. successful at time i2. Finally, it is easy to check that the
inequality L, > £/;/5 yields i > n/10. D

Lemma 5 ensures that a 'large' active component exists at some time early in
the process. The key, rather technical, lemma ensuring that this property is a.a.s.
preserved through time is the following.

LEMMA 6. Suppose that for some S > 0 and some i\ — ii(n) we have Ltl > SUir

Suppose further that for some i2 > i\ with r(i2) —> oo and some k > 0, a.a.s. for all
times ii < i < i2 we have D, = o(r(i)) and Ij/U, < 1 - 2k. Then for any e > 0,

lim P { L , > min[(k - e)Uh Lh - 2y/r(i,)} for all /, < i < i2] = 1.

Before proving Lemma 6, we show how useful it is.

COROLLARY 4. The events J£fo. i?i and££2 all hold a.a.s.

PROOF OF COROLLARY. Set S — 0.19 and i\ as in Lemma 5. Lemma 1 and Corol-
lary 1 verify the truth of the hypotheses of Lemma 6 for any time i2 < /(log6 n), with
k = 1/2 — c/2, where c is defined in Lemma 1 (a). Applying Lemma 6 with /, as in
Lemma 5 and i2 = i([\og6 n\), we deduce J% a.a.s. since d < min{k, 8).

If, in an application of Lemma 6, /•(/) = o(r(ii)) and £,, = @(r(/,)), then fT, =
o(L,, - 2y/r(il)) and consequently in the conclusion of the lemma L, > (k — e) (//. If,
moreover,/, = o(£/;) then one can choose k = 1/2 — e yielding that, say, L, > 2Uj/5
a.a.s. Thus, by Lemma 1, Corollary 1 and the fact that _£f0 holds a.a.s. , Lemma 6
with r(i'i) = n9/l0, r(«2) = Iog3« and k = 4/9 yields the event J^ a.a.s. In turn,
this together with Lemma 1, Corollaries 1 and 2, and another application of Lemma 6
with r(ii) = log4 n, r(i2) = log1/8 n and A. = 4/9 implies the event _S?2 a-a.s. •

Note that the above proof uses results from the previous section only pertaining to
time up to r-time log3 n, in particular not Lemma 3. In this way our proof of Lemma 3,
which uses Corollary 4, is not circular and is now complete.

The remainder of this section is devoted to proving Lemma 6. The heart of this
lemma is the following claim.

CLAIM. Assume it < i3, i3 + \_y/r(i3)j < h ande < k/2. Define <£) to be the event
that Dj = o(r(j)) and Ij/Uj < 1 - 2k for all j with i', <j< i. Then

< Lh <(k- t/2)Uh}) = O(exp ( - /-Oa)'73)).
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We postpone the proof of this until after showing that the lemma follows from the
claim.

PROOF OF LEMMA 6. Note that from the outset we can assume that e = 8 < X/2.
Using r to denote r(i), we have by the assumptions of the lemma and by the Claim

L, < (A.-

, e ^ } < L, < (X - e/2)£/,} n <£) + o(

- e/2)U,})

= o(\)+

Thus we can assume that a.a.s.

(5.1) e U, < Li <(X- e/2) U, =» LmV7ms > Li

for each such i.
Define kt = iu and forj > 1 define kj+i = kj + \_^/r(kj)\. We first show by

induction on j that a.a.s.

(5.2) Lkj > min ((A - e) Ukj + 2 ^ ^ , L,, j

for kj < i2. Since L, can fall by at most 2 in each step, and kJ+l — kj < jr(kj) <
y/r(ii), this implies the lemma.

To prove (5.2), observe that it is trivially true for j = 1, and assume that it is
true for some j > 1 with kJ+\ < i2. We distinguish two cases. First, assume
Lkj > (A. — e/2) t/t>. Then again since L, falls by at most 2 in each step, and since U-,
is nonincreasing,

Lki+I >(k- e/2) Uki -

On the other hand, if Lkj < (X — e/2)Ukj then since X — e > e, and since from
the hypotheses of the lemma L,, > SUi{ = €UU > cUkj, we have from (5.2) that
Lkj > e Ukj. Hence by (5.1), Lkj+l > Lkj. We conclude that (5.2) holds for kj+1. O

PROOF OF CLAIM. Define i4 = i3 + \_^/r(i3)\. In this proof we work entirely in the
conditional space defined by the conditional probability appearing in the claim. Let
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C, denote the component of largest active size in G, (chosen by any canonical method
if there is more than one largest) and consider the edge e added at time / + 1. Define

Zi+1 = —2 if both endvertices of e belong to C,,
Z,+i = — 1 if e joins C, to a component in danger,
Z,+i = 0 if e joins C, to an isolate or is not incident with C,,
Zi+i = 1 otherwise, in which case e joins C, to either an isolated edge or to a

component different from C, of active size at least 3.

Note that

Hence

as by the (conditional) assumption &iy of the*"Claim, since r(/4) ~ r(/3), we have
h/Ui < 1 - 2X + o(l) and Dt = o(r(i)). Clearly, LI+1 - L, > Z,+1.

We define a process to be successful at time j if L; > £/, (A. - e/4) for some
i3 < _/ < i. Also define Z, = Zj for a process which is not successful at time i, and
Z, = 1 otherwise. Then defining Yt = X!il! (^* ~ €2/2)> we have

for / = j 3 , . . . , i4 and n sufficiently large, where this is true in the case of successful
processes because L, can drop by at most 2 in each step and j 4 — i3 = o(Uiy).

We will apply Lemma 4 to — Yi}, — ^ 3 + i , Noting the conditional assumption
in the claim that eUh < L,3, and recalling e < A./2, we get from (5.3), for a process
which is not successful at time /,

for n sufficiently large. From this it follows that E(Zj+\\J%) > €2/2 in all cases,
successful or not. Hence —Yi3,—Yji+i,... , — Yit is a supermartingale with respect to
the sequence of a -algebras {a(J^)} , k > i3, and so by Lemma 4,

where, as usual, r3 = r(/3). The claim follows from this and (5.4). •
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6. Proof of Theorem 2

Let us first summarise the knowledge about the ^-process we have gained so far.
Among other things, we proved that a.a.s. all isolated vertices and edges disappear
by the r-time log n/log log n (Lemma 1), no dead component has been created by the
r-time log1/8 n (Corollary 3), and there is at least one giant during the r-time interval
from log3 n down to log1/8 n (Corollary 4).

We will show that a.a.s. at r-time log1/8 n all unsaturated vertices belong to giants.
This comes from examining two phases.

The first phase of the proof of Theorem 2 is from r-time rx = log n/log log n until
r-time r2 =• logl/7 n. We will show that all components of active size at least 3 at
r-time rt will a.a.s. at some time during this interval either join a giant (that is, become
contained in a giant) or be in danger (that is, become contained in a component in
danger). The analysis is similar to the proof of (4.1).

This time we condition on the existence of at least one giant in the entire interval
from r-time rt to r2.

If at time / a component C is not in danger, then the probability that the next edge
joins C to a giant is at least 3 x 2[/,/5/(^') > 6/5r(i) by Fact 1. Arguing as for (4.1),
it follows that the probability of a fixed component, not in danger at r-time r\, not
joining a giant and not becoming in danger by r-time r2 is

O(l)(r2/rl)
6/5 = o(l/rl).

As there are O(ri) components at r-time r{, they all join a giant or become in danger
by r-time r2 a.a.s. Thus, if T denotes the set of components outside the giants at
r-time r\ which either are in danger or will be in danger sometime by r-time r2, we
have that a.a.s. all unsaturated vertices at r-time r2, not belonging to a giant, were in
components in T at r-time rx. We next bound the number of these components, and
consequently, the number of these vertices.

Let Fj denote twice the number of components in danger at time i of active
size 1 plus the number of components in danger at time / of active size 2. Note
that Fj can only increase either by £), increasing or by an edge being inserted
into a component in danger. By Lemma 2 and Markov's inequality this happens
a.a.s. at most 0(a> log log n) times after r-time rt. On the other hand, by @2, a.a.s.
Fn = O(cologlogn). Hence, since Fr is non-negative, a.a.s. Fr decreases at most
O(a)loglogn) times for rt > r > r2. A component which is not in danger can only
become in danger either by gaining an edge and increasing Dh or by joining to a
component in danger of active size 1 and creating a component in danger of active
size 2, thereby decreasing F/. Hence, this happens <9(<wloglogn) times, and so by
2>2, \T\ = O(a>loglogn).
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Any vertex of a component in T not in danger which remains unsaturated until
r-time r2 must have been unsaturated when that component was in danger, at which
time it had active size at most 2. Hence, denoting by 5 the set of unsaturated vertices
outside giant components at r-time r2, we have that a.a.s. \ S\ < 2\ T\ = O(co log log n).

The second phase we consider is from r-time r2 to r-time r3 = 21ogl/8«. This
is similar to but simpler than the analysis of S)2 in Section 4. We condition on
\S\ = O(<wloglog«). The probability that some edge in this phase has both ends
in 5 is

Also, the probability that some fixed vertex in S is incident with no edge added in this
phase is at most

nno—— 1

Thus a.a.s. every vertex in 5 is incident with some edge added in this phase, and hence
a.a.s. every vertex in 5 gets joined to a giant during this phase.

We can now conclude that a.a.s. at r-time r3 = 21og1/8«, all unsaturated vertices
not in a giant at r-time r2 have been joined to a component which was giant at the
time of joining.

In fact it can be shown that a giant a.a.s. maintains its identity; that is, that for
every i between /(log3 n) and i(log1/8 n) there is a giant C,, and, moreover, this can
be chosen so that C, c Ci+i. However, rather than relying on this type of argument,
it is simpler to finish by showing that a.a.s. all vertices which at any r-time from r2

to r3 were in any giant component, lie together in the same giant component at some
time after r3 but before r3/2. Then at this time the graph is a.a.s. already connected
and Theorem 2 follows.

We can condition on the existence of a giant at every step, and so a giant can only
become non-giant by shrinking in size by 2 in the presence of another component
of active size asymptotically at least 2Uj/5. Clearly if there are two such large
components (which are both giants, but perhaps not quite simultaneously but only on
consecutive steps) at any time up to r-time r3/2, then the probability they do not join
in any of the next log1/l0 n steps is 0((1 - <?)

l°s'/'0'1) = o(log"3 n) for any e < 8/25.
Hence a.a.s. every time from r-time r2 to r-time r3/2 that a giant becomes non-giant, it
joins within the next log1/10 n steps to another huge component to create a giant again.
Whenever such a merge happens, there can only be one giant, and so by induction,
a.a.s. inside every time-period of length log'/10 n from r-time r2 to r3/2, there will be a
time when there is a unique giant which contains all vertices in all components which
were in or joined to any giant component since r-time r2. This is all that was required.
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