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Abstract

We show how improving values (Burton, 1991) can be extended to handle both upper and lower
bounds. The result is a new data type, called improving intervals. We give a simple
implementation of improving intervals that uses a list of successively tighter bounds to
represent a value. A program using improving intervals can be evaluated as a parallel program
using speculative evaluation. The utility of improving intervals is demonstrated through two
programs: parallel alpha-beta and parallel branch-and-bound

Capsule review

Lazy evaluation permits many search problems to be nicely split into one phase that builds the
entire tree of possibilities and a second one that prunes this tree to find the goal. An example
of this is alpha-beta pruning in game theory.

These pruning searches often use a (tightening) upper and lower bound (alpha and beta) to
determine which nodes should be visited. This paper describes how this particular concept can
be encapsulated into an abstract data type, called improving intervals. Using this data type it
is no longer necessary to actually refer to the upper and lower bounds during the search; all
the pruning happens internally in the abstract data type, and again relies heavily on lazy
evaluation.

The main advantage of using the improving intervals is that the implementation of them can
actually be made parallel without changing the semantics of the data type. This can speed up
searches substantially. The paper describes how to implement the data type both in a parallel
and non-parallel way. It also shows some properties that the implementation has to fulfil to be
correct, and that their implementation has them.

1 Introduction

Search algorithms often use bounds to prune parts of the search space that cannot
lead to an optimal solution. For example, a branch-and-bound algorithm for a
minimization problem might prune a subspace whose lower bound exceeds the cost
of the best solution found so far. The alpha-beta search algorithm uses upper and
lower bounds to prune parts of a game tree that cannot contain the best move. Such
algorithms can easily be implemented in a functional style by introducing new

1 This work was supported by the Natural Science and Engineering Research Council of Canada.
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arguments to keep track of the bounds (Bird and Hughes, 1987; Bird and Wadler,
1988).

An alternative in a lazy functional language is to represent a value by a lazy
sequence of bounds and to modify the functions used in the program to handle these
sequences of bounds (Hughes, 1989; Burton, 1991). Burton's approach encapsulates
functions on sequences of lower bounds in an abstract data type called improving
values. A program using improving values can be evaluated as a parallel program in
which improving values have non-deterministic behaviour (that allows them to adapt
their behaviour to the number of processors available) but deterministic semantics. In
this paper, we describe a simple extension to improving values, called improving
intervals, that encapsulates operations on both lower and upper bounds. A program
using improving intervals can also be evaluated as a parallel program and we consider
parallel programs throughout the paper. However, improving intervals have
deterministic semantics and can also be used to simplify sequential programs.

Extending improving values with upper bounds complicates the semantics. Rather
than giving complex exact semantics for improving intervals, we give an approximate
semantics that constrains the operations on improving intervals but does not specify
them exactly. Although these semantics are not exact, they are sufficient for proving
programs correct.

We begin by reviewing the improving values abstract data type. In section 3 we
present our extension to this data type and provide an implementation for it. Section
4 demonstrates the utility of our extensions through examples: a branch-and-bound
program and an alpha-beta program. Related work and some problems are described
in section 5. Throughout the paper, Miranda2 (Turner, 1986) is used for our
programming notation.

2 Improving values

An improving value represents a value as a monotonically increasing sequence of
lower bounds. For example, the sequence [3, 5, 10] represents the value 10 but first
gives the lower bounds 3 and 5 on the value. The sequence may be implemented as
a lazy list, so if one of the lower bounds in the list gives sufficient information then
not all elements of the list need to be computed.

The operations on improving values are encapsulated in the improving abstract data
type whose signature is

abstype improving*

with

make :: * ->• improving *

break :: improving * -*• *

spec-tnax :: improving * -»• improving * -»• improving *

minimum :: improving * -> improving * -> improving *.

The functions make and break are type transfer functions. The function spec^max
evaluates its first argument to produce lower bounds on the result before evaluating

2 Miranda is a trademark of Research Software Ltd.
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its second argument. That is spec-tnax {make 5) J. reduces to the partial list 5: ± and
represents a value that is at least 5. So, spec-max is strict in its first argument but is
not strict in its second argument. On the other hand, minimum keeps evaluating the
argument with the least lower bound until one of the arguments is completely
evaluated, minimum is strict in both arguments but does not have to fully evaluate
each argument. For example

minimum (make 3) (spec_max (make 5) J.) = (make 3)

because the lower bound of 5 from the second argument is sufficient to determine that
the minimum is 3.

The name spec_max comes from the idea that its second argument may be
evaluated as a speculative computation. A speculative computation is a computation
whose result may or may not be required later. A computation whose result is
certainly required is called a 'mandatory computation'. On a parallel machine,
speculative computations may be evaluated in parallel with mandatory computations
if enough processors are available. If the result of a speculative computation is
required, some time is saved by performing the speculative computation in parallel;
if the result is not required then a processor is wasted doing work that is not required.
We use the annotations spec and priority (Burton, 1985) to initiate and manage
speculative computations. Semantically, spec is just the identity function, that is

specfx = fx

and therefore the use of spec in a program cannot affect the semantics of the program,
only its behaviour. Operationally, when an expression specfx is evaluated, the
evaluation of x is started as a speculative computation before the mandatory
evaluation of the application fx. To make good use of available resources, priorities
should be set on speculative computations. The priority annotation is semantically
defined as . . ., , ,

prioritype = e, if p 4= -L
= 1 , otherwise

where p is a numeric value and e is any expression. Operationally, when priority p e
is evaluated as a speculative computation it has the effect of setting the priority for
the evaluation of e to p; when it is evaluated as a mandatory computation the priority
annotation has no effect.

The second argument of specjmax may be evaluated as a speculative computation
because its result is required only if the first argument fails to give a sufficient bound.
If sufficient processors are available then the evaluation of the second argument may
be done in parallel with evaluation of the first argument. Thus a program written
using improving values can be evaluated as a parallel program.

The speculative aspect of spec-tnax means that operations on improving values
have non-deterministic behaviour because the precise behaviour depends on the
number of processors available. However, improving values have a simple
deterministic semantics since the final result is the same regardless of the behaviour.
Therefore, a program written using improving values is a parallel program that can
adapt its behaviour to the number of processors while correctness can be established
using the simple deterministic semantics.

8 FPR3
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A limitation with the improving abstract data type is that it deals exclusively with
lower bounds. It is, therefore, awkward to use improving values for algorithms like
alpha-beta that use both upper and lower bounds. Many branch-and-bound
algorithms also use both upper and lower bounds. This paper shows that the
improving abstract data type can be extended to handle both upper and lower
bounds. Instead of representing a value as a sequence of lower bounds, we use a
sequence of upper and lower bounds. The details of this approach are given in the
next section.

3 Improving intervals

This section describes a new abstract data type, called improving intervals, capable of
dealing with both upper and lower bounds. An improving interval represents a value
as a sequence of upper and lower bounds that bound an interval containing the value.
As with improving values, the sequence is implemented as a lazy list so, for example,

[LB3, UB10,LB5,EX7\

represents the value 7. The list can also be considered as representing a sequence of
successively smaller intervals that contain the final value - this is the reason for the
name improving intervals. We consider an improving interval to denote the limit of
this sequence of successively smaller intervals.

Improving intervals extend the improving abstract data type by adding two new
functions: spec-min and maximum. The complete signature of improving intervals is
shown in Fig. 1. The spec-min function is used to introduce upper bounds. The

abstype improving-i * with

make :: * -> improving-i *

break :: improving-i*-*-*

minimum :: improving-i * -»improving-i * -»• improving-i *

maximum :: improving-i * -> improving-i * -> improving-i *

spec-min :: improving-i * -*• improving-i * -*• improving-i *

spec-max :: improving-i*^-improving-i*^-improving-i*

Fig. 1. Signature of improving intervals

expressions spec-min (make5) JL, for example, represents a value that is at most 5.
The maximum function combines bounds in a manner similar to minimum. In
additions, spec^max and minimum are modified to handle both upper and lower
bounds.

An improving interval may be represented by a lazy list of bounds that improve
monotonically. A bound is a value tagged with LB, UB or £Xto indicate if the value
is a lower bound, an upper bound, or an exact value so the implementation types for
improving intervals are

improving-i* == [bnd*]

bnd* ::= EX*\LB*\ UB*.

Successive bounds in the list must be tighter than previous bounds to reflect the fact
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that bounds improve monotonically. Since no bound is tighter than an exact value,
there can be at most, one exact value in the list and any list with an exact value will
be finite with the exact value as its last element. Conversely, every partial or infinite
list cannot contain an exact value. Also note that the empty list is not a valid
representation but that some partial lists, such as LB3.1, are valid.

The implementation of make and break are particularly simple

make a = force [EX a]

break x = a where (EXa) = last x

make produces a singleton list where the element is tagged with EX. The function
force ensures that a is fully defined (the reasons for using force are described later).
The function break returns the value represented by the last bound in the list which
must be the exact value if the list is finite. If the list is partial or infinite, then break
will return 1 .

For the other functions, we describe only the implementation of spec_max and
maximum since specjmin and minimum are the respective duals. To get the dual,
change each LB to UB and vice versa; change min2 to max2 and vice versa; and turn
around any use of < , > or ^ .

Consider spec_max: when the evaluation of the first argument produces a lower
bound, this lower bound is also a lower bound on the result of the spec-tnax
application. Hence, a lower bound from the first argument is reproduced as output.
If this lower bound is sufficient then further evaluation of the first argument or the
second argument is not required. Otherwise the first argument and possibly the
second argument are further evaluated to improve the bound as necessary. The
implementation for specunax, using some auxiliary functions, is shown below

spec-max xy = spec (sx x) y

sx [EX a]y = LB a: mxfilter a y

sx(LBa:x)y = LBa.sxxy

sx(UBa:x)y = sxxy

mxfilter a[EXb] = [EX(max2 ab)]

mxfilter a (LBb.y) = mxfilteray, if a ̂  b

= LBb.y, ifa<b

mxfilter a (UBb:y) = [EXa], if a ̂  b

= UBb.mxfilteray, \ia<b.

The definition uses the annotation spec to initiate the speculative evaluation of the
second argument. The auxiliary function sx does the real work by reproducing lower
bounds from its first argument as output until an exact value in the first argument is
found. Note that upper bounds are not reproduced since an upper bound from the
first argument alone does not give an upper bound on the result. Once an exact value
is found, mxfilter starts evaluating the second argument and produces tighter bounds
from the second argument as output. The function max2 is a Miranda builtin
function that returns the maximum of two arguments.

The maximum function combines bounds from its arguments by reproducing as

8-2
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output a bound from one of the arguments. It behaves somewhat like a merge but
evaluation terminates once an exact value can be determined. The following code
defines maximum by case analysis

maximum xy = mxxy

mx[EXa][EXb] = [EX(max2ab)]

mx[EXa](LBb:y) = LBa:mxfilteray, if a^b

= LBb-.y, ifa<b
mx[EXa](UBb:y) = [EX a], iia^b

= LBa\mxfiltera{UBb:y), \ia<b
mx(LBa:x)[EXb] = mx[EXb](LBa:x)
mx(LBa:x)(LBb:y) = LB(max2ab):mxxy

mx(LBa:x)(UBb:y) = LBa:mxx(UBb:y), if a ̂  b
= LBa.x, if a>b

mx(UBa:x)[EXb\ = mx[EXb](UBa:x)
mx (UB a: x) (LBb.y) = mx(LBb:y)(UBa:x)
mx(UBa:x)(UBb:y) = UBb:mx(UBa:x)y, ifa<b

= UBa.mxxy, if a = b
= UBa:mxx(UBb:y), if a > b.

The auxiliary functions mx does the real work by merging bounds from its arguments
into a single list of bounds. Notice how the equation

mx[EXa](UBb:y) = [EX a], iia^b

can produce an exact value without fully evaluating its second argument. This is how
the pruning of unneeded computation takes place. If both arguments to mx produce
an upper bound then mx reproduces only the larger of these bounds and demands
further evaluation of the argument that produced the larger bound. This behaviour
corresponds to expanding the node with the greatest upper bound in algorithms like
best-first search. Figure 2 shows a sequential reduction of an expression.

3.1 Semantics of improving intervals

We have been unable to formulate a set of axioms for improving intervals that is
clearer or simpler than the implementation. Instead, we give some properties that
bound the behaviour of improving intervals, but do not specify them exactly. These
properties are simple and are useful in proving the correctness of programs using
improving intervals.

Recall that an improving interval denotes the limit of a sequence of successively
smaller intervals. That is, the list (LB3.UB 10:UB7:LB5:l) denotes the interval
[5,7]. Let V be the base domain of values with a total ordering ^ . We assume that
there are two elements — oo and oo that are the minimal and maximal elements of V
with respect to ^ . The domain of intervals is the set

{[a,b] | a,beV and a^b}
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mx (sm (make 10) (make 7)) (sm (make 5) _L)

=> mx (sm [EX 10] (make 7)) (sm (make 5)1.)

=> mx(UB10: mnfilter 10 (make 7)) (sm (make 5) 1)

=> mx(UB lO-.mnfilter 10(make7))(UB5:mnfilter51)

=> UB 10 :mx (mnfilter 10 (make 7)) (UB 5: mnfilter 5 L)

=> UB10:mx[EX7\(UB5:mnfilter51)

=> UB10:[EX7]

=> [UB10,EX7]

Fig. 2. Sequential reduction of an expression

with _LH = [— oo, oo ] and where the ordering E(j is defined by

[a,b] Sti[c,d\ iff a^c a n d d^b.

We use variables a, b, c, d for values while the variables x, y, z are used for improving
intervals.

Conceptually, an interval bounds an (as yet) unknown value. Given two intervals,
i1 and i2 that bound the values a and b, the maximum of ix and i2 is an interval that
bounds the value max2 a b. It is easy to define such a function:

max(i li( l(i = !„

maxit lH[a, b] = [a, oo]

maxu [a, b]±lt = [a, co]

maxu [a, b] [c, d] = [max2 a c, max2 b d].

A minimum function could be defined in a similar manner. However, this function is
not directly implementable because the second two equations imply that maxH must
be non-strict yet bottom avoiding in both its arguments. This means that both
arguments must be evaluated in parallel. Such functions are called non-sequential and
cannot be implemented directly in standard functional languages (such as Miranda).
On the other hand, the functions spec_max and maximum can be implemented
directly but only approximate maxH, that is

spec-max E (( maxu

maximum c ( ( maxu.

The make and break functions are just type transfer functions and should satisfy the
following:

makel = 1 (1)

break 1 = ± (2)

(break, make) a = a (3)

(make • break) x E(< x. (4)
The use of E ((, rather than =, is necessary in (4) because improving intervals are a
richer domain than values; for example

(make. break) (spec^max a 1) = I E , , spec-max a 1.
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Properties (1) and (2) are not really necessary since they follow from (3) and (4)
assuming that make and break are monotonic.

We assume that specifications for programs using improving intervals will be
written using min2 and max2. With this assumption, program correctness is easy to
show as long as the operations on improving intervals obey the following properties:

min2ab = break {minimum (make a) (make b)) (5)

max2ab = break (maximum (make a) (make b)) (6)

min2ab = break (spec-min(make a) (makeb)) (7)

max2ab = break (spec-max (make a) (make b)). (8)

It is easy to see that the above properties do not precisely specify the implementation
because they make no distinction between spec-max and maximum while the
implementation does impose some differences.

The above do not hold for the implementation when the values might be partially
denned. For example, the expression

max2 (1: _L) (min2 (1:1) (0:1))

reduces to (1:1) in Miranda. However, applying (6) and (7) gives the expression

break (maximum (make (1: -L)) (specjmin (make (1: J.)) (make (0: -L))))

which reduces to J. because the test ( i : 1) = (1: ±) is evaluated. To avoid this
difficulty, we assume that values are fully defined and use force in the implementation
of make to ensures this.

The following properties follow from monotonicity, property (4) and properties
(5)-(8) by substituting break x for a and break y for b

min2 (break x) (break y) E break (minimum xy) (9)

max2 (break x) (breaky) E break (maximum xy) (10)

min2 (break x) (break y) e break (spec^min x y) (11)

max2 (break x) (break y) E break (spec^maxxy). (12)

These properties extend easily to lists of improving intervals. For example, for any
non-empty list xs, it can be shown that

max (map break xs) E break (foldl1 specjnaxxs) (13)

using (12) and structural induction on the list. We will use this property in the next
section to prove the correctness of an alpha-beta program.

The bounds on the behaviour of spec-max can be made explicit by applying make
to both sides of 12 to give

make (max2 (break x) (break y)) Ei( (spec-max x y)

and previously, we had that

spec-max xy Ej( maxu.

These inequalities serve as an inexact semantics for specunax; a semantics that
bounds spec-max but does not precisely define it.

The following theorem shows that our implementation satisfies the above
properties:
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Theorem 3.1
The above implementation satisfies properties (l)-(8).

Proof
Recall that properties (1) and (2) follow from monotonicity, (3) and (4). We show the
proofs only for the max versions, since the others can be done by taking the duals

(3) Consider (break.make)a
Case a = ± . break (make J.) = ±
Case a 4= -L - break (make a) = break ([EX a]) = a

(4) Consider (make. break) x
Case x = J_. make (break x) = J.
Case x is finite. Assume that x = xs -H- [EX a]

(make.break) x = make a = [EX a]

and xs -H- [EXa] = [EXa] since they both denote the same value.
Case x is not finite, make (break x) = make L = J_ Ej(x

(6) Case a = 1 or b = 1.
Then max2ab = J. and maximum (make a) (make b) = _L
Case a =(= ± and b =1= J_. Assume that max2ab = a

6reafc (maximum (make a) (make b)) = break ([EX (max2 a b)])

= a

(8) Case a = ±. Then max2ab = ± = break (spec-max L (make b))
Case 6 = -L. Then max2ab = 1 = break (spec-max (make a) J.)
Case a + _L and ft 4= _L Assume that max2ab = a

break (spec-tnax (make a) (make b))
= break (spec (sx (make a)) (make b))
= break (sx (make a) (make b))
= break(UBa:mxfiltera(makeb))
= break(UBa:[EXa])
= a D

4 Examples using improving intervals

In this section, we consider how improving intervals can be used in search programs.
First, we consider an alpha-beta program that uses just spec-min and spec_max, then
we consider a branch-and-bound program.

4.1. Alpha-Beta search

The alpha-beta algorithm is used to find the minimax value of a game tree in two
player games. We start by defining the minimax value of a game tree then give an
alpha-beta program, using improving intervals that meets this specification.
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Nodes in a games tree represent positions and alternate levels are specified as max-
nodes or min-nodes corresponding to a player's move or the opponent's move. We
use a type gtree * for game trees, defined by

gtree* == mxnode*

mxnode* ::= MXnode * [mnnode *]

mnnode * ::= MNnode * [mxnode *].

A leaf node will have an empty list of children. The type gtree * is polymorphic, but
we assume that it is instantiated with a number that indicates the value of the game
position represented by that node (the value is usually determined by applying a static
evaluation function to the game position). The minimax value of a game tree is the
value of the best position in the game tree and is specified recursively as: the value of
leaf nodes, the max of all children for MXnodes, or the min of children for MNnodes.
The function minmax, defined below, computes the minimax value of a game tree

minmax :: gtree * -»• *

minmax = minmax-max

minmax-max :: mxnode*-**

minmax-max (MXnode a kids)

= a, if kids = []

= max (map m inmax-tn in kids), otherwise

minmaxjmin :: mnnode*^-*
minmax_min (MNnode akids)

= a, itkids = []

= min(mapminmax-maxkids), otherwise.

A simple alpha-beta program is constructed from the definition of minmax by
replacing max with foldll spec-max and min with foldll spec-min. The resulting
program is

alphabeta :: gtree *->*

alphabeta t = break (ab-max t)

ab-tnax :: mxnode * ->• improving *

ab-tnax (MXnode a kids)

= make a, if kids = []

= foldll spec-max (map ab-min kids), otherwise

ab-min :: mnnode * -> improving *

ab-min (MNnode a kids)

= make a, if kids = []

= foldll spec^min (map ab-max kids), otherwise.

https://doi.org/10.1017/S0956796800000678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000678


Improving intervals 163

[LB20, UB50, EX20]

[UB20, EX20] _ ,

[LB5, EX20] / \ LB30:

A [EX30]A
/[EX20] / V—

6 b &- (h-
5 20 30 V 4 0

UB10:

{EX\0]//\ \ \

d l i10 \ 80 5

)
y

[LB30,

)
/
f

/6
30

[UB50, LB5,

LB40, EX50] N

A\/ \ \
6 b40 50 /

[EX 10]/

EX 15]

[LB5, EX15

n / i 3 2A/ \
6 "321 O
\ 15

\
u«32n n ^ n
10 5

Fig. 3. Sequential operation of the alpha-beta algorithm

At a leaf node the value of the node is returned as an improving interval by using make
and at the root the value of the game tree is converted from an improving interval to
a value by using break. The handling of bounds and pruning is encapsulated in the
operations on improving intervals.

Figure 3 shows a game tree and the improving intervals that are computed at each
node. MXnodes are drawn with a square box, while MNnodes are drawn with a circle.
The circled portions of the game tree are pruned during the search. When executed
sequentially, the program uses a depth-first search strategy because specunin and
spec-max fully evaluate their first argument before considering their second argument.
Node «122 is pruned because the lower bound of 30 from node «121 is sufficient to
determine that the value of node n1 is exactly 20. Other nodes are pruned in a similar
manner.

When more than a single processor is available, speculative computation could be
used to explore other subtrees in parallel. For example, the subtree rooted at n3 might
be evaluated as speculative computation in parallel with the mandatory evaluation of

However, the program misses an opportunity for pruning the node labelled «3212.
The reasoning that supports the pruning of this node is that we have a lower bound
of 20 at the root node; to get a better result at the root each of the nodes: n3, n32 and
n321 would have to be greater than 20; but we know «321 must be less than 10 without
examining n3212; therefore «3212 can be pruned. This is known as a deep cutoff. Deep
cutoffs are difficult to achieve in a parallel alpha-beta algorithm because deep cutoffs
rely on bounds found by evaluating the left siblings of a node. In a parallel setting,
if we wait for these bounds then we reduce the amount of parallelism; if we do not
wait then we miss the opportunity for a cutoff. Akl et al. (1982) discuss this point
further.

To show the correctness of this program, we prove that alphabeta meets the
specification, minmax, by using the properties defined in section 3.
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Theorem 4.1
For any game tree t, minmax t E alphabeta t.

Proof
Let t be any game tree. If t is an infinite tree then minmax t = 1 and the result trivially
holds. Otherwise, t is finite and we use induction on the height of / to show that
minmax-max^ break.ab-max. A dual proof shows that minmax-mins
break, ab-min.

Case? = MXnodea[].

minmax-max (MXnode a[]) = a (minmax-max. 2)

= (break. make) a (3)

= break (ab-max (MXnode a [ ]) (ab-max. 1)

Case t = MXnode a kids, kids ̂  [].

minimax-max (MXnode a kids)

= max (map minimax-min kids) (minmax-max. 2)

E max (map (break, ab-miri) kids) (Induction Hypothesis)

= max (map break (map abjmin kids)) (map)

E break (foldll spec^max (map ab-minkids)) (13)

= break (ab-max (MXnode a kids)) (ab-max. 2)

Therefore

minmax t = minmax-maxt e break (ab-maxt) = alphabeta t Q

This shows that alphabeta is correct with respect to minmax. However, it does not
show that alphabeta does all the pruning that the standard alpha-beta algorithm does.
In fact, we know from the previous discussion that alphabeta misses the deep cutoffs.
The pruning behaviour of improving intervals can only be understood by carefully
examining the operational behaviour of the specific implementation. Understanding
pruning is difficult in the sequential case and is even more difficult in the parallel case
because of speedup anomalies (Lai and Sahni, 1984). The issue of operational
correctness is largely ignored in functional programs and remains an open problem.
Neither Bird and Hughes (1987) nor Hughes (1989) discusses the operational
correctness of their algorithms.

We likely need to control the speculative computations using priorities. A
reasonable strategy in parallel alpha-beta search is to:
1. Give priority to searching nodes at greater depth in the tree because new bounds

are found only at nodes at the bottom of the tree.
2. Give priority to left children because game trees are usually ordered such that

better moves are to the left.
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The following function assigns a priority to a node n in a manner consistent with the
above rules:

priority (n) = priority (parent (n)) +1+ r(n) bdin)

where d(n) = depth of the tree rooted at n

b = maximum branching factor of the tree

r(n) = number of right siblings of n.

We assign priorities to nodes by pairing each node with its priority. Then to make
alphabeta use the priorities, we define alphabeta in terms of two new function ab-max"
and ab-miri where ab-max' is defined as

ab-max1 (MXnode (p, a) kids) = priorityp (ab-max (MXnode a kids)).

If a node is evaluated with a speculative computation then the priority will be set to
p, otherwise it is evaluated with a mandatory computation and the priority annotation
has no effect.

4.2 Branch-and-bound with upper and lower bounds

Branch-and-bound is often used for combinatorial optimization problems such as
the 0/1 knapsack problem. Burton (1991) gives a least cost branch-and-bound
program that uses improving values, but this program uses only lower bounds and for
many problems, including the 0/1 knapsack problem, there is a simple upper bound
as well as a lower bound. We can use improving intervals to write a simple branch-
and-bound program that uses both upper and lower bounds.

A branch-and-bound algorithm searches a tree for solutions and uses bounds to
prune parts of the tree that cannot lead to a solution. We use spec-max to introduce
a lower bound, spec-min to introduce an upper bound, and minimum/maximum to
combine the bounds. We assume the existence of functions upper-bound and
lower -bound that return the upper and lower bound of a node. The function lesearcK
implements a least-cost branch-and-bound algorithm for a minimization problem

icsearcW root

= make (cost root, root), if isJeafroot

= spec-minubound(spec-maxlboundsubtreesearch), otherwise

where

Ibound = make (lower-bound root, niLnode)

ubound = make (upper-boundroot, nil-node)

subtreesearch = (foldrl minimum. map lesearcK. children) root.

The least-cost behaviour comes about because minimum demands further evaluation
of the argument that produced the smallest lower bound. The only difference from
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Burton's program is the addition of spec-minubound(...) to introduce the upper
bound. In a parallel setting, speculative computation could be used to search some of
the subtrees in parallel.

5 Discussion

In this section, we consider some related work on search programs and some of the
problems associated with improving intervals.

5.7 Related programs

It is an interesting exercise to derive an alpha-beta program that uses extra arguments
to maintain the bounds, from the specification of minimaxing (Bird and Hughes,
1987; Bird and Wadler, 1988). However, the resulting program is not surprising. For
example, the program (Bird and Wadler, 1988)

gtree ::= Node num\gtree\

bmx a b (Node x ts) = max2a(min2xb), if ts = []

= cmx a b ts, otherwise

cmxab[] = a

cmxab(t:ts) = a', ifa' = b

cmxab(t:ts) = cmsa'bts, otherwise
where a' = — bmx ( — b)( — a)t

uses the arguments a and b to record the current bounds. The function cmx
recursively searches a list of sibling nodes, and at each step in the recursion a is the
bound found by searching siblings to the left of the current node. Note that the test
a' = b in cmx sets up a data dependency between the result of the cmx application and
the value of a'. This data dependency forces the search to proceed in a sequential left-
to-right manner. Therefore, this program has no potential for searching the subtrees
in parallel. The advantage of no parallelism is that, unlike our program, deep cutoffs
are performed correctly.

We might consider parallelising the above program by using a. paralleLif that starts
the speculative computation of the then and else parts in parallel with the
computation of the test. In that case, the tree is expanded in parallel, but none of the
nodes can be evaluated because of the data dependencies. It follows that no pruning
would occur in the subtrees that are expanded speculatively. In contrast, with
improving intervals subtrees are evaluated in parallel and some pruning can occur
during the speculative evaluation of a subtree.

Hughes (1989) defines two functions, max' and min\ and uses them in an alpha-
beta program. The max' function returns an increasing list of lower bounds, and the
miri function returns a decreasing list of upper bounds. Improving intervals
generalize this idea by allowing upper and lower bounds in the same list. This seems
important for algorithms like branch-and-bound, where a node may have both a
lower and upper bound. Surprisingly, combining upper and lower bounds also makes
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[LB20, EX20]

20

Fig. 4. A missed pruning opportunity in Hughes' approach

a difference in the alpha-beta program. Figure 4 shows an example, where our
approach prunes more of the search space because we are able to return the upper
bound UB10 from the max node n22 which allows node n2212 to be pruned. Hughes'
program cannot do this pruning because there is no way to represent an upper bound
on a max node.

5.2 Opportunities for improvement

There are some problems associated with using improving intervals especially related
to efficiency. One occurs as a result of the list representation of improving intervals.
Recall that in our implementation of improving intervals, a value is represented by
a list of successively better and better bounds. However, at any point in time, it is
really only the tightest bounds currently in the list that are important. For example,
the lists LB3:LB5:UB10:UB8:± and LB5:UB8:L have the same information
content. Hence, the list representation consumes more space than is necessary, and
time is wasted examining the out-of-date values in the list. A better representation,
in a language that allows update-in-place, would be a pair consisting of the
tightest lower bound and the tightest upper bound found so far. This pair would be
updated-in-place when better bounds become known.

Parallel search algorithms are often difficult to analyse and empirically evaluate
because of speed-up anomalies that may occur (Lai and Sahni, 1984). Often,
anomalies occur because a parallel algorithm searches a different space than a
sequential algorithm. Search overhead is incurred when the parallel algorithm
searches a larger space than the sequential one, and in particularly bad cases the
parallel algorithm may run more slowly than the sequential algorithm. There is a lot
of work on developing (imperative) parallel search algorithms that try to avoid as
much search overhead as possible (Akl et al. 1982; Li and Wah, 1990; Powley et al.
1989). To do so, these algorithm carefully control the order in which nodes are
searched. Efficient parallel search algorithms that use improving intervals must do the
same. It is not clear whether priorities alone allow enough control to express such
algorithms.
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A serious problem arises because spec_max and spec^min are not symmetric in their
arguments. For example

spec_max[LB 5, EX 10] {UB 3:1) = [LB5,EX10]
but

spec-max(UB3:±)[LB5,EX10] = 1.

In terms of parallel search, a bound found by evaluating the left subtree can be used
for pruning, but a bound found by evaluating the right subtree is ignored until
evaluation of the left subtree completes. We would often like some non-sequential
behaviour so that both arguments to spec_max would evaluate in parallel and as soon
as a bound, from either argument, is computed it may be used for prune parts of the
tree. The typical example of a non-sequential function is the parallel-or function that
evaluates its two arguments in parallel and returns true as soon as one of the
arguments returns true, even if the other argument is J_. We would like a parallel-max
(call it pmax) with similar behaviour. If

pmax {make 5) J. = LB 5: _L
and

pmax ± {make 5) = LB 5: J.

then we can use the LBS regardless of which argument it came from. However, using
a non-sequential function like pmax requires parallel evaluation so that a search tree
of height n would create 0(2") processes when evaluated. A compromise is to use a
function that behaves like pmax when enough processors are available and otherwise
behaves like spec_max. Such a function is non-deterministic because its results can be
different on different runs, but it is only partially non-deterministic because it is at
least as well denned as spec^max. We are currently working on the further
development of these partially deterministic functions (Burton and Jackson, 1990).

6 Conclusions

This paper has shown how to extend Burton's improving values to handle both upper
and lower bounds. We introduced two new functions, spec-min and maximum, that
are used to introduce and handle upper bounds. A simple implementation of
improving intervals uses lists of successively tighter bounds to represent a value.
Improving intervals are useful for writing programs, like alpha-beta search or branch-
and-bound, that make use of both upper and lower bounds.
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