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Abstract

A basic theory for probabilistic convergence spaces based on filter convergence is introduced. As in
Florescu's previous theory of probabilistic convergence structures based on nets, one is able to assign
a probability that a given filter converges to a given point. Various concepts and theorems pertaining
to convergence spaces are extended to the realm of probabilistic convergence spaces, and illustrated by
means of examples based on convergence in probability and convergence almost everywhere. Diagonal
axioms due to Kowalsky and Fischer are also studied, first for convergence spaces and then in the setting
of probabilistic convergence spaces.
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abilistic closure operator, Kowalsky diagonal axiom, Fischer diagonal axiom.

Introduction

Probabilistic metric and topological spaces have been studied extensively during the
past thirty years; background information can be found in [4, 8 and 9]. However, it
is well known that many types of convergence which arise naturally in probability,
statistics, and analysis are non-topological. In 1989, Florescu [3] initiated a study
of 'probabilistic convergence structures' based on net convergence. We believe that
a more satisfactory theory can be developed in terms of filter convergence, and this
paper gives an introduction to such a theory.

We define a probabilistic convergence structure on a set X to be a function q
mapping F(X) x I into 2X, where F(X) is the set of all filters on X, I is the closed
interval [0, 1] in R, and 2X is the power set of X; certain additional conditions are
also imposed. Essentially, it is convenient to think of q as a family of convergence
structures [qk : k e / } ; if a filter & ^-converges to x, we say that 'the probability

© 1996 Australian Mathematical Society 0263-6115/96 $A2.00 + 0.00

400
https://doi.org/10.1017/S1446788700000483 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000483


[2] Probabilistic convergence spaces 401

that & q-converges to x is at least W Thus q gives us a rule for determining the
probability that any given filter on X converges to any given point in X. These notions
are made more precise in Section 2.

Section 1 begins with a review of some basic definitions, notations, and terminology
pertaining to convergence spaces. We then investigate conditions K and F in the
setting of convergence spaces. The former was introduced by Kowalsky in [7], the
latter by Fischer in some unpublished notes written around 1974. We answer a
question raised by Fischer concerning the possible equivalence of these conditions
by showing that a convergence space satisfying F is necessarily topological, whereas
one satisfying K is generally not. We also show that K, unlike F, is not preserved
under formation of initial structures (except in the special case where the generating
functions are all injective).

In Section 2 we define probabilistic convergence spaces and extend such familiar
convergence properties as regularity, first countability, and local compactnesss to such
spaces. We also give three examples, two of which arise naturally from real analysis,
which illustrate these properties. By considering 'constant' probabilistic convergence
spaces, we observe that all of convergence space theory is included within the realm
of probabilistic convergence space theory.

hi Section 3, we extend the diagonal conditions K and F to a probabilistic conver-
gence space equipped with a 'f-norm' T (see [8]). If (X, q, T) satisfies the Kowalsky
(respectively, Fischer) axiom, it is called a Kowalsky (respectively, Fischer) probabil-
istic convergence space. We show that every Fischer probabilistic convergence space
is pretopological, and indeed for pretopological probabilistic convergence spaces the
two axioms are equivalent (relative to any fixed /-norm). We show that Fischer
probabilistic convergence spaces are not always topological except in the case when a
certain restriction is placed on the t -norm. The same three examples studied in Section
2 are used in Section 3 to shed further light on the significance and applicability of
the diagonal conditions.

1. Convergence spaces and diagonal properties

Let X be a set, F(X) the set of all (proper) filters on X, and 2X the set of all subsets
of X. For x e X, let x be the fixed ultrafilter generated by {x}. For &, <g e F(X),
we write & < <g if and only if & c &.

DEFINITION 1.1. A convergence structure q on a set X is a function q : F(X) -> 2X

satisfying:

(CO x e?(i),forall;c € X;
(C2) & < & implies q(&) c.q(&);
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402 G. D. Richardson and D. C. Kent [3]

(C3) x e q(^) implies x e q(^ D x).

The statement x e q{^) means ' ^ q -converges to x\ which will usually be
written '& —> x\ If q is a convergence structure on X, then (X, q) is a convergence
space.

Let C(X) be the set of all convergence structures on A", partially ordered by: p < q
if and only if q(&) c p(^), for all & e F(X). Relative to this order, C(X) is
a complete lattice whose largest member is the discrete topology 8 on X and whose
least member is the indiscrete topology i.

With each convergence space (X, q), there is an associated closure operator clq and
an associated interior operator Iq; these are defined for each A e 2X as follows:

clq A = {x eX :3& -1+ x such that A e &},

IqA = {x € A : & —>• x implies A e &}.

If ^"isafilter on X, clq& denotes the filter generated by [clqF : F e &}. At each
x € X, let %{x) = {V c X : x e IqV}; fq{x) is called the q-neighborhoodfilter at
x. It can also be described as the intersection of all filters which q -converge to x.

We consider three additional convergence axioms:

(C4) q(& n&)= q{&) n q(&), for all ^ , « f e F(X);
(C5) For each & e F(X), x e ^ ( ^ ) if and only if x e ^(^) , for every ultrafilter

(C6) x ^

A convergence structure which satisfies (C4) (respectively, (C5), (C6)) is called a
///n/Y structure (respectively, pseudo-topology, pretopology). Note that pretopology
implies pseudo-topology implies limit structure implies convergence structure. A
pretopology q is a topology if each neighborhood filter yq (x) has a filter base of sets
which are <7-open in the sense that the set equals its own interior. A topology can
also be characterized as a convergence structure satisfying diagonal condition F (see
Corollary 1.5).

A closure operator cl on X is a set function cl : 2X —> 2X satisfying:

(c/j) c/0 = 0;
(c/2) A c clA, for A € 2X;
(c/3) c/(A U8) = c/(A) U cl(B), for all A , f i e 2X.

It is well known that for any non-empty set X, there exists a bijection between
the set of all pretopologies on X and the set of all closure operators on X, given by
p ++ clp, where clp is the closure operator for the pretopology as defined above. In the
next section, we shall extend this to a bijection between 'pretopological probabilistic
convergence structures' on X and 'probabilistic closure operators' on X.
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[4] Probabilistic convergence spaces 403

We next recall the definitions of some familiar convergence properties. A conver-
gence space (X, q) is said to be:
T, if «?(*) = {*}, for all * € * ;
T2 (or Hausdorff) if ^-convergent filters have unique limits;
Regular if x e q(clq^) whenever x e q(&)\
T3 if (X, q) is both Tx and regular;
First countable if, whenever x e q(^), there is <£ e F(X) with a countable filter
base such that x e q(&) and <S < «^;
Compact if every ultrafilter is g -convergent;
Locally compact if every convergent filter contains a compact set.

Let X be a set, {(ya, p j : a e A] a family of convergence spaces, and /„ : X ->• Ya

a function, for all a e A. The m/ft'a/ convergence structure qw on X induced by
{(Ya, Pa) • oi e A] and {/„ : a e A} is the coarsest such that /„ : (X, g1") ->• (YO) pa)
is continuous, for all a e A. It is well known that gro can be characterized as follows:

& - ^ x in X if and only if fa(&) -^-> fa(x) in Ya, for all a e A. It is also well
known that the properties topological, pretopological, pseudo-topological, and regular
are initial properties (that is, properties closed under formation of initial structures).
The convergence structures defined for subspaces, products, and suprema in C(X)
are all special cases of initial structures relative to appropriate families of spaces and
functions.

From the preceding discussion of initial structures it follows that for any q e
C(X), there is a finest pseudo-topology vq (respectively, pretopology nq, topology
xq, regular convergence structure pq) coarser than q, which is called the pseudo-
topological (respectively, pretopological, topological, regular) modification of q.
Obviously, xq < nq < vq < q; there is in general no predictable relationship
between pq and the other three modifications of q.

The notion which is dual to initial structure is called 'final structure'. Let Y
be a set, {(Xa,qa) : a e A} a set of convergence spaces, and fa : Xa —>• Y
a function, for all a e A. The final convergence structure ps on Y induced by
{(Xa, qa) : a e A} and {/„ : a e A] is the finest convergence structure on Y such
that /„ : (Xa, qa) ->• (Y, ps) is continuous, for all a e A. The final convergence

structure is characterized as follows: If y e \J{fa(X) : a e A], then & -^->- y in Y

if and only if there exists a e A, x e f~x (_y), and'S - ^ x such that fa(&) < &\ if

y £Y - \J{fa(X) :aeA},^ -?-* y in Y if and only if & = y. It is well known
that first countability and local compactness are final properties. The convergence
structures for quotient maps, disjoint sums, and infima in C(X) are all special cases of
final structures. Thus for any q € C(X), there is a coarsest first countable convergence
structure aq finer than q, called the first countable modification of q and a coarsest
locally compact convergence structure yq finer than q, called the locally compact
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modification of q.
We next define four 'diagonal conditions' for a convergence space (X, q). For

convenience, we introduce the notation U(Z) for the set of all ultrafilters on X. If / is
any set, & e F ( / ) , and a : J —• F(X) is any function, let KO& be the coarsest filter
on X containing all filters of the form Jt?F = C\{<j(y) : y e F], for all F e &. In
other words, KO& = supp^f^T? : F € J^"}. K is sometimes called the 'compression
operator' fora .

K : Let a : X -» F(X) be any function such that a{y) - % y, for all y e X. If
& -1+ x, then *:or<F - % x.

K* : Let a : X -> U(X) be any function such that CT(V) -^ - y, for all y e X. If
& -1+ x, then /ccr ̂  - % x.

F : Let / be any set, let ^ : / -> X, and let CT : / ->• F(X) have the property that
cr(y) - % V^(y), for all y e / . If ^ e F ( / ) is such that \jr(&) - % JC, then
/<:or^ -^> x.

F* : Let / be any set, let \jt : J ->• X, and let cr : / - > U(X) have the property that
o-(y) -^> ^ ( v ) , for all y e J. If ^ e F ( / ) is such that ^ ( ^ ) - ^ ^, then

The diagonal conditions AT and F were originally defined by Kowalsky [7] and
Fischer (unpublished notes dated 1974), respectively. The two conditions K* and F*
are special cases of K and F, respectively. Note also that AT is a special case of F,
where J = X and xfr is the identity map on X; likewise, K* is a special case of F*.
These observations are summarized in the next proposition.

PROPOSITION 1.2. For any convergence space (X, q), K implies K*, F implies F*
implies K*, and F implies K.

In [7], Kowalsky showed that if a convergence space (X, q) satisfies K, then nq
is a topology. The next proposition slightly improves this result.

PROPOSITION 1.3. If a convergence space (X, q) satisfies K*, then nq is a topology.

PROOF. It suffices to show that a convergence structure satisfying K* has the
property cl2

qA c clq A for arbitrary A e2x. Let & be an ultrafilter on X containing

clqA such that & -^-> x. For each y e clqA, choose an ultrafilter Jf?y -%• y such that
A e j ; . We define a : X -> U(X) as follows:

y ^c / ,A

y € clqA.

Then tco& -1+ x, and since c/,.4 e ^ and A e ^ for all y <= c/,/4, A e
Thus x e c/,A.
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Fischer showed (in unpublished notes) that a pseudo-topology satisfying F is a
topology. The next proposition extends this result.

PROPOSITION \A.If(X,q)isa convergence space satisfying F*, then q is a topo-
logy.

PROOF. Let* e X, and let {Jifa : a e J] be the set of all ultrafilters q -converging to
x. Define \fr : J - • X by f(a) = x, for all a e J, and let a(a) = J%, for all a e J.
Let & be the filter {/}. Since V ( ^ ) = x -%• x, KO& -U- X, by F*. However
f | M y ) :y e J} = f |{^S : « e /} = ^ W -% JC. Thus ^ is a pretopology. By
Propositions 1.2 and 1.3, q is also a topology.

It is well known that a topological space satisfies Condition F. Thus we have the
following corollaries.

COROLLARY 1.5. For a convergence space (X,q), the following are equivalent.
(1) q is a topology; (2) q satisfies F; (3) q satisfies F*.

COROLLARY 1.6. For a pretopological space (X, q), the following are equivalent.
(1) q is a topology; (2) q satisfies K; (3) q satisfies K*; (4) q satisfies F; (5) q
satisfies F*.

PROPOSITION 1.7. Let (X, q) be a convergence space.

(a) If(X, q) satisfies K, then q is a limit structure.
(b) If(X, q) satisfies K*, then a finite intersection of ultrafilters q-converging to x

must also q-converge to x.

PROOF. The proofs of (a) and (b) are essentially the same, so we prove only (a).
Let & and & <7-converge to x and assume K. Define

a(y) =

For F e &, (~}{a(y) : y e F U {x}} = F n ^ f l i , where F denotes the filter of
oversets of F. Thus KO{^ C\ X) = & D ^ PI x, which ^-converges to x by K.

The diagonal property F is obviously an initial property, since it is equivalent to
the property of being topological. The next proposition gives a partial result in this
direction for the properties K and K*.
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PROPOSITION 1.8. Let (X,q) be a convergence space, equipped with the initial
convergence structure induced by a family {{Ya, pa) : a e A} ofspaces and {/„ : a e
A], where each fa : X -> Ya is injective. Then if each (Ya, pa) satisfies condition K
(or K*), the same is true of (X, q).

PROOF. We prove the result only for K; the proof for K* is essentially the same. Let
& -%• x and let a : X -» F(X) be any function such that a (y) - % v, for all v € X.
We must verify that KO& —> x. Let a e A b e fixed, and let aa : Ya -> F(ya)
be denned as follows: o-B(y) = >> if >> e Ya - / a (X) , ao(y) = /„(*(/„- '(?))) if
j € fa(X). One easily verifies that fa(ico&) > noafa(:?). The latter filter p a -
converges to /a(jt) by Condition AT, and consequently fa(Ko&) —"—>• fa(x). This
holds for all a e A, and so KO & —> x.

We conclude this section with two examples. The first is a limit space which satisfies
K but fails to be pretopological, showing that K does not imply F. Furthermore,
we define a set X and a surjective function / : X —> Y such that there is no
coarsest convergence structure q on X satisfying K such that / : (X, q) —• (Y, p)
is continuous. This shows that the assumption of Proposition 1.8 that the / a ' s be
injective cannot be dismissed. In other words, unlike F, K is not an initial property.

EXAMPLE 1.9. Let Y be an infinite set, and choose a e Y. Let {&n : n e N] be a
set of distinct, free ultrafilters on Y, and let <£„ = &„ Pi a, for all n e N. We define p
to be the finest limit structure on Y such that each Sfn p-converges to a; thus p is not
pretopological since S? = f]{% : n e N] does not p-converge.

To check that (y, p) satisfies K, assume a : Y —> F(Y) is such that a(y) —> v,for
all v € y, and let Jt? —>• x. Ifx ^ a,thenJf — x and icaJf = a(x) = x. Ifx = a,
then J ^ > nt^K, : / = 1, • • • , /t), and one easily checks that KoJf = Jif n a(a) ,
which p-converges to a. However, since p is not pretopological, it follows by
Proposition 1.4 that (Y, p) does not satisfy F.

Next, let Xn = Y x {«}, and let X = \J{Xn : n e N}. Let / : X -> y be defined
by / ( j , n) = v, for all (v, n) € X. Let xn = (a, n), for all n e N, and let qn be the
finest limit structure on X such that f~l{%) -^-> xn, for all k e N. The argument
of the preceding paragraph shows that qn satisfies K, for all n e N. Also note that
/ : (X, qn) —> (y, p) is continuous, for all n e N.

Finally, suppose there is a coarsest convergence structure q on X satisfying K
such that / : (X, q) ->• (y, p) is continuous. Obviously, q < qn for all n, and so
f~\%) - ^ xn,forall« e N. To see that q does not satisfy K, define CT : X ->• F(X)
as follows:

I / " 1 (^«), if z = xn for some « e V̂

z, otherwise.
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Let & = f ~ \ % ) \ then & - % xx. Let F = f~\G) e &, where G e <gx. Since
xn e f~\G), for all n e N, JT = f l l / " ' ^ ) : n € N} > C\{a(z) : z e F}, and
therefore J ^ > KO&. If ACCT^ -%• xx, then / ( J O = Sf -A- a, a contradiction.
Thus /ccr^" fails to g-converge to x, and therefore 9 does not satisfy K.

The second example describes a convergence space which satisfies K* but not K,
showing that (unlike F and F*) the axioms A" and K* are distinct.

EXAMPLE 1.10. Let X be any infinite set, and let & and <£ be two distinct, free
filters on X such that neither is a finite intersection of free ultrafilters. Fix xo e X,
and define q to be the finest convergence structure on X such that:

Jf? —> xo if and only if either there is a finite set of free ultrafilters (£\,... , %, all
finer than ^ , such that Jf > & n Sfi D • • • n Sfn n xo, or else there is a finite set of free
ultrafilters &u... , &k, all finer than ^ , such that Jf > <£ n ^ D • • • D &k D i 0 .

Note that if a : X ->• U(X) is such that CT(JC) -?-> x for all x, then KO{& D X0 n
#i n • • • D %) > & n x'B n ^ n • • • n % n X, where J T is some free ultrafilter finer

1; a similar observation applies t o / c a ( ^ n i o n ^ " ! D- • - f l ^ ) . Thus J f —> A;O
implies Kodtf —• JC0, and it follows that (X, q) satisfies K*. But (X, q) is not a limit
space, so (X, q) fails to satisfy £ , by Proposition 1.7.

Finally, we remark that none of the diagonal properties are preserved under final
structures, since every convergence space is the image of a topological space under a
convergence quotient map (see [5]).

2. Probabilistic convergence spaces

Let / denote the closed interval [0, 1] in R. For a non-empty set X, recall that
F(X) is the set of all filters on X, C(X) the set of all convergence structures on X,
and 2X the power set of X.

DEFINITION 2.1. A probabilistic convergence structure q on X is a mapping q :
F(X) x / -> 2X which satisfies:

(PCSx) For all A. € / , q( J*\ A.) = q^), where qk e C(X).
(PCS2) If A. = 0, q0 is the indiscrete topology i on X.
(PCS2) If (i < A. in / , then q^ < qx in C(X).

If q is a probabilistic convergence structure on X, then (X, q) is called & probab-
ilistic convergence space. We shall use the abbreviation 'p.c.s' ambiguously for both
'probabilistic convergence structure' and 'probabilistic convergence space'; it should
be clear from the context which meaning is intended.
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For a p.c.s. q as in Definition 2.1, it will often be convenient to denote the 'X-th
component structure' qk by (q)k. We interpret '* € qk(^Y to mean 'the probability
that & <7-converges to x is not smaller than A.'. The probability that & q-converges
to x is defined to be X = sup{/x e / : & -^-> x}. The fact that (q)0 is indiscrete
guarantees that the set {/x : & —%• x\ is non-empty, since this set necessarily contains
0.

If p € C(X) and q is a p.c.s. on X such that (q)k — p, for all A. e (0, 1], then we
call q a constant p.c.s. and denote it by qp.

Let PC(X) be the set of all p.c.s.'s on X, partially ordered by q < r if and only
if (q)x < (r)x, for all X e I. Clearly, the least member of PC(X) is the indiscrete
p.c.s q, and the greatest member of PC(X) is the discrete p.c.s. q .̂ Using the obvious
one-to-one correspondence p «-> qp to identify convergence structures with their
corresponding constant p.c.s.'s, we can regard C(X) as a subset of PC(X). Indeed,
PC(X) is a complete lattice and C(X) is a sub-complete-lattice of PC(X). Thus
'probabilistic convergence space' is a simple and direct generalization of 'convergence
space'.

Let (X, q) and (Y, p) be p.c.s.'s, and / : X ->• Y a function. Then / : (X, q) ->•
(Y, p) is continuous if / : (X, (q)k) —*• (Y, (p)k) is continuous for all X e I. A
p.c.s. (X, q) is defined to be pseudo-topological (respectively, pretopological, to-
pological, regular, first countable, compact, locally compact, Ti, T2) if, for each
A € (0, 1], (X, (q)x) is pseudo-topological (respectively, pretopological, topological,
regular, first countable, compact, locally compact, T^ T2). We also define (X, q) to
be left-continuous if, for each X e (0, 1], qk = supC ( X ){^ : /z < X}. If p e C(X),
it is clear that the constant p.c.s. qp is left-continuous, and all the properties pseudo-
topological, pretopological, etcetera are possesed by qp in the p.c.s.-sense if and only
if they are possesed by p in the convergence structure sense.

If (X, q) is a p.c.s., the pseudo-topological modification vq of q is defined by
(vq)k = vqk for all A. e / , where vqk is the finest pseudo-topology in C(X) coarser
than qk. Obviously, vq is the finest pseudo-topological p.c.s. in PC(X) coarser than
q. We can define the pretopological modification nq, the topological modification
xq, and the regular modification pq of q in the analogous way.

One may also define the first countable modification cpq of q by taking (<pq)k = <pqk,
where (pqk is the coarsest first countable member of C(X) finer than qk. The locally
compact modification yq of q is defined analoguously.

PROPOSITION 2.2. If(X, q) is a left-continuous p.c.s., so are vq and<pq.

PROOF. Let X € I be fixed, and assume qk = supC(X}{qll : fx < X}. Assume

& - ^ > x, for all (x < X. Then each ultrafilter & > & <?M-converges to x, for all

fx < X, and so & -^-> x. Consequently, & Vft > x, and so vqk =
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X}.

Next, assume & >• x, for all n < X. Choose an increasing sequence /xn in

[0, X) converging to X. For each n, there is a filter % with a countable filter base such

that % - 5 % x and % < &. If <S = supF m{^n : n e N], then Sf has a countable

filter base, <S - ^ x and ^ < &. Thus ^ - ^ > x.

We next give three examples, two of which arise naturally in real analysis.

EXAMPLE 2.3. Let (X, r) be a convergence space, and for X e I define:

I,

r,

8,

X =

0 <

1/2

0

A.

<

<

X

1/2

< 1.

Let q be the p.c.s. defined by (q)x = qx., for each X € I. We note that q is
left-continuous, and is pseudo-topological (respectively, pretopological, topological,
Ti, T2, regular, T3, first countable, locally compact) if and only if the convergence
structure r has the corresponding property. Also note that q is constant if and only if
r — 8, in which case it is the discrete p.c.s. If x e X, & € F(Z), and & ^ i , then &

q-converges to x with probability 0 if & -/> x, and with probability 1/2 if & —> x.

EXAMPLE 2.4. Let / denote Lebesgue measure on / , and let x be the usual topology
on R. Let X be the set of all real-valued, Lebesgue measurable functions on / . Given
X e I, define & -^-> / if and only if there is a subset A oil such that l(A) < 1 - X
and &(n) -^ fbi), for all /x € / - A. The p.c.s. q is defined on X by (q)x — q\,
for all A. e / . Note that qx describes convergence almost everywhere on / with respect
to/ .

One may verify that q is regular, since for ^ ( /x ) -̂ -> f(/x), we have (clqx&)(\x) >
clx(&(ix)), and the latter filter r-converges to /(/x) by regularity of r. We shall also
verify that q is left-continuous. Assume & — ^ / , for all /x € [0, X), and let fj,n be
an increasing sequence in / converging to X. Choose An such that l(An) < 1 — /xn and
^"0-0 - • /(/x), for all M e I -An. U*.A = C\[An :neN}. Then/(A) < iimn/(An)
< 1 - A., and J*"(/x) - ^ /(/x), for all (i e I - A. Thus & - ^ / , and it follows
thatsup{<7M : /x < A.} = qx.

It is obvious that q is not T\. We shall show that q is neither pretopological nor
locally compact. Let \A denote the characteristic function of A c / . Note that
\ m -^-» 0 (the zero function) for each P e l , but HUt/?) : P e ?) f^s t o 1\~
converge. Thus qx is not pretopological. To see that qx is not locally compact, let
fa = il(0,i/j] and let Fn = {ftj : i >l,j > n}. Let & be the filter on X whose base is
{Fn : n e N}. It is easy to see that & -^-> 0. However any free ultrafilter containing
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{fij '• i > 1. j fixed} fails to ̂ -converge. Since each member of & contains a subset
of this form, qx is not locally compact.

EXAMPLE 2.5. Let X be the set described in Example 2.4, and let Y be the set

obtained from X by identifying functions which are equal almost everywhere. We
define a p.c.s. p on Y, where pk = (p)x is defined by setting p0 = i, and, for each
1 e (0, 1], # -^->- / in Y if and only if, for each a > 0 and € < X there exists
F € & such that, for each g e F, /{/x € / : \g(li) - f(fi)\ < a] > e. For X = 1, px

describes convergence in probability, and it is shown in Theorem 4.1.5, [1] that px is
a metrizable topology.

Let (an) be a decreasing sequence in the open interval (0, X) converging to 0, and
for / e Y, let Vn(f) = {g e Y : /{/* e / : \g(ji) - f(ji)\ < an} > X - an}. Note
that the filter ^ ( / ) generated by {Vn(f) : n € N} is the pk-neighborhood filter at / ,
and this filter obviously has a countable base and pk-converges to / . Thus (Y, p) is
pretopological and first countable. One may also verify that (Y, p) is left-continuous.
On the other hand, it is easy to see that pk is not T[ for A. < 1, and it is not difficult to
show that p is neither regular nor locally compact.

Let X be a set, {(Ya, p
a) : a e A] a set of p.c.s.'s, and /„ : X —> Ya a function, for

each a e A. The initial p.c.s. qw is defined to be the coarsest p.c.s. on X such that
/„ : (X, qw) -> (Ya, p") is continuous, for all a e A. For each a € A and X e / , let
(pa)^ = p". We omit the easy proof of the next proposition.

PROPOSITION 2.6. In the notation of the preceding paragraph, (qw)k = q™, where
for each X e / , q™ is the initial convergence structure on X induced by {fa : a e A],

where fa : X -> (Ya, p
a
x),foralla e A. Thus & - ^ x if and only if fa(&) -^U

fa(x), for alia e A.

PROPOSITION 2.7. The following p.c.s. properties are initial properties: pseudo-
topological, pretopological, topological, regular, constant, left-continuous.

PROOF. It was remarked in Section 1 that the first four properties are initial con-
vergence space properties, and the conclusion for p.c.s.'s follows by Proposition 2.6.
It is also clear from Proposition 2.6 that the property of being constant is an initial
property. Finally, assume the notation of the paragraph preceding Proposition 2.6, and

assume & —"-+ x, for all /z < X. Then fa(&) — ^ fa(x), for all fi < X and for all

a 6 A. By left-continuity of p a , fa(&) -?U fa(x), for all a e A. Thus & -^U x,
and q™ = supcm{q^ : \x < X}.

PROPOSITION 2.8. Let (X, qw) be the initial p.c.s. induced by {/„ : a e A] and
{(Ya, p") : a € A}. Given & e F(X) and x e X, let X be the probability that
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& > x. Ifka is the probability that fa{&) pa-converges to fa(x),for all a € A,
then k = inf{A.o : a & A).

PROOF. Let J = {/z : & - ^ x\ and Ja = {n : fa(&) - ^ /„(*)}, foralla e A.
Since J c ya for each a 6 A follows by Proposition 2.6, A. = sup J < ka = sup /„
holds. If rj = inf{ka : a e A} > k, choose A.' such that k < k' < r). Then

fa(^) — ^ f<*(x) holds for all a e A, which implies k' e J, a contradiction.
Consequently, k = inf{ka : a e A}.

The most important special cases of initial structures are subspace structures and
product structures. If (Y, p) is a p.c.s., X c Y, and ix : X —*• Y is the inclusion
map, then the subspace p.c.s. (X, q) is defined by & -?—> x in X if and only if
ix(^) -̂ —• x in 7, for all A. e / . Thus the probability that & q-converges to x in
(X, q) equals the probability that ix(^) p-converges to x in (Y, p).

For any p.c.s. (X, q), we define a subset A of X to be q-closed if A = c/?i A, for
a l lA.€ / .

PROPOSITION 2.9. The following p.c.s. properties are hereditary relative to arbit-
rary subspaces: TV T2, regular, first countable, pseudo-topological, pretopological,
topological, left-continuous, and constant. Compactness and local compactness are
hereditary relative to q-closed subspaces.

If (X, q) = Y\[(Ya, p") : a e A} is a product p.c.s., then by Proposition 2.8, J5"
q-converges to x with probability A. if and only if A. is the infimum of the probabilities
of the p"-convergence of the projections of & to the projections of x relative to the
various component spaces.

PROPOSITION 2.10. The following p.c.s. properties are preserved under arbitrary
products: T1; T2, regular, compact, pseudo-topological, pretopological, topological,
left-continuous, constant. First countability is preserved under countable products,
and local compactness under finite products.

We next turn to final probabilistic convergence structures. Let Y be a set, let
{(Xa, qa) : a e A] be a set of p.c.s.'s, and let /„ : Xa ->• Y be a function, for all
a e A. The finest convergence structure pJ on Y such that /„ : (Xa, qa) -> (Y, ps)
is continuous for all a e A, is called the final p.c.s. induced by {/„ : a e A} and
{(Xa,q

a):aeA}.

PROPOSITION 2.11. In the notation of the preceding paragraph, the final p.c.s. p1

on Y induced by {fa : a € A] and {(Xa, qa) : a e A} is characterized as follows:

If y £ Uifa(x) : a e A] and k > 0, then & - % y if and only if 3a e A,
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3 x e f~x(y), andltf -?h x such that & > fa(&); ifysY- U{/«(*) • ct e A]

and k > 0, then & —^ y if and only if & = y; ps
0 is indiscrete.

PROPOSITION 2.12. The following p.c.s. properties are preserved under the forma-
tion ofp.c.s. final structures: first countable, locally compact, constant.

The most useful final structures are quotient maps and disjoint sums. We shall
discuss only the former, although the latter are needed in the proof of Proposition
2.13. A mapping / : (X, q) -»• (Y, p1) is a p.c.s. quotient map if / is onto Y and

& -?U yinyifandonlyif3;t € f~\y) and& - % x such that/(SO < &. A p.c.s.
is said to be pseudo-metrizable if (X, q) is topological and qk is pseudo-metrizable,
for each A. e / . The convergence space versions of the two statements of the next
proposition are proved in [5 and 6], respectively; these proofs generalize immediately
to p.c.s.'s.

PROPOSITION 2.13. (a) Every p.c.s. is the image of a topological p.c.s. under a
p.c.s. quotient map.

(b) A p.c.s. is first countable if and only if it is the image of a pseudo-metrizable
p.c.s. under a convergence quotient map.

PROPOSITION 2.14. Let f : (X, q) -> (Y, p) be a p.c.s. quotient map. Let & 6
¥(Y) and y e Y. If & e F(X) and x e X, let X#,x be the probability that &
q-converges to x. If k denotes the probability that & ^-converges to y, then k =
sup{A»iJt : /(Sf) < &andx e /"'(y)}.

PROOF. If /(SO < & and x e f~x(y), then S? —^ x, for all \x < k&,x, which
implies & — ^ y, for all /u, < A#%x. Thus A^x < A. Let r\ = sup{A.̂ ,x : /(SO <
^", x e /"'(}')}• If >7 < A., choose A.' e / such that r\ < k' < k. Then & -^-> y, so
there exist x € / " ' ( j ) and Sf -^-> x such that /(Sf) < ^ . This implies k' < kyx,
contradicting the fact that rj < A.'.

We conclude this section by giving a characterization of pretopological p.c.s.'s
in terms of 'probabilistic closure operators' which extends the familiar relationship
between pretopologies and closure operators mentioned in Section 1.

DEFINITION 2.15. A probabilistic closure operator d on X is a function d : 2X x
/ -» 2X such that:

(pcli) For each A e / , clk : 2X —»• 2X is a closure operator on X, defined by

(pc/2) For A. = 0, cl0A = X, for all A e 2X - {0}, and c/o0 = 0.
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(pcl3) If fi < X in / , then clkA c c/MA, for all A € 2X.

A probabilistic closure operator cl is said to be left-continuous if, for each X e (0, 1]
and A € 2X, clxA = p){c/MA : /x < A.}. We omit the straight-forward proof of the
next proposition.

PROPOSITION 2.16. Let (X, q) be a pretopological p.c.s., and define clq : 2X x
I -> 2X by: clq(A,X) = clqkA, for each A e 2X and X e / . Then dq is a
probabilistic closure operator which is left-continuous if and only if (X, q) is left-
continuous. Furthermore, the correspondence q •<-»• clq is a bijection between the set
of all (left-continuous) pretopological p.c.s.'s on X and the set of all (left-continuous)
probabilistic closure operators on X.

3. Diagonal probabilistic convergence spaces

In this section, we consider probabilistic convergence spaces subject to two diagonal
conditions derived from the diagonal axioms K and F discussed in Section 1. These
diagonal conditions for p.c.s.'s also make use of the notion of 'triangular norm' as
defined in [8]. The addition of these diagonal conditions make our filter-based theory
conform more closely to the net-based theory of 'probabilistic convergence spaces'
of Florescu [3].

DEFINITION 3.1. A triangular norm (or t-norm) is a binary operation T : I2 —*•
I which is associative, commutative, increasing in each variable, and satisfies:
T(a, 1) = a, for all a e /.

If T and T are f-norms, T < T means that T(a, b) < T'(a, b), for all (a, b) e I2.
The smallest ?-norm is To, defined by

T0(a, b) =

a, ifb = l

b, if a = 1

0, otherwise.

The largest ?-norm is Tx, where Tt(a, b) = min{a, b), for all (a, b) e I2.
Let (X, q) be a p.c.s. and T a f-norm on X. Consider the following diagonal

conditions on (X, q).

KT: Let a : X —> F(X) be any function such that o(y) —̂ -> y, for all y e X, where
Qk ^T(k u)

ix e I. If X e I and & —> x, then/ccr^ '•—> x .
FT: Let J be any non-empty set, let rjs : / - • X, and let a : J -*• F(X) be such

that a(y) -^-> f(y), for each y € J, where ix € / . If X € / , & € F(7), and

-^- x, then KCT j?" —^-> x.
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If (X, q) is a p.c.s. which satisfies KT (respectively, FT) relative to a given /-norm
T, then the triple (X, q, T) is called a Kowalsky (respectively, Fischer) probabilistic
convergence space. For brevity, we abbreviate these terms k.p.c.s. and f.p.c.s.,
respectively. The first proposition summarizes some elementary facts about these
notions.

PROPOSITION 3.2. (a) Every f.p.c.s. is a k.p.c.s.
(b) Ifqp isaconstantp.es., then for any t-norm T, (X, q, T) isak.p.c.s. (respectively,

f.p.c.s.) if and only if the convergence structure p satisfies K (respectively, F).
(c) If (X, q, T) is a k.p.c.s. (respectively, f.p.c.s.) and T is a t-norm such that

T < T, then (X, q, T') is k.p.c.s. (respectively, f.p.c.s.).
(d) If (X, q) is a topological p.c.s., then (X, q, T) is a f.p.c.s. for any t-norm T.
(e) If (X, q) is a p.c.s. such that qk = ((?x)/c holds for all A. € / , where (<7X)K

is the finest convergence structure on X coarser than qx which satisfies K and
Qx = (q)k, then (X, q, T) is a k.p.c.s. for any t-norm T.

An example of a k.p.c.s. which is not a f.p.c.s. is the constant k.p.c.s. (Y, qp, T),
where (Y, p) is the convergence space of Example 1.9 and T is any f-norm.

If a p.c.s. (X, q) has a p.c.s. property (for example, regular, left-continuous), any
k.p.c.s. or f.p.c.s. of the form (X, q, T) is said to have the same property.

In Section 1, we observed that property F (being equivalent to 'topological') is an
initial property, whereas property K is not. In the setting of p.c.s. 's, property FT is
not equivalent to being topological (as we shall see latter), but it is an initial property
if the ?-norm T remains fixed.

PROPOSITION 3.3. For a given t-norm T, let {(Ya, p a , T) : a e A] be a set of
fp.c.s.'s. Let X be a set and let fa : X —»• Ya be a function, for each a e A. Ifqis
the initial structure on X relative to the families {(Ya, p") : a € A] and {fa : a e A},
then (X, q, T) is a f.p.c.s.

PROOF. By our previous characterization of initial structures for convergence spaces
in Section 1, (q)x = qk where, for each l e / , # -^-> x if and only if fa(&) -^-*
fa(x), for all a e A. It remains to show that (X, q, T) satisfies FT. Assume
f : / -+ X, a : / -> F(X) such that o(z) - ^ \js(z), for each z e J, and
f& - % x, where A e / . Let a <= A, and let f* = faof,a*(z) = fa(a(z)), for all
z € J, and f*(&) = fa(ir&). Since pa satisfies FT, KO*& -» fa(x) in (Ya, pa

n.J.
Since this holds for all a 6 A and fa(ico&) = KO*&', KO& —> x in (X, qTam), and
it follows that (X, q, T) is a f.p.c.s.

The next proposition and its proof are analogous to Proposition 1.8, so the proof is
omitted.
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PROPOSITION 3.4. For a given t-norm T, let {(Ya, p", 7) : a e A} be a set of
k.p.c.s.'s. Let X be a set, and let fa : X -*• Ya be an injective function, for each
a e A. Ifq is the initial structure on X relative to the families {(Ya, pa) : a e A] and
[fa : a e A], then (X, q, 7) is a k.p.c.s.

By making some obvious alterations, one can use Example 1.9 to show that KT is
not a p.c.s. initial property.

From the two preceding propositions, it follows that for any p.c.s. (X, q) and any
r-norm 7, there is a finest p.c.s. q ^ coarser than q such that (X, qKr, 7 ) is a k.p.c.s.,
and a finest p.c.s. qFr coarser than q such that (X, qFr, 7 ) is a f.p.c.s.; these are called
the KT and FT modifications of (X, q, 7 ) , respectively. For any f-norm 7 , it is clear
that qfr < qKr < q.

PROPOSITION 3.5. //(X, q, 7) is a f.p.c.s., then (X, q) ispretopological.

PROOF. For fixed A. e / , let {JVa : a e J} be the set of all ultrafilters on X which

gx-converge to x. Define ^ : J —>• X by is(a) = x, and let o(a) = 3*%,, for each

a € / . If & = {/}, then f& = x -^-> x, and hence KO& ->• x in (X, ?r(1 Xl). But

7(1, A.) = A. by Definition 3.1, so KO& - % x. ^\xX^\iEja{z) = f]a€j Jfa = %x(x),
so yqii {x) —*-+ x. Since this holds for all x e X, each qk is a pretopology.

PROPOSITION 3.6. If(X, q, T) is apretopological k.p.c.s., and T(\, X) = k.for all
A. e / , f/ien (X, q) ;5 topological.

PROOF. It suffices to show, for arbitrary A. e / and A c X, that c/^A = clqiA.

Assume x e cl2
qiA. Let & be an ultrafilter on X such that ^" —^ x and c/^A e &.

For each v e dqxA, let ^ be an ultrafilter which contains A and qk -converges to v.
Define

then A e f){o-(y) : y e clq>A} and hence A e KO^, which 7(x,x>-converges to x by
KT. By the assumption 7(A., A.) = A., x e clqxA, and hence cl^A = clqkA, which
completes the proof.

COROLLARY 3.7. / / (X, q, 7) is a f.p.c.s. and 7(A., A.) = A., for all X e / ,

(X, q, 7) JS topological.

The next three propositions give necessary and sufficient conditions for a pretopo-
logical p.c.s. equipped with a ?-norm to be a f.p.c.s.
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PROPOSITION 3.8. Let (X, q) be a pretopological p.c.s. and let T be a t-norm.
Then (X, q, T) is af.p.c.s. if and only if the following condition (*) is satisfied:

(*) For arbitrary X, ix e T and for each V e %T(Xix) (x), there exists W e %k{x)
such that, for each y € W,V € Vqii(y).

PROOF. Assume that (X, q, T) satisfies FT and let V s fp(x), where p = qT(iii).
Suppose that for each W e Vqx(x), there exists yw e W such that V £ ^ ( y w ) . Let
J = {yw : W e V^ix)}, and let & be the filter of sections of the net {yw)w^y oo-
Define f(z) = z and a{z) = ^ ( z ) , for all z € / . Thus CT(Z) - ^ VOO = z. It
follows by F r that Aca^" -^> x, which implies / c a ^ > fp(x). Thus V e «:a&, and
so there is F e ^ such that V e fli0"^) : j e f !• Let yw e F, then V e a ( ^ ) .
However, CTC^) = ^ ( y , , ) , and by assumption V & Vqii(yw), & contradiction. Thus
there exists W e Yqx(x) such that, for each y e W, V e f^ (y).

Conversely, assume the given condition. To verify FT, assume that: / is a set,
iff : J -»• X,a : J -+ F(X) is such that a(y) - % ir{y) for each y e J, and J2" e
F( / ) is such that Vf^ -^-> ^. It remains to show that KO& -^> ^ (or equivalently,
KO& > -^(JC)), where /? = ^r(i(il. If V e ^ ( x ) , there exists (by Condition (*))
W e Yqi(x) such that, for each ^ e l V J e Y^iy). Since t/r^" > ^A(JC), W e ^JP,
and so there exists F e ^ such that f(F) C.W. Lety e F; then VK)0 6 W, and
therefore V 6 Tqil(ir(y)). Since CT(J) > ^ ( ^ ( y ) ) , V 6 CT(>>) and it follows that
V e DM}1) : y e f l - Thus V 6 ACCT̂ ", which establishes that KO& > %{x).

In convergence space theory, it is well known that for a convergence space (X, q),
V € fq(x) if and only if x g clq(X - V). Under the assumption of Proposition 3.8,
one can use this fact to reformulate Condition (*) in the following equivalent form:

(**) For every n, X e I and A e X, clqk(clq/i(A)) c clp(A), where p - qT(Xji).

COROLLARY 3.9. Let (X, q) be a pretopological p.c.s. and let T be a t-norm. Then
(X, q, T) is af.p.c.s. if and only if Condition (**) is satisfied.

PROPOSITION 3.10. Let (X, q) be a pretopological p.c.s. and let T be a t-norm.
Then (X, q, T) is af.p.c.s. if and only if(X, q, T) is a k.p.c.s.

PROOF. It remains only to show that every pretopological k.p.c.s. (X, q, T) is a
f.p.c.s., and this can be achieved by verifying Condition (**). If* e clqk(clQii(A)), then
there exists ^ - % x for which c/^ A e <$. Choose, for each G e&,xc e GndqfiA,
and let & denote the filter of sections of the net (xc)Ge^- Since & > <g, & - % x.
Moreover, xG e clqiiA implies the existence of Jt?G -^-> xG such that A e JfG, for
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all G € Sf. We define a : X -* F(X) by:

otherwise.

Then KO& -^ x (where p = qTait)), since KT is satisfied. Fix a base element
Fo = {xG : G c Go, G e &} in &. Then f]zeFo o-(z) = f l i ^ c : G c Go, G € ^ } ,
and therefore A 6 (~}zeF o{z). It follows that A e KO&', and this implies x € c/pA,
which establishes Condition (**).

Combining Corollary 3.7 and Proposition 3.10, we obtain the following analog to
Corollary 1.6.

COROLLARY 3.11. Let (X, q) beapretopologicalp.es. and let T beat-norm such
that T(X,X) = X,for all X € I. The following statements are equivalent:

(a) (X, q) is topological; (b) (X, q) satisfies KT; (c) (X, q) satisfies FT.

We now return to the three examples of Section 2. In the next example, we show
that a f.p.c.s. can fail to be topological if the f-norm fails to satisfy the condition of
Corollary 3.11.

EXAMPLE 3.12. Let (X, q) be the p.c.s. defined in Example 2.3. Recall that for
arbitrary r e C(X),

r, 0 < X < 1/2

8, 1/2 < A < 1.

We examine the diagonal properties of this p.c.s. relative to two different t-norms.

CASE 1. T(X, /x) = max{A + \x — 1, 0}. By considering four cases, one can
show that (X, q, T) is a k.p.c.s. for any convergence structure r e C(X). Thus,
by Proposition 3.10, (X, q, T) is a f.p.c.s. if and only if r is any pretopology. In
particular, we see that a k.p.c.s. need not have the property that every (q)x is a limit
structure (compare with Proposition 1.7), and a f.p.c.s. need not be topological.

CASE 2. T{(X, /x) = min{A, /x}. One can show that (X, q, Tx) is a k.p.c.s. if and
only if (X, r) satisfies Condition K of Section 1. In particular, r must be a limit
structure. It follows from Proposition 3.11 that {X, q, Tx) is a f.p.c.s. if and only if r
is a topology.

The next example shows that the p.c.s. of Example 2.4 (based on convergence
almost everywhere) fails to satisfy KT for any f-norm T. This example suggests that
requiring all p.c.s.'s to satisfy a diagonal condition (as in [3]) would be undesirable.
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EXAMPLE 3.13. Let (X, q) be the p.c.s. of Example 2.4. We shall show that (X, q)

fails to satisfy KT for any f-norm 7 .
Choose A = ix = 1; by Definition 3.1, 7 (1 , 1) = 1, for any f-norm 7. Let & be

any filter on X qx -converging to 0 (the zero function) such that & has a nested base
j F , : n € A f ] such that the cardinality of Fn - Fn+X is c, the cardinality of / . Then,
for each n e N, there is a bijection gn : Fn - Fn+l onto [0, 1]. Define a : X -» F(X)
such that a{y) -^-> y for each y e X, and a(y)(gn(y)) - ^ 1, when y € Fn - Fn+U

for each n e N.
Assume that KO^P -^-> 0. Then there exists A c / of Lebesque measure 0

and Ko^(a) - ^ 0, for each a e I - A. Let a e / - A be fixed; then there is
some w e N and B e H M ) 1 ) : ^ e Fm} such that B(a) c [0, 1/2]. However
for j = ^ ' ( a ) € Fm - Fm+U a(y)(gm(y)) - U 1, which is a contradiction since
B(a) 6 ff(y)(gm(y)) implies that [0, 1/2] e a(y)(gm(y)). Thus KO& fails to <7,-
converge to 0, and KT fails for any r-norm T.

EXAMPLE 3.14. Let (Y, p) be the p.c.s. discussed in Example 2.5. Recall that
Y is the set of all real-valued, Lebesgue measurable functions on R, with functions
identified which are equal almost everywhere, and px is defined on Y for A. € (0, 1] as
follows: J? -^-> / i f and only if, for each g e F,l{fxe I : | g ( X ) - / O ) l <a)>e.
We showed in Example 2.5 that p is pretopological and first countable, and that px is
convergence in probability. We shall now show that (Y, p) satisfies FT relative to the
r-norm T(\, /x) = max{A. + fi — I, 0}.

Assume ir : J -+ Y,a : J -+ ¥{Y) with a{y) - ^ f(y) for all y e J, and
fj? -^> / . Given a > 0 and 0 < e < TQn, A.) = A + M - 1, choose a and ^
such that 0 < a < /x, 0 < ft < X, and a + ft - 1 > e. Since ^ ^ -^-> / . there
is F e J5" such that, for each g e F, l{q e I : IvHgX'?) ~ / ( i ) l < a / 2 ) > «•
Similarly, a(g) -^-> ^(g) implies there is Ag e a(g) such that, for each h e Ag,
/{»? e / : |A(j?)-tf-(g)(»?)| < a/2} > p. DefineA = U(AS : g e F}\thenA e KO&.
Recall that/(CUD) = l(C)+l(D)-l(CnD) > l(C)+l(D)- 1 for any subsets C, D
of/. Since {r} e I : |ft(»?)-^(g)(»?)| <a/2}n{r1el : |iAU)(r?) - f(rj)\ < a/2} c
{r; € / : |A(»?)-/(i?)| < a}, weseethat/{?j € / : |A(>))-/(»?)I < a} > )8+a- l > €,
for each / i e A . It_follows that ACO^ ->• / in (Y, pmj, and therefore (F, p, T) is a
f.p.c.s.

A probabilistic closure operator cl (see Definition 2.15) will be called an FT-
probabilistic closure operator if it satisfies the following condition (**) relative to a
r-norm T:

(**)ForeachA.,/u e I and A c X, d(cl(A, fi), A.) c cl(A, 7(A., ̂ )).
If cl = clq for some p.c.s. q on X with r-norm 7, the Condition (**) as just defined

coincides with Condition (**) as defined prior to Corollary 3.9.

https://doi.org/10.1017/S1446788700000483 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000483


[20] Probabilistic convergence spaces 419

Our final results establish a bijection between the p.c.s.'s on X satisfying FT and
the FT -probabilistic closure operators on X.

PROPOSITION 3.15. For anyf.p.c.s. (X, q, T), the associated probabilistic closure
operator clq satisfies Condition (**). Furthermore, assume cl is any probabilistic
closure operator satisfying (**) for some t-norm T, and let p be the pretopological
p.c.s. such that (p)k is the pretopology determined by the closure operator clx, where
ch(A) = cl(A, k),for all AC X and k€ I. Then (X, p, T) is af.p.c.s.

PROOF. If (X, q, T) is a f.p.c.s., then clq satisfies (**) by Corollary 3.9. Conversely,
let cl be any probabilistic closure operator satisfying (**) for some f-norm T, and
let p be the pretopological p.c.s. determined by cl as indicated. Then it follows
immediately from Proposition 2.16 that cl = clp, and the conclusion that (X, q, T) is
an f.p.c.s. follows by Corollary 3.9.

COROLLARY 3.16. If (X, q, T) is an f.p.c.s., then the correspondence q -<->• clq

is a bijection between the set of all p.c.s.'s on X satisfying FT and the set of all
FT-probabilistic closure operators on X.

Consider a triple (X, cl, T), where X is a set, T a ;-norm on X, and cl a Fr-closure
operator. Frank [4] and Florescu [3] both identify such a triple as a 'probabilistic
topological space' (although Frank's definition of the closure operator appears to be
more general than ours). We wish to point out, in view of Case 1 of Example 3.12,
that the f.p.c.s. corresponding to such a space need not be topological.
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