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Abstract

A class of evolution equations in divergence form is studied in this paper. Specifically,
we develop conditions under which the spatial divergence term, the flux, corresponds to
the characteristic of a conservation law. The KdV equation is a prominent example of an
equation having a flux term that is also a characteristic for a conservation law. We show that
the flux term must be self-adjoint. General equations for the corresponding conservation
laws and Hamiltonian densities are derived and supplemented with examples.
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1. Introduction

In this paper we study conservation laws for evolution equations of the form

(1.1)

where Q is a smooth function of u = (u, u\, w 2 , . . . , un). Here, uk denotes the fcth

partial derivative of u with respect to x, and u0 = u. In particular, we focus on a

class of evolution equations (1.1) that have the property that the flux term Q is also

the characteristic for a conservation law. A prominent example of such an equation is

the KdV equation

M, + (M2 + 3M 2 ) , = 0. (1.2)

Recall that if a partial differential equation j£"(u, «,, un+\) = 0 has a conservation

law with characteristic Q(u), then there exists a function P(u) = (Pi(u), P2OO) such
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that

G(u)^(u, u,, un+l) = V • P(u), (1.3)

where V denotes (3/3f, 3/3*) = (D,, Dx). Note that Equation (1.3) must be satisfied
for all u. If u is such that ^"(u,ut, wn+1) = 0, then V • P(u) = 0 represents a
conservation law.

Conservation laws are often derived via Noether's theorem, which requires a La-
grangian formulation. Following Anco and Bluman [1,2], and van Brunt et al. [8],
however, this formulation can be bypassed by recognizing that the kernel of the Euler
operator is the space of total divergences. The particulars of this method are discussed
in the above references and in Olver [5].

The class of differential equations (1.1) involves operators that depend on u, and u,
so that the corresponding Euler operator for a function K{\x, u,, un+\) is

Z(A ) — Ku — LJxK.Ul — U,K.Ul + UX1S.U2 — UXAU2 + • • • + (—1) Ux A«B+1.

Here we use the notation D*+1 = DXDX for fc = 0, 1,.. „ and KUt = dK/duk denotes
the partial derivative of K holding u and Uj fixed for j ^ k. Suppose that <2(u) is a
characteristic for a conservation law of j£"(u, u,, un+i) — 0. Then, there is a P such
that Equation (1.3) is satisfied and hence

E(Q^) = E(V -¥) = 0. (1.4)

Equation (1.4) is particularly simple for operators of the form & = u, + DXQ. Since,
for any smooth functions A and B, E(A + B) = E(A) + E(B), Equation (1.4) implies

E(Q(u, + DXQ)) = E(Qu.) + E(QDXQ) = 0;

however,

_ 1 2 _
- ~ 2DxQ

and hence Equation (1.4) reduces to
E(Qu,) = 0. (1.5)

Equation (1.5) is thus a condition on the flux Q for the partial differential equation
(1.1) to have a conservation law with Q as a characteristic. Equations of the form
(1.1) that satisfy (1.5) will be called flux characteristic.

Any first-order equation of the form (1.1) is flux characteristic. In this case

Q = Q(u), and hence E{Qut) = £(V • (R(u), 0)) = 0,

where Ru = Q. A conservation law corresponding to this characteristic is thus

V • (R, Q2/2) = 0.

In contrast, no even-order equation of the form (1.1) can be flux characteristic. This
result is given in Corollary 2.2.
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2. General Results for Higher-Order Equations

In this section we derive results for equations of the form (1.1), where n > 1. The
third-order case (n = 2) is discussed in more detail in the next section. Suppose that
Q = Q(u, « i , . . . , «„), then Equation (1.5) is

E ( Q u t ) = Quu, - D A u , Q U l ) - D,(Q) + D2
x(u,QU2) + ••• + ( - 1 ) " D > , Q J = 0.

(2.1)

For notational simplicity, let

U,k =

with M,0 = u,. Now,

so that Equation (2.1) expands to the form

Ul) = U,QU -J2u«Q»> - E
t=o w *=o

Collecting coefficients of u,k gives

;=o
where

Wj = -QUi + ^2(-DJ+k(J+k)^Q^). (2-2)

If <2 is a characteristic for a conservation law of Equation (1.1), then Equation (1.5)
is satisfied for all u; hence the coefficients of u,k must vanish for k — 0, . . . , n. In
summary, we have the following result.

THEOREM 2.1. Equation (1.1) is flux characteristic if and only if for all u we have
that Q satisfies

Wj=0, j = 0,. . . , n (2.3)

where Wj is defined by Equation (2.2).
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COROLLARY 2.2. Equation (1.1) is flux characteristic only ifn is even. Hence, only
equations of odd order can be flux characteristic.

PROOF. This result follows immediately from (2.3). Suppose that n is odd and that
QUn ,£ 0. Putting j — n in (2.3) gives

which implies QUn = 0. We thus conclude that n must be even and hence partial
differential equations of the form (1.1) that are flux characteristic must be of odd
order. •

COROLLARY 2.3. Suppose that Equation (1.1) is flux characteristic and n > 2.
Then Q must be of the form

where a — a { u , u \ , ..., un-2)> <5 = <$(", U\, ..., un_2),

P = \ u ^ and (2.4)

y = ^ (Dxa - aUr.2«n_,). (2.5)

PROOF. The form of Q follows from (2.3) with j = n - 1, noting that n must be
even. Specifically, the relation

Wn., = -2Qu^+nDxQUn=0, (2.6)

must hold for all u and hence the partial derivatives of Wn_i with respect to the ujt

j = 0 , . . . , n + 1, must vanish. Expanding the total derivative, the above equation is

22,,., =n
k=0

Now, differentiating Wn_x with respect to un+i gives

QunUn = 0 , (2.7)

and differentiating Wn_i with respect to un gives .

-2G«.-,«, + n I J2 Qu,u,utuk+l + &„.,„. I = 0,
\*=o /
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and Equation (2.7) thus implies

(«-2)Q, . . I , . = 0 .

Since n > 2, the above expression gives

G«..,«. = 0- (2-8)
Differentiating Wn_x with respect to un_x and using Equations (2.7) and (2.8) we have

2G«..,«.-=nG«,.l«.. (2-9)
and differentiating both sides of the above expression with respect to un_\ yields

where Equation (2.8) has been used. We thus have

G..-,«.-,«.-. = 0. (2.10)

Equations (2.7), (2.8) and (2.10) imply that Q must be of the form

where a, ft, y and 8 are functions of w, u\,..., un_2- Using the above expression
for Q, Equation (2.9) implies Equation (2.4) and Equation (2.5) comes directly from
Equation (2.6). •

Recall that the Frechet derivative of Q = Q(u, u\, ... ,un) acting on a function

F = F(u,u , MB) is

k=0

and the adjoint is

k=0

The Euler operator can be expressed in terms of the adjoints of Frechet derivatives,
for example,

A Frechet derivative DQ is self-adjoint if DQ(F) = D*Q{F) for any smooth function
F = F(u, uu ..., un). The next theorem shows that flux characteristic equations are
characterized by self-adjoint Frechet derivatives.

THEOREM 2.4. Equation (1.1) is flux characteristic if and only if

DQ = D*.
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PROOF. For any smooth function F = F(u, u\, ..., un),

hence

j=0

where VV; is defined by Equation (2.2). If D e is self-adjoint, then the above expression
must vanish for all F; hence Wj = 0 for all j = 0, . . . , n. Theorem 2.1 thus implies
that Equation (1.1) is flux characteristic. If Equation (1.1) is flux characteristic
then Theorem 2.1 implies that Wj = 0 for all j = 0, . . . , n and hence DQ is self-
adjoint. •

We note here that self-adjoint conservation law characteristics are generic to evo-

lution equations. In other words, if Q is a characteristic of a conservation law for an

equation of the form

M, + G(u, Mi , . . . , un) = 0,

then DQ must be self-adjoint. The expression

E (Q(u, + G)) = E(Qut) + E(QG) = 0,

must hold for all M, and t derivatives occur only in the term E(Qu,). Every term of

E(Qu,) has a t derivative, and this leads to

which in turn produces (2.3).

Equation (1.1) has a Hamiltonian density if there exists a function Jt? such that

Q. (2.11)

Equation (2.11) does not uniquely define Jf because

for any smooth function F.

COROLLARY 2.5. Equation (1.1) is flux characteristic if and only if there exists a

function Jf? such that E(Jf) = Q. The function Jf can be constructed using the

homotopy formula

(2.12)\
Jo

where Q(ku) = Q(Xu, Xuu ..., kun).
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PROOF. The corollary follows immediately from Theorem 2.4 and the Helmholz
condition (see, for example, Olver, op. cit., page 355). Specifically, Theorem 2.4
shows that (1.1) is flux characteristic if and only if DQ is self-adjoint. The Helmholz
condition asserts that there exists a function Jf? such that E(Jff') = Q if and only if
DQ is self-adjoint. The reader is directed to Olver loc. cit. for a proof of the homotopy
formula. •

The above corollary shows that flux characteristic equations are characterized by
the existence of a Hamiltonian density. The equation

II, + (E{JT))X = 0

must have a conservation law with characteristic E(Jff) for any smooth function

Third and higher-order equations that are flux characteristic have at least three
distinct conservation law characteristics.

COROLLARY 2.6. Suppose that Equation (1.1) is flux characteristic. Then Qo = 1,
Q] = u and Q3 = Q are characteristics for conservation laws.

PROOF. Since Equation (1.1) is in divergence form, it is clear that Qo = 1 is
a characteristic for a conservation law, and Q$ = Q must be a characteristic of a
conservation law from the definition of a flux characteristic equation. The only result
to establish is that Qx = u is also a characteristic, and this follows immediately from
the self-adjointness of Q. Specifically, it is evident that u is self-adjoint and that
E(uu,) = 0. Now,

E{uDxQ) = E(Dx(uQ) - 11,g) = -E{uxQ) = - (DQ

= -(DxQ-DxQ) = 0;

hence Q\ — u is also a characteristic for a conservation law. •

3. Third-Order Equations

In this section we focus on conservation laws for equations of the form (1.1), where

g = g ( « , M l , « 2 ) .

Note that Corollary 2.3 does not include this case; however, it is straightforward
to glean the general form of Q from (2.3). If Equation (1.1) is flux characteristic,
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then (2.3) must be satisfied for j = 0,1,2. The proof of Corollary 2.2 shows that
W2 = 0. The remaining equations are

Wi = QUl-Dx(QUl) = 0 and (3.1)

W0 = Dx(QUl-Dx(Qu2))=0.

Evidently, Wo = 0 if W\ = 0 so that Equation (3.1) is the only independent equation.
Expanded, Equation (3.1) is

G«, - Quuiu\ - Quiu2u2 - QulU2ui = 0. (3.2)

Now, Q does not depend on w3, and Equation (3.2) must be satisfied for all u. We
thus conclude that the coefficient of M3 must vanish and hence Q is of the form

Q(u, uu u2) = A{u, w,)«2 + B(u, «i) . (3.3)

Substituting the above expression for Q into Equation (3.2) yields the condition

Bul=Auui. (3.4)

Any smooth function Q of the form (3.3) that satisfies (3.4) also satisfies Equation
(1.5) and hence the corresponding equation is flux characteristic. Equation (3.4) is
evidently the condition for DQ to be self-adjoint. Note that if Q satisfies Equation
(3.4), then there is a function <t> such that

where <t>Ul = Aux and <!>„ = B. It follows from Equation (3.4) that

uu (3.5)= I

Corollary 2.5 shows that if the equation is flux characteristic, then there is a
function 3ft* such that E(J$?) = Q. Equation (2.12) provides a homotopy formula
for Jf. For the third-order case, however, (2.3) is tractable and a Hamiltonian density
can be constructed directly. Once Jf is determined, a conservation law corresponding
to the characteristic Q can be constructed explicitly without reference to the homotopy
formula for a conservation law (see, for example, Anco and Bluman [1,2] for the
homotopy formula).

If Equation (2.11) is satisfied for all u, then

— DxJi?Ul + J$?u = - ^ l U , « 2 ~ ^uuiu\ + $?* = Aiii + B,

so that any function Jf(u,u\) that satisfies the equations

A = - j e u , and B = J%
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is a Hamiltonian density for the third-order case of Equation (1.1). A solution to these
equations is given by

f f
Jr = I Bdu — U\ I Adux + K(u\) + DxF{u), (3.6)

J J
w h e r e F is a n a rb i t r a ry s m o o t h f u n c t i o n a n d KUl = uxA — f BUxdu. N o w ,

u, = L\n)ut = \J?iu — L)XJZUXJ U, = <7UuUt + JzUlUt\ — Vx(u,JzUl) ^ V • K,

where R = (J$f, —u,JifUl). A conservation law corresponding to Q is thus
(FA.&W \ = ^ ( ^ ^

Corollary 2.6 also shows that u is a characteristic for a conservation law. The conser-
vation law corresponding to this characteristic is

) (3.8)

where <t> is given by Equation (3.5). The equation is in divergence form and hence

V • («, Q) (3.9)

is also a conservation law. In summary, we have the following result.

THEOREM 3.1. A third-order equation of the form (1.1) is flux characteristic if and
only if Q is of the form (3.3), where A and B satisfy Equation (3.4). In this case a
conservation law corresponding to Q is given by Equation (3.7), where J'iC is defined
by Equation (3.6). Conservation laws are also given by Equations (3.8) and (3.9).

EXAMPLE 1. The KdV equation (1.2) has a flux of the form

Evidently Equation (3.4) is satisfied and hence the equation is flux characteristic.
Equation (3.6) gives a Hamiltonian density

The homotopy formula (2.12) gives

r f
= / uQ(ku)dk = u I

Jo Jo
= -£>,(««,) - ^ + u\

2
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so that the densities are equivalent up to a total derivative. Equation (3.7) yields the
conservation law

We note that the u, can be eliminated at this stage using the evolution equation itself,
that is, u, = -Dx(u2 + 3M2).

A close relation to the KdV equation is the KdVB equation

u, + (/XM2 — vui+ u2)x = 0,

where /J. and v are constants. Here, A = /x and B = —vu\ + u2, so that Equation
(3.4) is satisfied only if v = 0.

EXAMPLE 2. The equation studied by Dey [3,4] in divergence form is

un + l u2n+\

2 + fl + fl*

where a, b and c are constants, c ^ 0 and n is a positive integer. Here, Q = Au2 + B,
where A = c, and

B = a - + ab
U2n+i

n + l 2n + l

Equation (3.4) is satisfied and hence the equation is flux characteristic. A Hamiltonian
density is

cu] un+2 u2n+l

Jf = -—i + fl- — -+ab-2 (n + l)(n + 2) (2n + l)(2/i+ 2)'

and the corresponding conservation law is

EXAMPLE 3. Petersson et al. [6] considered a third-order equation of the form

u, + «rw3 + nu\u2 + mu] + ru2 + pu2 + qu\ + s = 0,

where n, m, r, p, q and 5 are functions of «, and r is a real constant. For the cases
T = 0 and r = 3, they studied the functional forms of n, m, r, pt q and s such that
the equation is integrable in the sense that it has an infinite number of Lie-Backlund
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symmetries. The above equation can be put into divergence form only if J = constant,
/•'(/<) = p(u) and

n'(u) - 2m(u) = T(T - l)Hr"2.

If, in addition s = 0, the equation can be written in the form (1.1), where

and / ' (« ) = q{u). Equation (3.4) shows that the p.d.e. is flux characteristic if/• = 0

and n(u) = 2 T « T ~ ' . The class of equations that are flux characteristic is thus

u, + uTu3 + 2ntr~hi]U2 H ur~2u] + qux = 0.

The Hamiltonian density is

and the conservation law corresponding to the characteristic Q is

v.

4. Fifth-Order Equations

We now look at fifth-order equations of the form (1.1) that are flux characteristic.
Corollary 2.3 shows that Q must be of the form

Q = auA + Pu\ + yu3 + S,

where a, /3, y and S are functions of u, u\ and «2. and fl and y are given by Equations

(2.4) and (2.5), that is,

fi = aU2 and y = 2 (auw, + aUlu2).

Corollary 2.5 implies that Q has a Hamiltonian density J f . Once a Hamiltonian
density is determined, the corresponding conservation law is

V • (H, DX (u,JfU2) -2(unJfU2) - u,JfUl +

Equations such as the fifth-order KdV equation

M, + (II4 + 10MM2 + 5u] + 10u3)( = 0, (4.2)
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the Kuperschmidt equation

«, - f«4 + \u2u + ju] + - | M M = 0 (4.3)

and the Caudrey-Dodd-Gibbon-Sawada-Kotera equation

u, + («4 + 30MM2 + 60M3), = 0, (4.4)

are of the form

u, + (au4 + F(u,uuu2))x = 0, (4.5)

where a is a constant. The test for self-adjointness and the calculation of the Hamil-
tonian density are particularly tractable for this form. Briefly, if Q = R + S is
self-adjoint and R is self adjoint, then

£•((/? + S)u.) = E(Ru,) + E(Su,) = E(Su,) = 0;

hence 5 must also be self-adjoint. Now, R = w4 is self-adjoint; hence, if Equation
(4.5) is flux characteristic, F must be self-adjoint. In essence, if Equation (4.5) is flux
characteristic then it must be of the form

u, + (a«4 + Au2 + B)x = 0, (4.6)

where A and B satisfy Equation (3.4). Evidently, if J^ is a Hamiltonian density for
the equation

u, + (Au2 + B)x = 0,

then a Hamiltonian density for Equation (4.6) is
u2

EXAMPLE 4. For the KdV equation (4.2), A = 10u and B = 5u]+ 10M3. Equation
(3.4) is satisfied and hence the fifth-order KdV equation is flux characteristic. A
Hamiltonian density is given by

* = £ - 5u]u + 5-u\

Equation (4.1) gives the conservation law

V • (Jf, X) = 0,

where, for

0 = w4+ \0uu2 + 5u2+ 10M3,

Q2

X = M,M3 — M,!M2 + 10MM,M! + — .
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For the Kuperschmidt equation (4.3), A = 5w/2 and B = \5u\/% + 5u3/\2. Here,
Equation (3.4) is not satisfied and hence the Kuperschmidt equation is not flux char-
acteristic. It is straightforward to see that Equation (4.4) is also not flux characteristic.

EXAMPLE 5. Tan el al. [7] studied the general fifth-order KdV equation

u, + M5 + M3 + (N(u))x = 0,

where, for constants ak, k = 0, 1, 2, 3,

= a0u
2 + a]uu2 + a2u]

The above equation can be written as

u, + (w4 + Au2 + B)x=0,

where A = a,M + 1 and B = aQu1 + a2u\ + aiu
i. The equation is flux characteristic if

A and B satisfy Equation (3.4), and this leads to the condition ci\ = 2a2 in agreement
with Tan.. A Hamiltonian density is given by

2 + ao"3~ ~ a x + ai~4 ~ 2 '

A conservation law corresponding to the characteristic Q = M4 + Au2 + B is

V • (Jff, X) = 0,

where

Q1

X = Dx(u,u2) - 2(u,iu2) + M,(2a2MM, + M,) + —.
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