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Abstract

We consider the random series–parallel graph introduced by Hambly and Jordan (2004
Adv. Appl. Probab. 36, 824–838), which is a hierarchical graph with a parameter
p ∈ [0, 1]. The graph is built recursively: at each step, every edge in the graph is either
replaced with probability p by a series of two edges, or with probability 1 − p by two par-
allel edges, and the replacements are independent of each other and of everything up to
then. At the nth step of the recursive procedure, the distance between the extremal points
on the graph is denoted by Dn(p). It is known that Dn(p) possesses a phase transition at
p = pc := 1

2 ; more precisely, 1
n log E[Dn(p)] → α(p) when n → ∞, with α(p)> 0 for

p> pc and α(p) = 0 for p ≤ pc. We study the exponent α(p) in the slightly supercritical
regime p = pc + ε. Our main result says that as ε→ 0+, α(pc + ε) behaves like

√
ζ (2) ε,

where ζ (2) := π2

6 .
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1. Introduction

1.1. The model and the main result

Hierarchical lattices were studied in the physics literature [5, 7, 13, 24] as lattices tailored
for real-space renormalization techniques to become exact; in the absence of disorder, they
allow one to calculate exactly critical points and exponents, by analysing the neighbourhood of
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FIGURE 1. At each step of the construction of the hierarchical lattice, each edge of the lattice is replaced
by two edges in series with probability p or by two edges in parallel with probability 1 − p. The left
shows graph Graph0(p) and the right shows the two possibilities for the graph Graph1(p).

FIGURE 2. An example of the first four graphs in the sequence (Graphn(p))n≥0.

fixed points of some dynamical systems. In the disordered case, like in the problem of directed
polymers or interfaces in a random medium [6, 8, 11] as well as their simplified versions [9,
16], disordered spin models [22], or percolation clusters [15], the hierarchical structure allows
one to formulate the problem as a recursion for a probability distribution. Despite this simple
and elegant formulation, these recursions are often hard to analyse, especially near transition
points. This is why most models with disorder on hierarchical lattices remain unsolved.

The series–parallel random graph, investigated by Hambly and Jordan [14], is an example
of a hierarchical lattice with disorder. The original motivation was to view this graph as a
random environment which can be studied as a dynamical system on probability measures; see
the introduction in [14] for more details.

To define the series–parallel random graph, we fix a parameter p ∈ [0, 1], and consider two
vertices denoted by a and z, respectively. The graph Graph0(p) is simply composed of ver-
tices a and z, as well as a (non-oriented) edge connecting a and z. We now define Graphn(p),
n ∈N := {0, 1, 2, . . .}, recursively as follows: Graphn+1(p) is obtained by replacing indepen-
dently each edge of Graphn(p), either by two edges in series with probability p, or by two
parallel edges with probability 1 − p. See Figure 1.

The graph Graphn(p) is called the series–parallel random graph of order n. See Figure 2
for an example.

Let Dn(p) denote the graph distance between vertices a and z on Graphn(p), i.e. the
minimal number of edges necessary to connect a and z on Graphn(p). Since n 	→ Dn(p) is
non-decreasing, we have Dn(p) ↑ D∞(p) := supk≥1 Dk(p) (which may be infinite). It is known
[14] that D∞(p)<∞ almost surely (a.s.) for p ∈ [0, 1

2 ), and D∞(p) = ∞ a.s. for p ∈ [ 1
2 , 1].

As such, there is a phase transition for Dn(p) at p = pc := 1
2 . In this article we focus on the

slightly supercritical case: p = pc + ε when ε > 0 is sufficiently small.
Let us fix p ∈ [0, 1] for the time being. There is a simple recursive formula for the law of

Dn(p). In fact, D0(p) = 1; for n ∈N, by considering the two edges of Graph1(p), we have

Dn+1(p)
law= (Dn(p) + D̂n(p))En + min (Dn(p), D̂n(p))(1 − En), (1.1)
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where “
law= ” denotes identity is distribution, D̂n(p) is an independent copy of Dn(p), En is

a Bernoulli(p) random variable P(En = 1) = p = 1 − P(En = 0), and Dn(p), D̂n(p), and En are
assumed to be independent. Equation (1.1) defines a random iterative system. There is an
important literature on random iteration functions, see for example [12, 17, 19, 23, 25].
Equation (1.1) is also an interesting addition to the list of recursive distributional equations
analyzed in the seminal paper [3].

Let us briefly explain that the limit limn→∞ 1
n log E[Dn(p)] =: α(p) exists. To this end, we

fix m, n ∈N. By definition, at step n, there exists a certain path �n on Graphn(p) of length
Dn(p) (i.e. number of edges) connecting vertices a and z. After m additional steps, edges in �n

are transformed into independent copies of Graphm(p). Accordingly,

Dn+m(p) ≤
Dn∑
i=1

�i,

where, given Dn(p), the �i are (conditionally) independent having the same law as Dm(p).
Taking expectation, we get that E[Dn+m(p)] ≤E[Dn(p)] E[Dm(p)]. Since Dn(p) ≤ 2n and by
the Fekete lemma on subadditive sequences, we obtain that

α(p) := lim
n→∞

1

n
log E[Dn(p)] = inf

k≥1

1

k
log E[Dk(p)] ∈ [0, log 2], (1.2)

exists. An easy coupling also implies that p 	→ α(p) is non-decreasing on [0, 1]. The main
result of the paper concerns the behaviour of the exponent α(pc + ε), when ε > 0 in the neigh-
bourhood of 0. Let us mention here that the results stated in this article concern the law of
the Dn(p) only and that they hold true for any sequence of random variables satisfying the
distributional equation (1.1).

Theorem 1. Let (Dn(p))n∈N satisfy (1.1) with D0(p) = 1. Let α(·) be as in (1.2). Then

lim
ε→0+

α
(

1
2 + ε

)
√
ε

= π√
6

. (1.3)

Proof. See Sections 3 and 4. �

We have not been able to prove a convergence of 1
n log Dn when p ∈

(
1
2 , 1

)
, However, we

prove the following theorem which provides a partial answer as p ↓ pc = 1
2 .

Theorem 2. Let (Dn(p))n∈N satisfy (1.1) with D0(p) = 1. Then there exists a function
α̃ : [ 1

2 , 1] → [0, log 2] such that limε→0+ α̃(pc + ε)/
√
ε= π/

√
6 and P-a.s.

α̃(pc + ε) ≤ lim inf
n→∞

1

n
log Dn(pc + ε) ≤ lim sup

n→∞
1

n
log Dn(pc + ε) ≤ α(pc + ε). (1.4)

Thus, P-a.s.

lim
ε→0+

1√
ε

lim inf
n→∞

1

n
log Dn(p) = lim

ε→0+
1√
ε

lim sup
n→∞

1

n
log Dn(p) = π√

6
. (1.5)

Proof. See Section 5. �
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1.2. Existing results and other problems

Considering Graphn(p) as an electric network (as in [10] or [20]) and assigning a unit
resistance to each edge, the effective resistance Rn(p) of Graphn(p) from a to z is such that
R0(p) = 1 and that for each n ≥ 0,

P(Rn+1(p) = Rn(p) + R̂n(p)) = p = 1 − P

(
1

Rn+1(p)
= 1

Rn(p)
+ 1

R̂n(p)

)
,

where R̂n(p) denotes an independent copy of Rn(p). It is known [14] that E[Rn(p)] → ∞ for
p> 1

2 and E[Rn(p)] → 0 for p< 1
2 . As such, the effective resistance has a phase transition at

p = 1
2 , as for the graph distance (Hambly and Jordan [14] proved that p = 1

2 is also critical for
the Cheeger constant of Graphn(p), though we do not study the resistance nor the Cheeger
constant in this article). On the other hand, it is a straightforward observation that at p = pc,
Rn(pc) has the same distribution as 1/Rn(pc). Hambly and Jordan [14] predicted that for all
y ≥ x> 0,

P
(
Rn(pc) ∈ [x, y]

)→ 0, n → ∞. (1.6)

Even though (1.6) looks quite plausible, no rigorous proof has been made available yet: it
remains an open problem. Let us also mention that a more quantitative prediction has been
made by Addario-Berry et al. [2] (see also [1]): at p = pc, | log Rn(pc)|

c n1/3 would converge weakly
to a (shifted) beta distribution, with an appropriate but unknown constant c ∈ (0, ∞).

For all p ∈ [0, 1], Hambly and Jordan [14] also conjectured the existence of a constant
θ (p) ∈R such that 1

n log Rn(p) → θ (p) in probability.
Hambly and Jordan [14] also studied the first passage percolation problem on Graphn(p),

which amounts to study the same recursion (1.1) as for the graph distance Dn(p), but with a
more general initial distribution instead of D0(p) = 1. As far as the distance Dn(p) is concerned,
we mention that weak convergence for Dn(p) at criticality p = pc := 1

2 has been investigated
by Auffinger and Cable [4]. Let us also mention that the hierarchical structure in Graphn(p)
turned out to be very convenient for study of the ‘ant problem’ for reinforcement [18].

The rest of the article is structured as follows. In Section 2, we present some heuristics lead-
ing to Theorem 1, and give an outline of the proof. The lower and upper bounds in Theorem 1
are proved in Sections 3 and 4, respectively.

2. Heuristics and Description of the Approach

This aim of this short section is two-fold: the first part describes some heuristics about what
led us to the conclusion in Theorem 1 and the second part provides an outline of the proof of
Theorem 1.

2.1. Heuristics for Theorem 1

Let p ∈ (0, 1). Write

an(k) := P(Dn = k), n ≥ 0, k ≥ 1.

By (1.1), we get, for k ≥ 1,

an+1(k) = p
∑

1≤i<k

an(i)an(k − i) + (1 − p)

(
2an(k)

(
1 −

∑
1≤i<k

an(i)

)
− an(k)2

)
. (2.1)
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Let p = pc + ε= 1
2 + ε and assume that for large n and for k such that log k = O(

√
n) that an(k)

takes the following scaling form:

an(k) = 1

k
√

n
f

(
n,

log k√
n

)
, (2.2)

with an appropriate bivariate function (t, x) 	→ f (t, x). This scaling was already used by
Auffinger and Cable [4] in the case p = pc. Using the fact that

1

i(k − i)
= 1

k

(
1

i
+ 1

k − i

)
,

we show that (2.1) implies heuristically the following equation (the details of the derivation of
(2.3) from (2.1) are given in Appendix A)

t
∂f

∂t
= x

2

∂f

∂x
+ f

2
− Kf

∂f

∂x
+ εt

(
− 2f + 4f

∫ x

0
f (t, y) dy

)
, (2.3)

where

K :=
∫ 1

0

log
(

1
1−u

)
u

du = π2

6
.

For ε= 0 one can solve (2.3) exactly for an arbitrary initial condition, F0(x) ≡ f (t0, x) at
time t0 > 0. It is in fact easy to write the solution in a parametric form at arbitrary time t ≥ t0:

f (t, x) =
√

t

t0
F0(y); x = K

(√
t

t0
−
√

t0
t

)
F0(y) + y

√
t0
t

. (2.4)

If one writes

dx =
[

K

(√
t

t0
−
√

t0
t

)
F′

0(y) +
√

t0
t

]
dy, (2.5)

and if F0(y) vanishes at the boundaries, then one can see that∫
f (t, x) dx =

∫
F0(y) dy, (2.6)

so that the normalization of F0 is conserved. However, after a finite time t∗ > t0, given by the
first time for which dx/dy as in (2.5) vanishes for some y i.e.

t∗ = t0

[
1 − 1

K
max

y

1

F′
0(y)

]
,

the solution F of (2.4) becomes multi-valued (see Figure 3 below). Then the solution is still
given by (2.4) for some ranges of x with one of several shocks as on the right of Figure 3. In
the example of Figure 3, if fa(t, x)> fb(t, x)> fc(t, x) are the three expressions of f (t, x) given
by the parametric form (2.4) in the region (x1(t), x2(t)) where f (t, x) is multi-valued, the true
solution is

f (t, x) =
⎧⎨⎩fa(t, x) for x1 < x< x∗,

fc(t, x) for x∗ < x< x2,

https://doi.org/10.1017/apr.2025.10023 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.10023


6 X. CHEN ET AL.

FIGURE 3. On the left, solution F(t, x) using the parametric form (2.4) at times t0, 3t0, 5t0, and 7t0 for
F0(z) = z e−z. The same with the shock on the right.

with x∗(t) determined by∫ x∗(t)

x1(t)
[fa(t, x) − fb(t, x)] dx =

∫ x2(t)

x∗(t)
[fb(t, x) − fc(t, x)] dx.

With this choice of x∗(t) the normalization (2.6) of f is preserved.
In the long time limit, in that way from (2.4) one obtains that

f (t, x) =
⎧⎨⎩

x
K for 0< x< x∗(∞),

0 for x ≥ x∗(∞),
with x∗(∞) := √

2K. (2.7)

For ε= 0, this is in agreement with the description in [4].
For ε �= 0, we did not succeed in solving (2.3) for an arbitrary initial condition. However, if

one starts at t = 0 with the ε= 0 solution (2.7), one can solve (2.3) explicitly:

f (t, x) = 1

e2εt − 1

√
εt

K
sinh

(
2x

√
εt

K

)
. (2.8)

Since
∑∞

k=1 an(k) = 1 for all n, the function x 	→ f (t, x) is a probability density function for all
t. By analogy with the case ε= 0, we assume that (2.8) is valid only for x ∈ [0, x∗(t)], where
x∗(t) is such that ∫ x∗(t)

0

1

e2εt − 1

√
εt

K
sinh

(
2x

√
εt

K

)
dx = 1

and we take f (t, x) = 0 for x> x∗(t). When t → ∞, we have

x∗(t) ≈ √
Kεt.

This implies that for n → ∞,

log E[Dn(pc + ε)] ≈ √
Kεn.

Consequently,

α(pc + ε) := lim
n→∞

1

n
log E[Dn(pc + ε)] ≈ √

Kε, ε→ 0+,

which leads to the statement of Theorem 1.
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2.2. Outline of the proof of Theorem 1

It does not seem obvious how to turn the heuristics described in Section 2.1 directly into a
rigorous argument. Our proof goes along different lines, even though the ideas are guided by
the heuristics.

To prove Theorem 1, we study the following dynamical system on the set M1 of all proba-
bility measures on R

∗+ := (0, ∞): we use the notation a ∧ b := min{a, b}. Let p ∈ [0, 1]; for
all μ ∈ M1, we define the probability measure 
p(μ) as follows:


p(μ) is the law of (X + X̂)E + (X ∧ X̂)(1 − E), (2.9)

where X, X̂, and E are independent, X and X̂ have law μ, and E is a Bernoulli random variable
with parameter p (all the random variables mentioned in this article are defined on the same
probability space (�,F, P) that is assumed to be sufficiently rich to carry as many independent
random variables as needed). We observe that if μn stands for the law of Dn(p), then μn+1 =

p(μn) and μ0 = δ1.

Let us briefly mention two basic properties of 
p. First, 
p is homogeneous; namely,

for all θ ∈R
∗+, for all μ ∈ M1, 
p(Mθ (μ)) = Mθ (
p(μ)), (2.10)

where, for all θ ∈R
∗+ and for any random variable X with law μ ∈ M1, Mθ (μ) denotes the law

of θX.
We next observe that 
p preserves the stochastic order

st≤ on M1 that is defined as fol-

lows: μ
st≤ν if μ((x,∞)) ≤ ν((x,∞)) for all x ∈R

∗+ (which is equivalent to the existence of two
random variables X and Y whose laws are respectively μ and ν and such that X ≤ Y , P-a.s.).
Indeed, for all μ, ν ∈ M1, (

μ
st≤ ν)=⇒ (


p(μ)
st≤
p(ν)

)
. (2.11)

In the rest of the article, it will sometimes be convenient to abuse slightly the notation

by writing X
st≤Y for any pair of random variables X and Y to mean that the law of X is

stochastically less than that of Y .

2.2.1. Strategy for the lower bound in Theorem 1. We fix p = 1
2 + ε and denote by μn the law

of Dn(p) as defined in (1.1). As already mentioned, μn+1 =
p(μn) for all integers n ≥ 0 and
μ0 = δ1. Let θ , β ∈R

∗+, and n0 ∈N
∗. Suppose that we are able to find an M1-valued sequence

(νn)n≥n0 such that for n ≥ n0,

Mθ (νn0 )
st≤μn0 and Mβ (νn+1)

st≤
p(νn). (2.12)

We call the νn the lower bound laws. For all integers n ≥ n0, let Yn and Un be random vari-

ables with respective laws νn and 
p(νn). Then (2.12) can be rewritten as θYn0

st≤Dn0 (p) and

βYn+1
st≤Un. By (2.10) and (2.11), for all n ≥ n0,

Mθβn−n0 (νn)
st≤μn;

in other words, θβn−n0 Yn
st≤ Dn(p), which, in turn, implies that

E[Dn(p)] ≥ θβn−n0E[Yn], n ≥ n0. (2.13)
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Here, β and E[Yn] turn out to be sufficiently explicit in terms of n and ε to provide a good lower
bound for E[Dn(p)] and, thus, for α( 1

2 + ε) := limn→∞ 1
n log E[Dn(p)]. To find appropriate

lower bound laws νn (i.e. laws such that (2.12) holds), we are guided by the heuristics described
in Section 2.1.

Remark 1. In the proof of the lower bound in Theorem 1 in Section 3, we need to fix several
parameters in (the law of) the random variable Yn introduced in the strategy in the previous
paragraph. Even though we are guided by the heuristics in Section 2.1, the choice of these
parameters is not obvious, and is in fact rather delicate, resulting from a painful procedure of
adjustment. A similar remark applies to the proof of the upper bound in Theorem 1.

2.2.2. Strategy for the upper bound in Theorem 1. The strategy is identical, except that the
values of the parameters n0, β and θ , are different: suppose we are able to find an M1-valued
sequence (ν′

n)n≥n0 such that for n ≥ n0,

μn0

st≤ Mθ (ν′
n0

) and 
p(ν′
n)

st≤ Mβ (ν′
n+1); (2.14)

we call ν′
n the upper bound laws. For all integer n ≥ n0, let Zn and Vn be random variables with

respective laws ν′
n and 
p(ν′

n). By (2.10) and (2.11), for all n ≥ n0,

μn
st≤ Mθβn−n0 (ν′

n); (2.15)

i.e. Dn(p)
st≤ θβn−n0 Zn, which, in turn, implies that

E[Dn(p)] ≤ θβn−n0E[Zn].

As in the lower bound, β and E[Zn] will be sufficiently explicit in terms of n and ε to provide
an upper bound for E[Dn(p)] and, thus, for α( 1

2 + ε). To find appropriate upper bound laws ν′
n

(i.e. laws such that (2.14) holds), again we follow the heuristics described in Section 2.1.

3. Proof of Theorem 1: The Lower Bound

3.1 Definition of the lower bound laws

In this section we construct lower bound laws, i.e. an M1-valued sequence (νn)n≥1
satisfying (2.12).

First note that the polynomial function P(η) = (1 − η)(1 + η)2 is such that P(0) = 1 and that
P′(0) = 1> 0. Thus, there exists η0 ∈ (0, 1) such that

∀η ∈ (0, η0), (1 − η)(1 + η)2 > 1, η̃ := 12(1 + η)2η

π2
< 1. (3.1)

We recall that

ζ (2) =
∑
n≥1

1

n2
= π2

6
.

Let ε ∈ (0, 1
2 ). We set, for n ∈N,

δ = 2√
ζ (2)

(1 + η)
√
ε and an = 1

4

(
1 − 2ε+ ηδ2)n = 1

4

(
1 − 2(1 − η̃)ε

)n. (3.2)
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The following increasing function ϕδ : [1, ∞) →R+ plays a key role in the rest of the
paper:

ϕδ(x) := cosh (δ log x) − 1 = 1

2

(
xδ + x−δ)− 1, x ∈ [1,∞). (3.3)

In the following lemma, we introduce the laws νn and provide basic properties of these laws.
They are shown to satisfy (2.12) in Lemma 2, the proof of which is the main technical step
of the proof of the lower bound in Theorem 1. Let us mention that the notation Oη,ε(an)
denotes an expression which, for fixed (η, ε) is O(an). The remark also applies to forthcoming
expressions such as Oη(·) or Oδ(·).
Lemma 1. Let η ∈ (0, η0) and let ε ∈

(
0, 1

2

)
. Let δ and (an)n∈N be defined in (3.2). Recall

the function ϕδ from (3.3). For all n ∈N, let λn ∈ (1, ∞) be the unique real number such that
2anϕδ(λn) = 1 and let νn = νn(η, ε) be the unique element of M1 such that

νn((0, 1]) = 0 and νn((0, x]) = 2anϕδ(x ∧ λn), x ∈ [1,∞). (3.4)

Then the following hold.

(i) We have λn = a−1/δ
n

(
1 + Oη,ε(an)

)
as n → ∞.

(ii) We have limn→∞ 2anϕδ(η1/δλn) = η.

(iii) There exists ε1(η) ∈
(

0, 1
2

)
such that for all ε ∈ (0, ε1(η)) there is n1(η, ε) ∈N satisfying

λn+1 − λn + 1 ≤ δλn for all n ≥ n1(η, ε).

(iv) Let Yn be a random variable with law νn. Then

E[Yn] = δan

(
λ1+δ

n − 1

1 + δ
− λ1−δ

n − 1

1 − δ

)
. (3.5)

Furthermore,

1√
ε

lim
n→∞

1

n
log E[Yn] = − log (1 − 2(1 − η̃)ε)

δ
√
ε

−−−−→
ε→0+

√
ζ (2)

1 − η̃

1 + η
−−−−→
η→0+

√
ζ (2). (3.6)

Proof. Recall that the inverse on R+ of cosh is the function arcosh(y) = log (y +√
y2 − 1),

y ∈ [1,∞) and that arcosh( y
2 ) = log y − y−2 + O(y−4) as y → ∞. Thus, we get

δ log λn = arcosh

(
1 + 1

2an

)
= log

(
1 + 2an

an

)
− a2

n

(1 + 2an)2
+ O

(
a4

n

(1 + 2an)4

)
= log

1

an
+ Oη,ε(an),

which immediately implies (i). Since ϕδ(x) ∼x→∞ 1
2 xδ , we get 2anϕδ(η1/δλn) ∼n→∞ ηanλ

δ
n

which tends to η as n → ∞. This proves (ii).

Let us prove (iii). Recall here that η ∈ (0, η0) is fixed. To simply notation, we set ρ :=
(1 − 2(1 − η̃)ε)−1 > 1, so that an = 1

4ρ
−n. It follows from (i) that

λn+1 − λn = (ρ1/δ − 1)λn(1 + Oη,ε(an)), n → ∞. (3.7)
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We also set c = 2ζ (2)−1/2; thus, δ = c(1 + η)
√
ε. We observe that

log ρ

δ
= 2(1 − η̃)ε+ Oη(ε2)

c(1 + η)
√
ε

= 2(1 − η̃)

c2(1 + η)2
δ + Oη(ε3/2), ε→ 0+. (3.8)

Therefore,

lim
ε→0+ δ

−1(ρ1/δ − 1) = 2(1 − η̃)

c2(1 + η)2
<

2

c2
= π2

12
< 1

and there exists ε1(η) ∈ (0, 1/2) such that for all ε ∈ (0, ε1(η)(η)), ρ1/δ − 1< δ, which,
combined with (3.7), yields (iii).

Let us prove (iv). Observe that

E[Yn] =
∫ λn

1
2anϕ

′
δ(x)x dx = 2anδ

∫ λn

1
sinh (δ log x) dx

= 2anδ

∫ log λn

0
sinh (δu)eu du = anδ

∫ log λn

0

(
eu(1+δ) − eu(1−δ)) du,

which implies (3.5). By (i), we thus get E[Yn] ∼n→∞ (δ/1 + δ)a−1/δ
n . Since an = 1

4ρ
−n with

ρ = (1 − 2(1 − η̃)ε)−1, this implies that limn→∞ n−1 log E[Yn] = δ−1 log ρ, which readily
yields (3.6) by means of (3.8).

The following lemma asserts that the laws νn defined in Lemma 1 satisfy the right-hand side
of (2.12) with β = 1.

Lemma 2. Let η ∈ (0, η0) and let ε ∈ (0, 1
2 ). Let δ and (an)n∈N be as in (3.2) and let νn be

defined by (3.4). For all n ∈N, we denote by Yn and Ŷn two independent random variables
with common law νn. Then there exists ε2(η) ∈ (0, 1

2 ) such that for all ε ∈ (0, ε2(η)), there is
n2(η, ε) ∈N such that for all integers n ≥ n2(η, ε) and all y ∈R

∗+,(
1

2
+ ε

)
P

(
Yn + Ŷn > y

)
+
(

1

2
− ε

)
P

(
Yn > y

)2

− 1 + P

(
Yn+1 ≤ y

)
≥ 0. (3.9)

Proof. See Section 3.2.

Proof of the lower bound in Theorem 1. Let us admit Lemma 2 for the time being and prove
that it implies the lower bound in Theorem 1.

Recall that p = 1
2 + ε, so (3.9) implies for all n ≥ n2(η, ε) that νn+1((y,∞)) ≤


p(νn)((y,∞)) for all y ∈R
∗+, i.e. νn+1

st≤
p(νn). On the other hand, we note that a.s. Yn2(η,ε) ≤
λn2(η,ε) and 1 ≤ Dn2(η,ε)(p). Thus, a.s. Yn2(η,ε)/λn2(η,ε) ≤ Dn2(η,ε)(p), which implies

Mθ (νn2(η,ε))
st≤μn2(η,ε),

where θ := 1/λn2(η,ε) (as before, μn stands for the law of Dn(p)). As such, the laws
νn satisfy (2.12) with n0 = n2(η, ε), θ = 1/λn2(η,ε) and β = 1. It follows from (2.13)
that for all n ≥ n2(η, ε), E[Dn(p)] ≥ θ E[Yn], thus α

( 1
2 + ε

)= limn→∞ (1/n) log E[Dn(p)] ≥
limn→∞ (1/n) log E[Yn] and we get lim infε→0+ α

( 1
2 + ε

)
/
√
ε≥ √

ζ (2) by (3.6) in
Lemma 1. �
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3.2. Proof of Lemma 2

We fix η ∈ (0, η0) and ε ∈ (0, 1
2 ). Writing LHS(3.9) for the expression on the left-hand side

of (3.9), we need to check that LHS(3.9) ≥ 0 for all large n, uniformly in y ∈ [1, λn+1] because
this inequality is obvious if y ∈ [0, 1) and y ∈ (λn+1,∞). Let n3(η, ε) be such that η1/δλn ≥ 2
for all n ≥ n3(η, ε). Thus, to prove (3.9), we suppose that n ≥ n3(η, ε) and we consider three
situations:

Case 1: y ∈ [1, η1/δλn], Case 2: y ∈ (η1/δλn, λn], and Case 3: y ∈ (λn, λn+1].

For the sake of clarity, these situations are dealt with in three distinct parts.

Proof of Lemma 2: first case y ∈ [1, η1/δλn]. In this case, we first note that

P
(
Yn + Ŷn > y

)≥ 1 − P
(
Yn ≤ y; Ŷn ≤ y

)= 1 − P
(
Yn ≤ y

)2.

Therefore, writing Fn(y) := P(Yn ≤ y), we obtain

LHS(3.9) ≥
(

1

2
+ ε

)(
1 − Fn(y)2

)
+
(

1

2
− ε

) (
1 − Fn(y)

)2 − 1 + Fn+1(y)

= −(1 − 2ε)Fn(y) − 2εFn(y)2 + Fn+1(y).

For y ∈ [1, η1/δλn], we have y ≤ λn <λn+1, thus Fn(y) = 2anϕδ(y ∧ λn) = 2anϕδ(y), and
Fn+1(y) = 2an+1ϕδ(y) = (1 − 2ε+ ηδ2)2anϕδ(y). Accordingly,

LHS(3.9) ≥ 2ηδ2anϕδ(y) − 2ε(2anϕδ(y))2.

Observe that δ2/(2ε) = 12(1 + η)2/π2 > 1, thus ηδ
2

2ε > η, which equals limn→∞ 2anϕδ(η1/δλn)
by Lemma 1(ii). Thus, there exists n4(η, ε) ≥ n3(η, ε) such that for all n ≥ n4(η, ε) and all
y ∈ [1, η1/δλn], we have

2anϕδ(y) ≤ ηδ2

2ε
,

which implies that

LHS(3.9) ≥ 2ηδ2anϕδ(y) − 2ε
ηδ2

2ε
2anϕδ(y) = 0,

as desired. �

Proof of Lemma 2: second case y ∈ [η1/δλn, λn]. In this case and in the next case, the con-
volution term Yn + Ŷn matters more specifically; we use the following lemma to get estimates
for the law of Yn + Ŷn. This is a key lemma where the constant ζ (2) appears.

Lemma 3. We keep the previous notation and we recall, in particular, δ from (3.2). Let r ∈
(0, 1]. We define

cvlδ,r(x) :=
∫ rx−1

1
ϕ′
δ(t)

(
ϕδ(x) − ϕδ(x − t)

)
dt, x ∈

[2

r
, ∞

)
. (3.10)

For r ∈ (0, 1], we also set κ(r) := ∑∞
k=1

rk

k2 and for x ∈ [ 2
r ,∞

)
,

κδ,r(x) := κ

(
r − 1

x

)
− 2

x
− c0 δ coth (δ log x),
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with

c0 :=
∫ 1

0

(
log

1

s(1 − s)

)(
log

1

1 − s

)
ds

s
∈ (0, ∞).

Then, for r ∈ (0, 1] and x ∈ [2/r, ∞),

κδ,r(x)
(
δ sinh (δ log x)

)2 ≤ cvlδ,r(x) ≤ κ(r)
(
δ sinh (δ log x)

)2. (3.11)

Proof. We first prove the upper bound in (3.11). Let ϕ̃δ(u) := ϕδ(eu) = cosh (δu) − 1, for
u ∈R+. We fix r ∈ (0, 1] and x ∈ [2/r,∞). Since ϕ̃δ is convex on R+, we get ϕ̃δ( log x) −
ϕ̃δ(log (x − t)) ≤ (log x − log (x − t))ϕ̃′

δ(log x) for t ≥ 0 and x ≥ t + 1. Thus,

cvlδ,r(x) =
∫ rx−1

1
ϕ′
δ(t)
(
ϕ̃δ( log x) − ϕ̃δ(log (x − t))

)
dt ≤ ϕ̃ ′

δ(log x)
∫ rx−1

1
ϕ′
δ(t) log

x

x − t
dt.

By definition, ϕ̃ ′
δ(log x) = δ sinh (δ log x), and ϕ′

δ(t) = δ
t sinh (δ log t) ≤ δ

t sinh (δ log x) if t ≤
rx − 1. Thus,

cvlδ,r(x) ≤ (
δ sinh (δ log x)

)2 ∫ rx−1

1

1

t
log

x

x − t
dt ≤ (δ sinh (δ log x)

)2 ∫ rx

0

1

t
log

x

x − t
dt

= (
δ sinh (δ log x)

)2 ∫ r

0

log 1
1−u

u
du.

By Fubini–Tonelli, ∫ r

0

log 1
1−u

u
du =

∑
k≥1

∫ r

0

1

u

uk

k
du = κ(r), (3.12)

which yields the upper bound in (3.11).

We turn to the proof of the lower bound in (3.11). Since on R+, all the derivatives of ϕ̃δ are
positive, ϕ̃δ and ϕ̃′

δ are convex which implies for all b ≥ a ≥ 0 that

ϕ̃δ(b) − ϕ̃δ(a)

b − a
≥ ϕ̃′

δ(a) = ϕ̃′
δ(b) − (ϕ̃′

δ(b) − ϕ̃′
δ(a)) ≥ ϕ̃′

δ(b) − (b − a)ϕ̃′′
δ (b).

We suppose that 1 ≤ t ≤ rx − 1. Taking b = log x and a = log (x − t), we get that

cvlδ(x) ≥
∫ rx−1

1
ϕ′
δ(t)

(
log

x

x − t

) (
ϕ̃′
δ(log x) −

(
log

x

x − t

)
ϕ̃′′
δ (log x)

)
dt

= RHS(1)
(3.13) − RHS(2)

(3.13), (3.13)

where we have set

RHS(1)
(3.13) := ϕ̃′

δ(log x)
∫ rx−1

1
ϕ′
δ(t)

(
log

x

x − t

)
dt,

RHS(2)
(3.13) := ϕ̃′′

δ (log x)
∫ rx−1

1
ϕ′
δ(t)

(
log

x

x − t

)2

dt.
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We first look at RHS(2)
(3.13). Since ϕ′

δ(t) = δ
t sinh (δ log t) ≤ δ

t sinh (δ log x), we have∫ rx−1

1
ϕ′
δ(t)

(
log

x

x − t

)2

dt ≤ δ sinh (δ log x)
∫ rx−1

1

1

t

(
log

x

x − t

)2

dt.

We observe that∫ rx−1

1

1

t

(
log

x

x − t

)2

dt ≤
∫ x

0

1

t

(
log

x

x − t

)2

dt =
∫ 1

0

1

s

(
log

1

1 − s

)2

ds =: c1.

Therefore,

RHS(2)
(3.13) ≤ c1δ sinh (δ log x)ϕ̃′′

δ (log x) = c1δ
3 sinh (δ log x) cosh (δ log x). (3.14)

We now turn to RHS(1)
(3.13) and look for a lower bound. We still assume that 1 ≤ t ≤ rx − 1.

Since the function sinh is convex on R+, we have sinh (δ log t) ≥ sinh (δ log x) − δ(log x −
log t) cosh (δ log x). Therefore,∫ rx−1

1
δ sinh (δ log t)

1

t

(
log

x

x − t

)
dt

≥ δ
∫ rx−1

1

(
sinh (δ log x) − δ

(
log

x

t

)
cosh (δ log x)

)1

t

(
log

x

x − t

)
dt

= δ sinh (δ log x)
∫ rx−1

1

log x
x−t

t
dt − δ2 cosh (δ log x)

∫ rx−1

1

(
log x

t

)
log x

x−t

t
dt.

Let us look at the two integrals on the right-hand side. The second integral is easy to deal with:∫ rx−1

1

(
log x

t

)
log x

x−t

t
dt ≤

∫ x

0

(
log x

t

)
log x

x−t

t
dt =

∫ 1

0

(
log 1

s

)
log 1

1−s

s
ds =: c2 ∈ (0, ∞).

The first integral is handled as follows: let r1 := r − 1
x ∈ (0, r). Then rx − 1 = r1x, so that∫ rx−1

1

log x
x−t

t
dt =

∫ r1x

0

log x
x−t

t
dt −

∫ 1

0

log x
x−t

t
dt = κ(r1) − κ

(
1

x

)
,

since
∫ r

0
1
u log (1 − u)−1 du = κ(r) by (3.12). Consequently,∫ rx−1

1
δ sinh (δ log t)

1

t

(
log

x

x − t

)
dt ≥

(
κ(r1) − κ

(
1

x

))
δ sinh (δ log x) − c2δ

2 cosh (δ log x).

This implies that

RHS(1)
(3.13) ≥ ϕ̃′

δ(log x)

(
(κ(r1) − κ

(
1

x

))
δ sinh (δ log x) − c2δ

2 cosh (δ log x)
)

= (δ sinh (δ log x))2
(
κ(r1) − κ

(
1

x

)
− c2δ coth (δ log x)

)
.

Now observe that xκ
( 1

x

)≤ ζ (2) ≤ 2. Together with (3.13) and (3.14), this yields the lower
bound in (3.11) with c0 = c1 + c2, and completes the proof of Lemma 3.
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Let us now proceed to the proof of (3.9) (i.e. Lemma 2) in the second case y ∈ (η1/δλn, λn].
We write

LHS(3.9) =
(

1

2
+ ε

)(
1 − P

(
Yn + Ŷn ≤ y

))
+
(

1

2
− ε

) (
1 − Fn(y)

)2 − 1 + Fn+1(y)

= −
(

1

2
+ ε

)
P(Yn + Ŷn ≤ y) − (1 − 2ε)Fn(y) +

(
1

2
− ε

)
Fn(y)2 + Fn+1(y)

= 1

2
In(y) + I In(y) + ε I I In(y), (3.15)

where we have set

In(y) := Fn(y)2 − P(Yn + Ŷn ≤ y),

I In(y) := Fn+1(y) − Fn(y) (which is negative),

I I In(y) := 2Fn(y) − Fn(y)2 − P(Yn + Ŷn ≤ y).

We first look for a lower bound for In(y). Note that Fn(y)2 ≥ Fn(y) Fn(y − 1) =
Fn(y)

∫ y−1
1 F′

n(t) dt and that P(Yn + Ŷn ≤ y) = ∫ y−1
1 F′

n(t)Fn(y − t) dt. Therefore,

In(y) ≥
∫ y−1

1
F′

n(t)
(
Fn(y) − Fn(y − t)

)
dt

= 4a2
n

∫ y−1

1
ϕ′
δ(t)
(
ϕδ(y) − ϕδ(y − t)

)
dt = 4a2

ncvlδ,1(y),

where cvlδ,1 is defined in Lemma 3. By the first inequality in (3.11) of Lemma 3, cvlδ,1(y) ≥
κδ,1(y)(δ sinh (δ log y))2 for y ∈ [2,∞). Since

for all t ∈R+, cosh (t) ≥ sinh (t) ≥ cosh (t) − 1 ≥ 0, (3.16)

we have cvlδ,1(y) ≥ κδ,1(y)δ2ϕδ(y)2. Thus, In(y) ≥ κδ,1(y)δ2Fn(y)2. Since the function coth
decreases to 1 and since κδ,1 is increasing on [2, ∞), we get, for y ∈ [η1/δλn, λn],

κδ,1(y) ≥ κδ,1(η1/δλn)

= κ

(
1 − 1

η1/δλn

)
− 2

η1/δλn
− c0δ coth (δ log (η1/δλn)) −−−−→

n→∞ ζ (2) − c0δ,

because κ(1) = ζ (2). By definition, δ = 2ζ (2)−1/2(1 + η)
√
ε, thus

lim
n→∞ δ2κδ,1(η1/δλn) = δ2ζ (2) − c0δ

3 = 4(1 + η)2ε− 8c0ζ (2)−3/2(1 + η)3ε3/2.

Let ε3(η) ∈ (0, 1
2 ) be such that for ε ∈ (0, ε3(η)),

4(1 + η)2ε− 8c0ζ (2)−3/2(1 + η)3ε3/2 > 4ε.

Therefore, there exists an integer n5(η, ε) ≥ n4(η, ε) such that

for all n ≥ n5(η, ε), for all y ∈ [η1/δλn, λn], In(y) ≥ 4εFn(y)2. (3.17)
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On the other hand, since an+1/an = 1 − 2ε(1 − η̃), we get

I In(y) = 2(an+1 − an)ϕδ(y) = −2(1 − η̃)εFn(y),

I I In(y) = 2(Fn(y) − Fn(y)2) + In(y) ≥ 2(Fn(y) − Fn(y)2).

Thus, for all ε ∈ (0, ε3(η)), all integers n ≥ n5(η, ε) and all y ∈ [η1/δλn, λn],

LHS(3.9) ≥ 2εFn(y)2 − 2(1 − η̃)εFn(y) + 2ε(Fn(y) − Fn(y)2) = 2η̃εFn(y) ≥ 0.

This completes the proof of Lemma 2 in the second case y ∈ [η1/δλn, λn].

Proof of Lemma 2: third and last case y ∈ (λn, λn+1]. Here again the law of Yn + Ŷn matters
specifically and we use Lemma 3 to handle it. Let us fix ε ∈ (0, ε3(η)) and n ≥ n5(η, ε). We
first observe that

LHS(3.9) ≥ 1

2
P
(
Yn + Ŷn > y

)− 1 + Fn+1(y) ≥ 1

2
P
(
Yn + Ŷn >λn+1

)− 1 + Fn+1(λn).

Since Fn+1(λn) = (
1 − 2(1 − η̃)ε

)
Fn(λn) = 1 − 2(1 − η̃)ε, we get for all y ∈ (λn, λn+1] that

LHS(3.9) ≥ 1

2
P
(
Yn + Ŷn >λn+1

)− 2(1 − η̃)ε. (3.18)

We now look for a lower bound for P(Yn + Ŷn >λn+1). By Lemma 1(iii), there is ε4(η) ∈
(0, ε3(η)) such that for ε ∈ (0, ε4(η)), there exists an integer n6(η, ε) ≥ n5(η, ε) which satisfies
λn+1 − λn + 1 ≤ δλn, for all n ≥ n6(η, ε). We have

P
(
Yn + Ŷn >λn+1

)≥ P
(
λn − 1> Yn >λn+1 − λn; Yn + Ŷn >λn+1

)
=
∫ λn−1

λn+1−λn

F′
n(t)

(
1 − Fn(λn+1 − t)

)
dt.

Writing 1 − Fn(λn+1 − t) = Fn(λn) − Fn(λn+1 − t), this leads to

P
(
Yn + Ŷn >λn+1

)≥ 4a2
n

∫ λn−1

λn+1−λn

ϕ′
δ(t)
(
ϕδ(λn) − ϕδ(λn+1 − t)

)
dt

= RHS(1)
(3.19) − RHS(2)

(3.19) − RHS(3)
(3.19), (3.19)

where:

• RHS(1)
(3.19) := 4a2

n

∫ λn−1
1 ϕ′

δ(t)
(
ϕδ(λn) − ϕδ(λn − t)

)
dt;

• RHS(2)
(3.19) := 4a2

n

∫ λn+1−λn
1 ϕ′

δ(t)
(
ϕδ(λn) − ϕδ(λn − t)

)
dt;

• RHS(3)
(3.19) := 4a2

n

∫ λn−1
λn+1−λn

ϕ′
δ(t)
(
ϕδ(λn+1 − t) − ϕδ(λn − t)

)
dt.

We apply Lemma 3 to RHS(1)
(3.19) to get that

RHS(1)
(3.19) = 4a2

ncvlδ,1(λn) ≥ 4a2
nκδ,1(λn)δ2 sinh (δ log λn)2

by (3.16)≥ κδ,1(λn)δ2(2anϕδ(λn))2 = κδ,1(λn)δ2.
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Note that limn→∞ κδ,1(λn)δ2 = 4(1 + η)2ε− 8c0ζ (2)−3/2(1 + η)2ε3/2. Therefore there exists
ε5(η) ∈ (0, ε4(η)) such that for all ε ∈ (0, ε5(η)) there is an integer n7(η, ε) ≥ n6(η, ε) satisfying

for all n ≥ n7(η, ε), RHS(1)
(3.19) ≥ (1 − 1

3
η
)
4(1 + η)2ε. (3.20)

Let us next provide an upper bound for RHS(2)
(3.19). For n ≥ n7(η, ε), we have λn+1 − λn + 1 ≤

δλn; thus

RHS(2)
(3.19) ≤ 4a2

n

∫ δλn−1

1
ϕ′
δ(t)
(
ϕδ(λn) − ϕδ(λn − t)

)
dt = 4a2

ncvlδ,δ(λn)

by (3.11)≤ 4a2
nκ(δ)δ2 sinh (δ log λn)2 by (3.16)≤ κ(δ)δ2(2anϕδ(λn) + 2an)2

= κ(δ)δ2(1 + 2an)2 −−−−→
n→∞ κ(δ)δ2 = ζ (2)−1κ(δ)4(1 + η)2ε= oη(ε).

Therefore, there exists ε6(η) ∈ (0, ε5(η)) such that for all ε ∈ (0, ε6(η)), there is an integer
n8(η, ε) ≥ n7(η, ε) satisfying

for all n ≥ n8(η, ε), RHS(2)
(3.19) ≤ 1

3
η 4(1 + η)2ε. (3.21)

We finally look for an upper bound for RHS(3)
(3.19). Since ϕ′

δ(t) = δ
t sinh (δ log t), we have

RHS(3)
(3.19) = 4a2

n

∫ λn−1

λn+1−λn

dt
δ

t
sinh (δ log t)

∫ λn+1−t

λn−t
ds
δ

s
sinh (δ log s)

≤ 4a2
nδ

2 sinh (δ log λn)2
∫ λn−1

λn+1−λn

dt

t

∫ λn+1−t

λn−t

ds

s

≤ δ2(2anϕδ(λn) + 2an)2
∫ λn−1

λn+1−λn

log (λn+1 − t) − log (λn − t)

t
dt

≤ δ2(1 + 2an)2
∫ λn

0

log (λn+1 − t) − log (λn − t)

t
dt.

Since λn+1 − λn + 1 ≤ δλn, we get λn+1 ≤ (1 + δ)λn, and thus

RHS(3)
(3.19) ≤ δ2(1 + 2an)2

∫ λn

0

log ((1 + δ)λn − t) − log (λn − t)

t
dt

≤ δ2(1 + 2an)2
∫ 1

0

log (1 + δ − s) − log (1 − s)

s
ds

−−−−→
n→∞ δ2

∫ 1

0

log (1 + δ − s) − log (1 − s)

s
ds = oη(ε).

Thus, there exists ε7(η) ∈ (0, ε6(η)) such that for all ε ∈ (0, ε7(η)), there is an integer n9(η, ε) ≥
n8(η, ε) such that

for all n ≥ n9(η, ε), RHS(3)
(3.19) ≤ 1

3
η 4(1 + η)2ε.
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Combined with (3.20) and (3.21), it entails that

RHS(1)
(3.19) − RHS(2)

(3.19) − RHS(3)
(3.19) ≥

(
1 − 1

3
η

)
4(1 + η)2ε− 1

3
η 4(1 + η)2ε− 1

3
η 4(1 + η)2ε

= (1 − η)(1 + η)24ε
by (3.1)
> 4ε.

Returning to (3.18), we obtain LHS(3.9) ≥ 2ε− 2(1 − η̃)ε= 2η̃ε > 0, which proves Lemma 2
in the third and last case y ∈ (λn, λn+1].

4. Proof of Theorem 1: The Upper Bound

Compared with the previous section, in the following proof, the numbering for the constants
ni(η, ε), ni+1(η, ε), . . . and εi(η), εi+1(η), . . . starts again from i = 1.

4.1. Definition of the upper bound laws

Recall from (3.3) that for all q ∈ (0, 1) and all x ∈ [1,∞), we have set ϕq(x) :=
cosh (q log x) − 1. The following lemma gives a list of properties of the function ϕq that are
used to define the forthcoming laws ν′

n. These laws are proved to satisfy (2.14); see Lemma 6
that is the key technical step in the proof of the upper bound in Theorem 1.

Lemma 4. Let q ∈ (0, 1).

(i) We have ϕ′
q([1,∞)) = [0, Mq] with Mq := supy∈[1,∞) ϕ

′
q(y), and

xq :=
(

1 + q

1 − q

)1/(2q)

is the unique x ∈ [1, ∞) such that ϕ′
q(x) = Mq. Moreover, xq → e and Mq ∼ e−1q2 as

q → 0+.

(ii) The function ϕ′
q : [1, xq] → [0, Mq] is a C1 increasing bijection whose inverse is denoted

by �q : [0, Mq] → [1, xq] and ϕ′
q : [xq, ∞) → (0, Mq] is a C1 decreasing bijection

whose inverse is denoted by rq : (0, Mq] → [xq, ∞). As y → 0+, we get

�q(y) = 1 + q−2y(1 + Oq(y)) and rq(y) ∼ (2y/q)−
1

1−q .

(iii) For all y ∈ (0,Mq], we set �q(y) = ϕq(rq(y)) − ϕq(�q(y)). Then �q : (0, Mq] →R+ is a
C1 decreasing bijection whose inverse is denoted by �−1

q : R+ → (0, Mq]. As x → ∞,

we get �−1
q (x) ∼ (q/2)(2x)−

1−q
q ,

rq
(
�−1

q (x)
)∼ (2x)

1
q and �q

(
�−1

q (x)
)= 1 + 1

2q
(2x)−

1−q
q

(
1 + Oq

(
x− 1−q

q

))
.

(iv) Let a ∈R
∗+ and for all x ∈ [1, ∞) set g(x) = ϕq(x + a) − ϕq(x). Then, limx→∞ g(x) = 0.

Moreover, suppose that there is x∗ ∈ [1, ∞) such that g′(x∗) = 0. Then, g is strictly
decreasing on [x∗, ∞).

Proof. See Appendix B. �
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We fix η ∈ (0, 1) and ε ∈ (0, 1
36

)
, and write

γ := 2√
ζ (2)

(1 − η)
√
ε <

1

3
and bn := 1

4

(
1 − (2 + η)ε

)n
, n ∈N. (4.1)

We keep the notation in Lemma 4, and set

σn := �γ

(
�−1
γ

(
1

2bn

))
and τn := rγ

(
�−1
γ

(
1

2bn

))
− �γ

(
�−1
γ

(
1

2bn

))
. (4.2)

Then
2bn(ϕγ (σn + τn) − ϕγ (σn)) = 1 and ϕ′

γ (σn + τn) = ϕ′
γ (σn),

and these two equations characterize σn and τn. By Lemma 4(ii) and (iii), σn decreases to 1, τn

increases to ∞, and

σn = 1 + 1

2γ
b

1−γ
γ

n

(
1 + Oη,ε

(
b

1−γ
γ

n

))
and τn ∼ b

− 1
γ

n , n → ∞. (4.3)

By Lemma 4(iv), x ∈ [σn, ∞) 	→ 2bn(ϕγ (x + τn) − ϕγ (x)) decreases to 0. Therefore, there
is a unique measure ν′

n ∈ M1 such that

ν′
n((0, σn]) = 0 and ν′

n((x,∞)) = 2bn(ϕγ (x + τn) − ϕγ (x)), x ∈ [σn,∞). (4.4)

In the rest of this section, Zn denotes a random variable with law ν′
n, and

Gn(z) := P(Zn ≤ z) = ν′
n((−∞, z]), z ∈R.

Lemma 5. We keep the previous notation. There exists ε1(η) ∈
(

0, 1
36

)
such that for all ε ∈

(0, ε1(η)), there exists n1(η, ε) ∈N satisfying E[Zn ∧ Ẑn] ≤ 2τn for all n ≥ n1(η, ε), where Ẑn

is an independent copy of Zn.

Proof. Observe that

E
[
Zn ∧ Ẑn

]= ∫ ∞

0
P(Zn > x)2 dx ≤ τn +

∫ ∞

τn

P(Zn > x)2 dx.

For all sufficiently large n, τn ≥ σn, so that for x ∈ [τn, ∞),

P(Zn > x) = 2bn
(
ϕγ (x + τn) − ϕγ (x)

)≤ bn
(
(x + τn)γ − xγ

)
= γ bn

∫ x+τn

x
y−(1−γ ) dy ≤ γ bnτnx−(1−γ ).

Since γ → 0 as ε→ 0, we choose ε1(η) ∈
(

0, 1
36

)
such that for all ε ∈ (0, ε1(η)), we have

2(1 − γ )> 1 (i.e. 1 − 2γ > 0) and that γ 2/(1 − 2γ )< 1. Therefore,∫ ∞

τn

P(Zn > x)2 dx ≤ (γ bnτn)2
∫ ∞

τn

x−2(1−γ ) dx = γ 2

1 − 2γ
(bnτ

γ
n )2τn ∼n→∞

γ 2

1 − 2γ
τn,

by (4.3). Thus, for all ε ∈ (0, ε1(η)), there is n1(η, ε) ∈N such that
∫∞
τn

P(Zn > x)2 dx< τn for
all n ≥ n1(η, ε), which entails the desired inequality. �
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The following lemma, which is the key point in the proof of the upper bound in Theorem 1,
tells us that the laws ν′

n satisfy (2.14). Its proof is postponed to Section 4.2. The proof of the
upper bound in Theorem 1 relies on this lemma, as well as on the arguments in Section 2.2 and
on Lemma 5.

Lemma 6. We keep the previous notation. There exists ε2(η) ∈ (0, ε1(η)) such that for all
ε ∈ (0, ε2(η)), there is an integer n2(η, ε) ≥ n1(η, ε) satisfying, for n ≥ n2(η, ε) and z ∈ [(1 +
ηγ )σn+1, ∞)

,(
1

2
+ ε

)
P
(
Zn + Ẑn > z

)+
(

1

2
− ε

) (
1 − Gn(z)

)2 − 1 + Gn+1

(
z

1 + ηγ

)
≤ 0, (4.5)

where Ẑn is an independent copy of Zn.

Proof. See Section 4.2.

Proof of the upper bound in Theorem 1. We recall that p = 1
2 + ε. We admit Lemma 6

and prove that it implies the upper bound in Theorem 1. We keep the previous notation. Fix
η ∈ (0, 1) and ε ∈ (0, ε2(η)). Note that a.s. Dn2(η,ε)(p) ≤ 2n2(η,ε) ≤ 2n2(η,ε)Zn2(η,ε) because Zn ≥
σn ≥ 1. Then μn0

st≤ Mθ (ν′
n0

) with n0 = n2(η, ε) and θ = 2n2(η,ε).
For n ≥ n2(η, ε) and z ∈ [0, (1 + ηγ )σn+1), we have

[
p(ν′
n)]((z, ∞)) ≤ 1 = P

(
(1 + ηγ )Zn+1 > z

)
.

Combined with (4.5) that holds for z ≥ (1 + ηγ )σn+1, this implies that
p(ν′
n)

st≤ M1+ηγ (ν′
n+1).

Thus, the laws ν′
n satisfy (2.14) with β = 1 + ηγ . By (2.15),

Dn(p)
st≤ 2n2(η,ε)(1 + ηγ )n−n2(η,ε)Zn, n ≥ n2(η, ε). (4.6)

We denote by D̂n(p) (respectively, Ẑn) an independent copy of Dn(p) (respectively, of Zn). Then
for n ≥ n2(η, ε),

E[Dn+1(p)] =
(

1

2
+ ε

)
E
[
Dn(p) + D̂n(p)

]+(
1

2
− ε

)
E
[
Dn(p) ∧ D̂n(p)

]
≤ (1 + 2ε)E[Dn(p)] + 2n2(η,ε)(1 + ηγ )n−n2(η,ε)

E
[
Zn ∧ Ẑn

]
≤ (1 + 2ε)E[Dn(p)] + 2n2(η,ε)+1(1 + ηγ )n−n2(η,ε)τn (by Lemma 5).

Iterating the inequality yields that for n ≥ n0 := n2(η, ε) and using the fact that j 	→ τj is non-
decreasing, we get

E[Dn(p)] ≤ (1 + 2ε)n−n0E[Dn0 (p)] +
n−n0−1∑

i=0

(1 + 2ε)i2n0+1(1 + ηγ )n−i−1−n0τn−i−1

≤ (1 + 2ε)n−n0E[Dn0 (p)] + n(1 + 2ε)n + 2n0+1(1 + ηγ )nτn.
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By (4.3), for ε ∈ (0, ε2(η)),

α

(
1

2
+ ε

)
= lim

n→∞ n−1 log E[Dn(p)]

≤ log (1 + 2ε) + log (1 + ηγ ) − 1

γ
log

(
1 − (2 + η)ε

)
=
(

2η(1 − η)√
ζ (2)

+ 1 + 1
2η

1 − η

√
ζ (2)

)
√
ε+ Oη(ε),

which implies the upper bound in Theorem 1, as η > 0 can be made as small as possible.
Provided Lemma 6 holds true, it also completes the proof of Theorem 1. �

4.2. Proof of Lemma 6

This section is devoted to the proof of Lemma 6. We fix η ∈ (0, 1) and ε ∈ (0, ε1(η)).
Recall from (4.1) the definition of γ and bn and from (4.2) the definition of σn and
τn. By (4.3), limn→∞ σn = 1< 1 + ηγ = limn→∞ (1 + ηγ )σn+1 < limn→∞ (ηε)1/γ τn = ∞.
Therefore, there is an integer n3(η, ε) ≥ n1(η, ε) such that

2σn < 2(1 + ηγ )σn+1 < (ηε)1/γ τn < γ
2τn < e1/

√
γ τn, n ≥ n3(η, ε). (4.7)

Writing LHS(4.5) for the expression on the left-hand side of (4.5), we need to check that
LHS(4.5) ≤ 0 for all small enough ε > 0, all sufficiently large integer n and all z ≥ (1 +
ηγ )σn+1. This is done by distinguishing four cases:

Case 1: (1 + ηγ )σn+1 ≤ z< (ηε)1/γ τn, Case 2: (ηε)1/γ τn ≤ z< γ 2τn,

Case 3: γ 2τn ≤ z< e1/
√
γ τn, and Case 4: z ≥ e1/

√
γ τn.

Proof of Lemma 6: first case (1 + ηγ )σn+1 ≤ z< (ηε)1/γ τn. Here ε ∈ (0, ε1(η)) and n ≥
n3(η, ε). We use the trivial fact P

(
Zn + Ẑn > z

)≤ 1, so that

LHS(4.5) ≤ 1

2
+ ε+

(
1

2
− ε

) (
1 − Gn(z)

)2 − 1 + Gn+1

(
z

1 + ηγ

)

= Gn+1

(
z

1 + ηγ

)
+
(

1

2
− ε

)
Gn(z)2 − (1 − 2ε)Gn(z)

≤ Gn+1

(
z

1 + ηγ

)
+ 1

2
Gn(z)2 − (1 − 2ε)Gn(z). (4.8)

Recall the notation Gn(z) := P(Zn ≤ z). Then

Gn(z)
by (4.4)= 1 − 2bn

(
ϕγ (z + τn) − ϕγ (z)

)
by (4.4)= 2bn

(
ϕγ (z) − (

ϕγ (z + τn) − ϕγ (σn + τn)
)− ϕγ (σn)

)
≤ 2bnϕγ (z). (4.9)
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We have used the fact (by (4.7)) that z ≥ σn in the last inequality. Since ϕγ (z) ≤ cosh (γ log z)
and z< (ηε)1/γ τn, we get that

Gn(z) ≤ 2bn cosh
(
γ log ((ηε)1/γ τn)

)∼n→∞ bn
(
(ηε)1/γ τn

)γ by (4.3)−−−−→
n→∞ ηε.

Thus, there exists n4(η, ε) ≥ n3(η, ε) such that Gn(z)< 2ηε for all n ≥ n4(η, ε) and for all
z ∈ [(1 + ηγ )σn+1, (ηε)1/γ τn]. Thus, we get

1

2
Gn(z)2 − (1 − 2ε)Gn(z) ≤ −(1 − (2 + η)ε

)
Gn(z) = −2bn+1

Gn(z)

2bn
.

By (4.8), this leads to

LHS(4.5) ≤ Gn+1

(
z

1 + ηγ

)
− 2bn+1

(
ϕγ (z) − (

ϕγ (z + τn) − ϕγ (σn + τn)
)− ϕγ (σn)

)
by (4.9)≤ 2bn+1ϕγ

(
z

1 + ηγ

)
− 2bn+1

(
ϕγ (z) − ϕγ (z + τn) + ϕγ (σn + τn) − ϕγ (σn)

)
= 2bn+1

(
ϕγ (z + τn) − ϕγ (σn + τn) + ϕγ (σn) −

(
ϕγ (z) − ϕγ

(
z

1 + ηγ

)))
.

We claim for all sufficiently small ε and large n, and all z ∈ [(1 + ηγ )σn+1, (ηε)1/γ τn], that

ϕγ (z + τn) − ϕγ (σn + τn) ≤ 1

2

(
ϕγ (z) − ϕγ

(
z

1 + ηγ

))
and

ϕγ (σn) ≤ 1

2

(
ϕγ (z) − ϕγ

(
z

1 + ηγ

))
, (4.10)

which will readily imply Lemma 6 in the first case.
To check the second inequality in (4.10), we look for a suitable upper bound for ϕγ (σn) :=

cosh (γ log σn) − 1. We note that cosh (λ) − 1 ≤ 2λ2 for λ ∈ [0, 2] (indeed, since cosh (2)< 4,
the second derivative of λ ∈ [0, 2] 	→ cosh (λ) − 1 − 2λ2 is negative, so is the derivative, and
the function itself is decreasing). Since σn → 1+ as n → ∞, there exists n5(η, ε) ≥ n4(η, ε)
such that γ log σn ∈ [0, 2] for n ≥ n5(η, ε); accordingly,

ϕγ (σn) ≤ 2(γ log σn)2 ≤ 2γ 2(σn − 1)2, (4.11)

since log x ≤ x − 1 for x ≥ 1.

We now look for lower bounds for ϕγ (z) − ϕγ

(
z

1+ηγ
)

. Using the formula cosh (a) −
cosh (b) = 2 sinh

(
a+b

2

)
sinh

(
a−b

2

)
, we get that

ϕγ (z) − ϕγ

(
z

1 + ηγ

)
= 2 sinh

(
γ

2
log (1 + ηγ )

)
sinh

(
γ log z − γ

2
log (1 + ηγ )

)
.

Since z ∈ [(1 + ηγ )σn+1, (ηε)1/γ τn], observe that

γ log z − γ

2
log (1 + ηγ ) ≥ γ log (1 + ηγ ) + γ log σn+1 − γ

2
log (1 + ηγ ) ≥ 0. (4.12)
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Since sinh (x) ≥ x (for x ∈R+) and log (1 + x) ≥ 1
2 x (for x ∈ [0, 1]), we have

ϕγ (z) − ϕγ

(
z

1 + ηγ

)
≥ γ [log (1 + ηγ )] sinh

(
γ log z − γ

2
log (1 + ηγ )

)

≥ 1

2
ηγ 2 sinh

(
γ log z − γ

2
log (1 + ηγ )

)
(4.13)

by (4.12)≥ 1

2
ηγ 2

(
γ log z − γ

2
log (1 + ηγ )

)
≥ 1

4
ηγ 3 log (1 + ηγ ). (4.14)

Since 2γ 2(σn − 1)2 → 0 as n → ∞, there exists n6(η, ε) ≥ n5(η, ε) such that 2γ 2(σn −
1)2 < 1

8ηγ
3 log (1 + ηγ ) for n ≥ n6(η, ε); in view of (4.11), this implies the desired second

inequality in (4.10):

ϕγ (σn) ≤ 1

2

(
ϕγ (z) − ϕγ

(
z

1 + ηγ

))
, n ≥ n6(η, ε), z ∈ [(1 + ηγ )σn+1, (ηε)1/γ τn

)
.

We now turn to the proof of the first inequality in (4.10). Observe that

ϕγ (z + τn) − ϕγ (σn + τn) = γ

∫ z+τn

σn+τn

sinh (γ log x)
dx

x

≤ γ

2

∫ z+τn

σn+τn

dx

x1−γ ≤ γ (z − σn)

2(σn + τn)1−γ ≤ γ (z − 1)

2τ 1−γ
n

, (4.15)

since σn ≥ 1. Consequently, for z ∈ [(1 + ηγ )σn+1, e2/γ
)
,

ϕγ (z + τn) − ϕγ (σn + τn) ≤ γ (e2/γ − 1)

2τ 1−γ
n

−−−−→
n→∞ 0<

1

8
ηγ 3 log (1 + ηγ ).

Thus, by (4.14), there is n7(η, ε) ≥ n6(η, ε) such that for n ≥ n7(η, ε) and z ∈ [(1 +
ηγ )σn+1, e2/γ

)
,

ϕγ (z + τn) − ϕγ (σn + τn) ≤ 1

2

(
ϕγ (z) − ϕγ

(
z

1 + ηγ

))
.

To complete the proof of the first inequality in (4.10), we still need to consider z ∈
[e2/γ , (ηε)1/γ τn) (with n ≥ n7(η, ε)). Noting that γ

2 log (1 + ηγ )< 1, we have γ log z −
γ
2 log (1 + ηγ )> γ log z − 1 ≥ 1. By (4.13), and writing c0 := infx∈[2,∞) [e−x sinh (x − 1)],

ϕγ (z) − ϕγ

(
z

1 + ηγ

)
≥ 1

2
ηγ 2 sinh (γ log z − 1) ≥ 1

2
c0ηγ

2eγ log z.

Since eγ log z = z
z1−γ ≥ z−1

((ηε)1/γ τn)1−γ = 1
γ (ηε)(1−γ )/γ

γ (z−1)

τ
1−γ
n

, this implies that

ϕγ (z) − ϕγ

(
z

1 + ηγ

)
≥ 1

2
c0ηγ

2 z − 1

((ηε)1/γ τn)1−γ = c1(1 − η)

η
1
γ

−2
ε

1
γ

− 3
2

γ (z − 1)

2τ 1−γ
n

,
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with c1 := 2√
ζ (2)

c0. Since c1(1−η)

η
1
γ −2

ε
1
γ − 3

2
→ ∞ as ε→ 0+, there exists ε3(η) ∈ (0, ε1(η)) such

that c1(1−η)
η(1/γ )−2 ε1/γ−3/2 > 2 for ε ∈ (0, ε3(η)) and there exists n8(η, ε) ≥ n7(η, ε) such that for

n ≥ n8(η, ε) and z ∈ [e2/γ , (ηε)1/γ τn),

ϕγ (z) − ϕγ

(
z

1 + ηγ

)
> 2 × γ (z − 1)

2τ 1−γ
n

by (4.15)≥ 2
(
ϕγ (z + τn) − ϕγ (σn + τn)

)
.

This yields (4.10) and, thus, implies Lemma 6 in the first case (1 + ηγ )σn+1 ≤ z< (ηε)1/γ τn.

Proof of Lemma 6: second case (ηε)1/γ τn ≤ z< γ 2τn. We first prove the following lemma.

Lemma 7. We keep the previous notation. For 0< a< b<∞, we have

lim sup
n→∞

sup
θ∈[a, b]

|Gn(θτn)θ−γ − 1| = (1 + b)γ − 1

bγ
. (4.16)

Proof. We remind the reader that limn→∞ bnτ
γ
n = 1 and that limn→∞ bnτ

−γ
n = 0. Then, for

θ ∈ [a, b], we have

Gn(θτn) = 2bn
(
ϕγ (τnθ ) − ϕγ (σn) − ϕγ (τn(1 + θ )) + ϕγ (σn + τn)

)
= bnτ

γ
n θ

γ + bnτ
−γ
n θ−γ − 2bn − 2bnϕγ (σn) + bnτ

γ
n

(
1 − (1 + θ )γ

)− bnτ
−γ
n (1 + θ )−γ

+ bnτ
γ
n

(
(1 + σnτ

−1
n )γ − 1

)+ bnτ
−γ
n (1 + σnτ

−1
n )−γ

= bnτ
γ
n θ

γ + bnτ
γ
n

(
1 − (1 + θ )γ

)+ bnτ
−γ
n (θ−γ − (1 + θ )−γ ) + un(η, ε),

where un(η, ε) does not depend on θ and satisfies limn→∞ un(η, ε) = 0. Thus,

Gn(θτn)θ−γ − 1 = − (1 + θ )γ − 1

θγ
+ Rn(η, γ, θ ),

where

Rn(η, γ, θ ) := (bnτ
γ
n − 1)

(
1 − (1 + θ )γ − 1

θγ

)
+ bnτ

−γ
n (θ−γ − (1 + θ )−γ ) + un(η, ε)

θγ
.

Since limn→∞ bnτ
γ
n = 1 by (4.3), we have limn→∞ supθ∈[a, b] |Rn(η, γ, θ )| = 0, which implies

that

lim sup
n→∞

sup
θ∈[a, b]

|Gn(θτn)θ−γ − 1| = sup
θ∈[a, b]

(1 + θ )γ − 1

θγ
.

Note that (1+θ)γ−1
θγ

= γ
∫ 1

0
dv

(θ−1+v)1−γ , which is increasing in θ . This entails (4.16). �

We now turn to the proof of Lemma 6 in the second case. Applying Lemma 7 to a =
1
2 (ηε)1/γ and b = γ 2, and since limε→0+ γ−3γ−2γ ((1 + γ 2)γ − 1) = 1, it follows that there
exists ε4(η) ∈ (0, ε3(η)) such that for ε ∈ (0, ε4(η)) there is an integer n9(η, ε) ≥ n8(η, ε) such
that for n ≥ n9(η, ε) and z ∈ ( 1

2 (ηε)1/γ τn, γ
2τn
)
,

(1 − 2γ 3)
( z

τn

)γ ≤ Gn(z) ≤ (1 + 2γ 3)
( z

τn

)γ
. (4.17)
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We recall that LHS(4.5) stands for the expression on the left-hand side of (4.5). Then

LHS(4.5) = 1

2
Ĩn(z) + Ĩ In(z) + ε Ĩ I In(z),

where:

• Ĩn(z) := Gn(z)2 − P(Zn + Ẑn ≤ z);

• Ĩ In(z) := Gn+1

(
z

1+ηγ
)

− Gn(z);

• Ĩ I In(z) := 2Gn(z) − Gn(z)2 − P(Zn + Ẑn ≤ z) = 2Gn(z) − 2Gn(z)2 + Ĩn(z).

We claim that there exists ε5(η) ∈ (0, ε4(η)) such that for ε ∈ (0, ε5(η)) there is an integer
n10(η, ε) such that for n ≥ n10(η, ε),

Ĩn(z) ≤ 4(1 − η)ε Gn(z)2, z ∈ [(ηε)1/γ τn, γ
2τn). (4.18)

To see why (4.18) is true, we recall that Gn(z) = ∫ z
σn

G′
n(t) dt and that P(Zn + Ẑn ≤ z) =∫ z−σn

σn
G′

n(t)Gn(z − t) dt. Since Gn(σn) = 0, by definition of Gn, we thus get

Ĩn(z) = Gn(z)
(
Gn(z) − Gn(z − σn)

)+
∫ z−σn

σn

G′
n(t)

(
Gn(z) − Gn(z − t)

)
dt.

To get an upper bound for the first term on the right-hand side, we observe that

Gn(z) − Gn(z − σn) =
∫ z

z−σn

G′
n(t) dt =

∫ z

z−σn

2bn
(
ϕ′
γ (t) − ϕ′

γ (t + τn)
)

dt ≤
∫ z

z−σn

2bnϕ
′
γ (t) dt.

For t ∈ (z − σn, z), we have

ϕ′
γ (t) = γ

t
sinh (γ log t) ≤ γ

z − σn
sinh (γ log z) ≤ γ

2(z − σn)
zγ ,

so that for z ∈ [(ηε)1/γ τn, γ
2τn),

Gn(z) − Gn(z − σn) ≤ bnσnγ zγ

z − σn
≤ bnσnγ zγ

(ηε)1/γ τn − σn
= γ

ετn

bnτ
γ
n σn

(ηε)1/γ − σn
τn

ε

(
z

τn

)γ
.

By (4.17), this yields that

Gn(z) − Gn(z − σn) ≤ γ

(1 − 2γ 3)ετn

bnτ
γ
n σn

(ηε)1/γ − σn
τn

εGn(z).

Let ε5(η) ∈ (0, ε4(η)) be such that 6γ 3 <η for ε ∈ (0, ε5(η)). Note that

4(1 − η)
(
η− 6γ 3

)
+
(

1 + 6γ 3
)

4(1 − η)2 < 4(1 − η). (4.19)

Let ε ∈ (0, ε5(η)). Since

lim
n→∞

1

ε(1 − 2γ 3)τn
= 0 and lim

n→∞
bnτ

γ
n γ σn

(ηε)1/γ − σn
τn

= γ (ηε)−
1
γ
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by (4.3), whereas 4(1 − η)(η− 6γ 3)> 0, there exists n11(η, ε) ≥ n9(η, ε) such that for n ≥
n11(η, ε),

Gn(z)
(
Gn(z) − Gn(z − σn)

)≤ 4(1 − η)(η− 6γ 3) εGn(z)2, z ∈ [(ηε)1/γ τn, γ
2τn). (4.20)

The specific choice of the factor in front of εGn(z)2 in the right-hand side member of the last
inequality is justified further.

To deal with
∫ z−σn
σn

G′
n(t)(Gn(z) − Gn(z − t)) dt, we recall that G′

n(t) ≤ 2bnϕ
′
γ (t) and we note

that Gn(z) − Gn(z − t) ≤ ∫ z
z−t 2bnϕ

′
γ (s) ds = 2bn(ϕγ (z) − ϕγ (z − t)), so∫ z−σn

σn

G′
n(t)

(
Gn(z) − Gn(z − t)

)
dt ≤ 4b2

n

∫ z−σn

σn

ϕ′
γ (t)

(
ϕγ (z) − ϕγ (z − t)

)
dt

≤ 4b2
n

∫ z−1

1
ϕ′
γ (t)

(
ϕγ (z) − ϕγ (z − t)

)
dt.

(Indeed, (4.7) implies that if z ≥ (ηε)1/γ τn, then z> 2σn > 2.) The integral on the right-hand
side is cvlγ,1(z) by our definition in (3.10). By Lemma 3, we get that∫ z−σn

σn

G′
n(t)

(
Gn(z) − Gn(z − t)

)
dt ≤ 4b2

nζ (2)γ 2( sinh (γ log z)
)2.

Observe that

4
(
sinh (γ log z)

)2 ≤ z2γ = τ 2γ
n

(
z

τn

)2γ

,

which is bounded by (τ 2γ
n /(1 − 2γ 3)2)Gn(z)2 (see (4.17)). Therefore,∫ z−σn

σn

G′
n(t)

(
Gn(z) − Gn(z − t)

)
dt ≤ ζ (2)γ 2 (bnτ

γ
n )2

(1 − 2γ 3)2
Gn(z)2.

Recall that ζ (2)γ 2 = 4(1 − η)2ε, and that limn→∞ bnτ
γ
n = 1 (see (4.3)). Since 1/(1 − 2γ 3)2 <

1 + 6γ 3 (because γ < 1
3 ), there exists n10(η, ε) ≥ n11(η, ε) such that for n ≥ n10(η, ε), we

have∫ z−σn

σn

G′
n(t)

(
Gn(z) − Gn(z − t)

)
dt ≤ (1 + 6γ 3)4(1 − η)2 εGn(z)2, z ∈ [(ηε)1/γ τn, γ

2τn).

(4.21)
We obtain (4.18) by (4.20), (4.21), and (4.19).

Let us consider Ĩ In(z). Let ε ∈ (0, ε5(η)), n ≥ n10(η, ε), and z ∈ [(ηε)1/γ τn, γ
2τn). We

start with the trivial inequality Ĩ In(z) ≤ Gn+1(z) − Gn(z), and look for an upper bound for
Gn+1(z) − Gn(z). Since limε→0+ (1 − (2 + η)ε)1/γ = 1 and limε→0+ (γ 3/ε) = 0, there exists
ε5(η) ∈ (0, min{ε5(η), η/2}) such that

1

2
< (1 − (2 + η)ε)1/γ and 5γ 3 <

1

2
ηε, ε ∈ (0, ε6(η)). (4.22)

We fix ε ∈ (0, ε6(η)). Since limn→∞ τn
τn+1

= (1 − (2 + η)ε)1/γ (by (4.3)), there exists an integer
ε6(η, ε) ≥ n11(η, ε) such that

τn

τn+1
>

1

2
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for n ≥ n12(η, ε), which implies that z ∈
(

1
2 (ηε)1/γ τn+1, γ

2τn+1

)
; so applying (4.17) twice

leads to

Gn+1(z) ≤ (1 + 2γ 3) ( z

τn+1

)γ
≤ 1 + 2γ 3

1 − 2γ 3

τ
γ
n

τ
γ

n+1

Gn(z).

Note that
1 + 2γ 3

1 − 2γ 3
< 1 + 5γ 3

(because γ < 1
3 ), and that

lim
n→∞

τ
γ
n

τ
γ

n+1

= lim
n→∞

bn+1

bn
= 1 − (2 + η)ε

(see (4.3)). Thus, there exists an integer ε13(η, ε) ≥ n12(η, ε) such that Gn+1(z) ≤ (1 +
5γ 3)

(
1 − (2 + η)ε

)
Gn(z) for n ≥ n13(η, ε) and z ∈ [(ηε)1/γ τn, γ

2τn); consequently,

Ĩ In(z) ≤ Gn+1(z) − Gn(z) ≤ [(1 + 5γ 3)(1 − (2 + η)ε) − 1
]
Gn(z).

Since
(
1 + 5γ 3

)
(1 − (2 + η)ε) − 1 = 5γ 3 − (2 + η)ε− 5γ 3(2 + η)ε < 5γ 3 − (2 + η)ε, which

is smaller than −(2 + 1
2η)ε (by (4.22)), we deduce that for n ≥ n13(η, ε) and z ∈

[(ηε)1/γ τn, γ
2τn),

Ĩ In(z) ≤ −
(

2 + 1

2
η

)
εGn(z). (4.23)

Finally, we turn to Ĩ I In(z), which is easy to estimate:

Ĩ I In(z) = 2Gn(z) − 2Gn(z)2 + Ĩn(z)

≤ 2Gn(z) − 2Gn(z)2 + 4(1 − η)εGn(z)2

≤ 2Gn(z) − 2Gn(z)2 + 4εGn(z)2. (4.24)

Assembling (4.18), (4.23), and (4.24) yields that for ε ∈ (0, ε6(η)), n ≥ n13(η, ε), and z ∈
[(ηε)1/γ τn, γ

2τn),

LHS(4.5) = 1

2
Ĩn(z) + Ĩ In(z) + ε Ĩ I In(z)

≤ 2(1 − η)εGn(z)2 − (2 + 1

2
η)εGn(z) + 2εGn(z) − 2εGn(z)2 + 4ε2Gn(z)2

= −1

2
ηεGn(z) − 2(η− 2ε)εGn(z)2,

which is non-positive since ε < ε6(η)< η
2 . This completes the proof of Lemma 6 when z ∈

[(ηε)1/γ τn, γ
2τn) (i.e. in the second case). �

Proof of Lemma 6: third case γ 2τn ≤ z< e1/
√
γ τn. We easily check that there exists q0 ∈

(0, 1
9 ) such that for all q ∈ (0, q0) the following holds true.
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(
e1/

√
q + 1

)2q ≤ 1 + 3
√

q< 2, (4.25)

q2 − e−4/
√

q > q3 > e−1/
√

q, (4.26)

(1 − q)

(
q3

2

)q

> 1 − √
q. (4.27)

For any q ∈ (0, q0], we define the function

gq(θ ) := (θ + 1)q − θq, θ ∈R
∗+ := (0, ∞). (4.28)

Since limθ→0+ gq(θ ) = 1, limθ→∞ gq(θ ) = 0, and g′
q(θ ) = q((θ + 1)q−1 − θq−1)< 0 for θ ∈

R
∗+, it follows that gq is a decreasing bijection from R

∗+ onto (0, 1).
We collect some elementary properties of gq.

Lemma 8. Let q ∈ (0, q0]. Then the following holds true.

(i) For a ∈ (0, e−1) and θ ∈ [a, e1/
√

q],

gq(θ ) ≤ 6q log 1
a

θ + 1
. (4.29)

(ii) For θ ∈ [q3, e1/
√

q) and r ∈ [1, 2],

gq

(θ
r

)
− gq(θ ) ≥ q(1 − √

q)(r − 1) − q(r − 1)2

θ + 1
. (4.30)

(iii) For θ ∈ [0, e1/
√

q],∫ θ

0
|g′

q(t)| (gq(θ − t) − gq(θ )
)

dt ≤ (1 + 3
√

q)q2 ζ (2)

θ + 1
. (4.31)

Proof. See Appendix B. �
We proceed to the proof of Lemma 6 in the third case. Let q0 ∈ (0, 1

9 ) be the small constant
ensuring (4.25)–(4.27) hold. Fix η ∈ (0, 1). We set

c∗ = c∗(η) := η(5 − 2η) + 4η(1 − η)2

ζ (2)
> 0. (4.32)

Let ε ∈ (0, ε7(η)), where ε7(η) ∈ (0, min{ε6(η), 1
2 }) is such that

γ = γ (ε, η) := 2√
ζ (2)

(1 − η)
√
ε ∈ (0, q0), (1 + ηγ )

(
1 − (2 + η)ε

)− 1
γ < 2, (4.33)

(
1

2
+ ε

) (
1 + 3

√
γ
)≤ 1

2
+ 2

√
γ , (4.34)

c∗ε >
(
ηγ + (2 + η)ε

γ

)
(γ 3/2 + ηγ 2 + (2 + η)ε) + 2γ 5/2ζ (2) + 12εγ 1/2 + 16e−1/

√
γ .

(4.35)
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The seemingly complicated form of the right-hand member of (4.35) is justified in the follow-
ing: it is the sum of several explicit inequalities. We could have used slightly simpler terms,
but the price would have been an extra layer of numbered constants, which we wanted to avoid
for the sake of clarity.

We want to check (4.5) in Lemma 6 when z = τnx, with x ∈ [γ 2, e1/
√
γ ). To this end we first

need to find a lower bound for P(Zn+1 > xτn/(1 + ηγ )). More precisely, in the third case (4.5)
is equivalent to prove that there exists ε′ ∈ (0,∞) (depending on η) such that for all ε ∈ (0, ε′)
there is n(ε′) such that for all n ≥ n(ε′) and all x ∈ [γ 2, e1/

√
γ ):

[
 1
2 +ε(ν

′
n)]((xτn, ∞)) ≤ P

(
Zn+1 >

xτn

1 + ηγ

)
. (4.36)

where 
p is the transformation in (2.9).
To this end, we first study the tail probability of Zn

τn
. Let a> 0. By (4.4), for all sufficiently

large n such that aτn ≥ σn, and all θ ≥ a,

P(Zn > θτn) = bnτ
γ
n

(
(θ + 1)γ − θγ

)− bnτ
−γ
n

(
θ−γ − (θ + 1)−γ

)
= gγ (θ )

(
bnτ

γ
n − bnτ

−γ
n θ−γ (θ + 1)−γ

)
,

where gγ is the function in (4.28). Hence,

sup
θ∈[a,∞)

∣∣gγ (θ )−1
P(Zn > θτn) − 1

∣∣≤ |bnτ
γ
n − 1| + bnτ

−γ
n a−γ .

Since limn→∞ bnτ
γ
n = 1 and limn→∞ bnτ

−γ
n = 0 (by (4.3)), this implies that

lim
n→∞ sup

θ∈[a,∞)

∣∣gγ (θ )−1
P(Zn > θτn) − 1

∣∣= 0. (4.37)

Note that supθ∈[a,∞) gγ (θ ) = gγ (a)<∞; thus, we also have limn→∞ supθ∈[a,∞)

∣∣P(Zn >

θτn) − gγ (θ )
∣∣= 0. Taking a = 1

2 e−4/
√
γ yields the existence of a positive integer n14(η, ε)

such that for n ≥ n14(η, ε) and θ ∈ [ 1
2 e−4/

√
γ , ∞),∣∣gγ (θ )−1

P(Zn > θτn) − 1
∣∣≤ e−2/

√
γ , (4.38)

∣∣P(Zn > θτn) − gγ (θ )
∣∣≤ e−2/

√
γ . (4.39)

In order to deal with P(Zn+1 > xτn/(1 + ηγ )) on the right-hand side of (4.36), we write

�n(γ ) := (1 + ηγ )
τn+1

τn
.

By (4.3), limn→∞ bnτ
γ
n = 1, whereas by definition, bn+1

bn
= 1 − (2 + η)ε. By using the

inequality (1 − y)−z ≥ 1 + yz for y ∈ (0, 1) and z ≥ 0, we therefore get

lim
n→∞ ρn(γ ) = (1 + ηγ )(1 − (2 + η)ε)−

1
γ ≥ (1 + ηγ )

(
1 + (2 + η)ε

γ

)
> 1 + ηγ + (2 + η)ε

γ
.
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In addition, by (4.33), limn→∞ ρn(γ )< 2. Therefore, there exists an integer n15(η, ε) ≥
n14(η, ε) such that for n ≥ n15(η, ε),

1 + ηγ + (2 + η)ε

γ
< ρn(γ )< 2.

Let x ∈ [γ 2, e1/
√
γ ). We have

xτn

1 + ηγ
= xτn+1

ρn(γ )
,

and
x

ρn(γ )
>
γ 2

2
≥ 1

2
e−4/

√
γ

(by the elementary inequality z2 ≤ e4
√

z, for z ≥ 1), so we are entitled to apply (4.39) to θ :=
x/ρn(γ ) to see that

P

(
Zn+1 >

xτn

1 + ηγ

)
≥ gγ

(
x

ρn(γ )

)
− e−2/

√
γ ≥ gγ

(
x

1 + ηγ + (2+η)ε
γ

)
− e−2/

√
γ . (4.40)

To prove (4.36), we need to find an appropriate upper bound for [
 1
2 +ε(ν

′
n)]((xτn, ∞)). Let

Z∗
n := Zn

τn
, and let Ẑ∗

n denote an independent copy of Z∗
n . For θ ∈ (γ 3, e1/

√
γ
)
, we define the

event Bn(θ ) := {Z∗
n + Ẑ∗

n ≥ θ}, and note that

P(Bn(θ )) ≤ P
(
Z∗

n ≥ θ)+ P
(̂
Z∗

n ≥ θ ; Z∗
n < θ

)+ P
(̂
Z∗

n < θ ; Z∗
n < θ ; Bn(θ )

)
= 2P

(
Z∗

n ≥ θ)− [P
(
Z∗

n ≥ θ)]2 + P
(̂
Z∗

n < θ ; Z∗
n < θ ; Bn(θ )

)
.

Therefore,[

 1

2 +ε(ν
′
n)
]
((xτn, ∞)) =

(
1

2
+ ε

)
P(Bn(x)) +

(
1

2
− ε

)
[P(Z∗

n ≥ x)]2

≤ (1 + 2ε)P(Z∗
n ≥ x) +

(
1

2
+ ε

)
P(̂Z∗

n < x; Z∗
n < x; Bn(x)). (4.41)

We first get an upper bound for the second term in the right-hand side member of (4.41).
To this end, we write x1 := x − e−4/

√
γ , so by (4.26), x1 ≥ γ 2 − e−4/

√
γ > γ 3 > e−1/

√
γ . We

consider {̂Z∗
n < x} as the union of {̂Z∗

n < e−4/
√
γ }, {̂Z∗

n ∈ [e−4/
√
γ , x1]}, and {̂Z∗

n ∈ (x1, x)}. On
{̂Z∗

n < e−4/
√
γ } ∩ Bn(x), we have Zn > x1. This implies that[

 1

2 +ε(ν
′
n)
]
((xτn, ∞))

≤ (1 + 2ε)P(Z∗
n ≥ x) + (1 + 2ε)P(Z∗

n ∈ (x1, x))

+
(

1

2
+ ε

)
P
(̂
Z∗

n ∈ [e−4/
√
γ , x1

]
; Z∗

n ∈ (x − Ẑ∗
n , x

))
= (1 + 2ε)P(Z∗

n > x1) +
(

1

2
+ ε

)
P
(̂
Z∗

n ∈ [e−4/
√
γ , x1

]
; Z∗

n ∈ (x − Ẑ∗
n , x

))
. (4.42)

We then estimate the two probability expressions on the right-hand side. Since we have proved
that x1 > e−1/

√
γ , (4.39) applies with θ = x1 and we get P(Z∗

n ≥ x1) ≤ gγ (x1) + e−2/
√
γ . By the
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mean-value theorem, gγ (x1) − gγ (x) = −(x − x1)g′
γ (y) = −e−4/

√
γ g′
γ (y) for some y ∈ [x1, x].

Since −g′
γ (y) = γ [y−(1−γ ) − (y + 1)−(1−γ )] ≤ γ y−(1−γ ) ≤ γ (x1)−(1−γ ) < γ 1−3(1−γ ) ≤ γ−2

(we have used the fact that x1 > γ
3), we obtain that

gγ (x1) − gγ (x) ≤ γ−2 e−4/
√
γ ≤ e−2/

√
γ (4.43)

(here, we have used also the elementary inequality z2 ≤ e2
√

z for z ≥ 1). Therefore,

P(Z∗
n > x1) ≤ gγ (x) + 2e−2/

√
γ .

By (4.29) (applied to a = e−1/
√
γ and q = γ , which is possible since γ < q0), gγ (x) ≤ 6γ 1/2

x+1 .
Since 2(1 + 2ε) ≤ 3, this implies that

(1 + 2ε)P(Z∗
n > x1) ≤ gγ (x) + 2εgγ (x) + 2(1 + 2ε)e−2/

√
γ

≤ gγ (x) + 12εγ 1/2

x + 1
+ 3e−2/

√
γ . (4.44)

We next prove an upper bound for P(̂Z∗
n ∈ [e−4/

√
γ , x1]; Z∗

n ∈ (x − Ẑ∗
n , x)) thanks to (4.39).

We fix t ∈ (0, x1) and we first observe that x ≥ x − t ≥ x − x1 = e−4/
√
γ . Then (4.39) applies

with θ equal to x and x − t and we get

P(Z∗
n ∈ (x − t, x)) = P(Z∗

n > x − t) − P(Z∗
n > x) ≤ gγ (x − t) − gγ (x) + 2e−2/

√
γ .

To simplify, we next denote by fZ∗
n
(·) the density of Z∗

n and we set γ1 := e−4/
√
γ = x − x1. Then

P(̂Z∗
n ∈ [γ1, x1]; Z∗

n ∈ (x − Ẑ∗
n , x)) =

∫
R

fZ∗
n
(t)1[γ1,x1](t)P

(
Z∗

n ∈ (x − t, x]
)

dt

≤
∫
R

1[γ1,x1](t)fZ∗
n
(t)
(
gγ (x − t) − gγ (x)

)
dt + 2e−2/

√
γ .

(4.45)

Then, by Fubini, observe that∫
R

1[γ1,x1](t)fZ∗
n
(t)
(
gγ (x − t) − gγ (x)

)
dt =

∫
R

dt
∫
R

ds fZ∗
n
(t)1[γ1,x1](t)1[0,t](x − s)

(− g′
γ (s)

)
=
∫ x1

0
du
∫
R

dt fZ∗
n
(t)1[γ1,x1](t)1[u,∞)(t)

∣∣g′
γ (x − u)

∣∣
=
∫ x1

0

∣∣g′
γ (x − u)

∣∣P(Z∗
n ∈ [γ1 ∨ u, x1]

)
du.

Note that if u ∈ [0, x1], then x1 ≥ u ∨ γ1 ≥ γ1 >
1
2 e−4/

√
γ . Thus, (4.39) applies and we get∫ x1

0

∣∣g′
γ (x − u)

∣∣P(Z∗
n ∈ [γ1 ∨ u, x1])du ≤

∫ x1

0

∣∣g′
γ (x − u)

∣∣(gγ (u ∨ γ1) − gγ (x1) + 2e−2/
√
γ )du

≤
∫ x

0

∣∣g′
γ (x − u)

∣∣(gγ (u) − gγ (x)
)

du + 2e−2/
√
γ

∫ x1

0

∣∣g′
γ (x − u)

∣∣ du, (4.46)
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since gγ is decreasing. Then∫ x1

0

∣∣g′
γ (x − u)

∣∣P(Z∗
n ∈ [γ1 ∨ u, x1]

)
du

≤
∫ x

0

∣∣g′
γ (t)

∣∣(gγ (x − t) − gγ (x)
)
dt + 2e−2/

√
γ
(
gγ (γ1) − gγ (x1)

)
≤ (1 + 3

√
γ )γ 2 ζ (2)

x + 1
+ 2e−2/

√
γ (4.47)

by (4.31), Lemma 8(iii) (with q = γ < q0 and θ = x< e1/
√
γ ), and since x − x1 = γ1 and

gγ (γ1) − gγ (x1) ≤ gγ (γ1)< 1. By (4.45) and (4.47) we then get

P(̂Z∗
n ∈ [γ1, x1]; Z∗

n ∈ (x − Ẑ∗
n , x)) ≤ (1 + 3

√
γ )γ 2 ζ (2)

x + 1
+ 4e−2/

√
γ .

Since ( 1
2 + ε)(1 + 3

√
γ ) ≤ 1

2 + 2
√
γ by (4.34) and 1

2 + ε≤ 1, it follows that(
1

2
+ ε

)
P(̂Z∗

n ∈ [γ1, x1]; Z∗
n ∈ (x − Ẑ∗

n , x)) ≤
(

1

2
+ 2

√
γ

)
γ 2 ζ (2)

x + 1
+ 4e−2/

√
γ .

Combined with (4.42) and (4.44), we obtain that

[
 1
2 +ε(ν

′
n)]((xτn, ∞)) ≤ gγ (x) + 3e−2/

√
γ + 12εγ 1/2

x + 1
+
(

1

2
+ 2

√
γ

)
γ 2 ζ (2)

x + 1
+ 4e−2/

√
γ

= gγ (x) +
12εγ 1/2 +

(
1
2 + 2

√
γ

)
γ 2ζ (2)

x + 1
+ 7e−2/

√
γ .

In view of (4.40), this yields that

P

(
Zn+1 >

xτn

1 + ηγ

)
− [
 1

2 +ε(ν
′
n)]((xτn, ∞))

≥ gγ

(
x

1 + ηγ + (2+η)ε
γ

)
− gγ (x) − e−2/

√
γ − 12εγ 1/2 + ( 1

2 + 2
√
γ )γ 2ζ (2)

x + 1
− 7e−2/

√
γ

= gγ

(
x

1 + ηγ + (2+η)ε
γ

)
− gγ (x) −

ζ (2)
2 γ 2 + (2γ 5/2ζ (2) + 12εγ 1/2)

x + 1
− 8e−2/

√
γ .

We easily check that we can apply (4.30) with q = γ < q0, θ = x ∈ [γ 3, e1/
√
γ ], and r = 1 +

ηγ + (2+η)ε
γ

∈ [1, 2]. Then we get

gγ

(
x

1 + ηγ + (2+η)ε
γ

)
− gγ (x) ≥

γ (1 − γ 1/2)
(
ηγ + (2+η)ε

γ

)
− γ

(
ηγ + (2+η)ε

γ

)2

x + 1

=
ηγ 2 + (2 + η)ε−

(
ηγ + (2+η)ε

γ

)
(γ 3/2 + ηγ 2 + (2 + η)ε)

x + 1
.
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As a consequence,

P

(
Zn+1 >

xτn

1 + ηγ

)
− [
 1

2 +ε(ν
′
n)]((xτn, ∞)) ≥ ηγ 2 + (2 + η)ε− ζ (2)

2 γ 2 − Rε
x + 1

− 8e−2/
√
γ ,

where

Rε :=
(
ηγ + (2 + η)ε

γ

)
(γ 3/2 + ηγ 2 + (2 + η)ε) + 2γ 5/2ζ (2) + 12εγ 1/2.

Recall that η ∈ (0, 1) is a constant and recall from (4.32), (4.33), (4.34), and (4.35) that γ =
(2/

√
ζ (2))(1 − η)

√
ε. Thus,

ηγ 2 + (2 + η)ε− ζ (2)

2
γ 2 = c∗ ε,

where

c∗ = η(5 − 2η) + 4η(1 − η)2

ζ (2)
> 0.

Since 8(x + 1)e−2/
√
γ ≤ 8(e1/

√
γ + 1)e−2/

√
γ ≤ 16e−1/

√
γ , it follows from (4.35) that

ηγ 2 + (2 + η)ε− ζ (2)
2 γ 2) − Rε

x + 1
− 8e−2/

√
γ > 0.

Therefore, we have found ε7(η) ∈ (0, 1) such that for all ε ∈ (0, ε7(η)), there is n15(η, ε) such
that (4.36) holds true for all n ≥ n15(η, ε) and all x ∈ [γ 2, e1/

√
γ ], which completes the proof

of Lemma 6 in the third case γ 2τn ≤ z< e1/
√
γ τn.

Proof of Lemma 6: fourth (and last) case z ≥ e1/
√
γ τn. Let η, ε ∈ (0, 1) and recall the def-

inition of γ from (4.1): namely, γ = γ (ε, η) := 2ζ (2)−1/2(1 − η)
√
ε. We fix η and we easily

check that we can find ε8(η) ∈ (0, ε7(η)) such for all ε ∈ (0, ε8(η)), the following inequalities
hold true:

γ ≤ 1

400
, (1 + 2ε)

(
1 + 2e−1/(5

√
γ )
)4

1 − 2e−1/(2
√
γ )

<
(
1 − 2e−1/(2

√
γ ))2 (1 − (2 + η)ε)−(1−γ )/γ .

(4.48)
The following lemma gives an estimate of P(Zn ≥ τnθ ) when θ is sufficiently large.

Lemma 9. Let η ∈ (0, 1). Let ε ∈ (0, ε8(η)) and n ≥ n15(η, ε). Then

1 − 2e−1/(2
√
γ ) ≤ θ1−γ

γ
P(Zn ≥ τnθ ) ≤ 1 + e−2/

√
γ , θ ∈ [e1/(2

√
γ ), ∞). (4.49)

Furthermore,
P(Zn ≥ e3/(4

√
γ )τn) ≤ e−3/(4

√
γ ). (4.50)

Proof. For θ ∈R
∗+, write as before

gγ (θ ) := (θ + 1)γ − θγ = γ

θ1−γ

∫ 1

0

du

(1 + u
θ

)1−γ .
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Thus,
θ1−γ

γ
gγ (θ ) ≤ 1.

On the other hand,

θ1−γ

γ
gγ (θ ) ≥

∫ 1

0

du

1 + u
θ

≥
∫ 1

0

du

1 + 1
θ

= θ

1 + θ
.

Thus,

for all θ ∈R
∗+,

θ

1 + θ
≤ θ1−γ

γ
gγ (θ ) ≤ 1.

By (4.38), for n ≥ n15(η, ε) and θ ∈ [ 1
2 e−4/

√
γ , ∞), we get

(1 − e−2/
√
γ )

θ

1 + θ
≤ θ1−γ

γ
P(Zn ≥ τnθ ) ≤ 1 + e−2/

√
γ . (4.51)

If θ > e1/(2
√
γ ), then 1

1+θ ≤ 1
θ

≤ e−1/(2
√
γ ), so (1 − e−2/

√
γ ) θ

1+θ ≥ 1 − 1
1+θ − e−2/

√
γ ≥ 1 −

2e−1/(2
√
γ ), and (4.49) follows.

To get (4.50), it suffices to take θ := e3/(4
√
γ ), and note that in this case,

γ

θ1−γ = γ e3
√
γ /4

e3/(4
√
γ )

≤ γ e

e3/(4
√
γ )

≤ 1

2
e−3/(4

√
γ ),

whereas 1 + e−2/
√
γ ≤ 2, so (4.50) follows from the second inequality in (4.51).

We proceed to the proof of Lemma 6 in the fourth case: z ≥ e1/
√
γ τn. Let ε ∈ (0, ε8(η)), n ≥

n15(η, ε), and x ∈ [e1/
√
γ , ∞). We write as before Z∗

n := Zn
τn

where Ẑ∗
n denotes an independent

copy of Z∗
n . We have, for x′ ∈ (0, x),

P
(
Z∗

n + Ẑ∗
n > x

)≤ P(Z∗
n > x′) + P(̂Z∗

n > x′) + P(̂Z∗
n > x − x′, Z∗

n > x − x′)

= 2P(Z∗
n > x′) + (

P(Z∗
n > x − x′)

)2.

We now take x′ := (1 − e−1/(4
√
γ ))x, so x′ ∈ [e1/(2

√
γ ), ∞) (because 1 − e−1/(4

√
γ ) >

e−1/(2
√
γ ) as

√
γ ≤ 1

20 according to (4.48)) and x − x′ ∈ [e3/(4
√
γ ), ∞). By (4.50),

P(Z∗
n > x − x′) ≤ P

(
Z∗

n > e3/(4
√
γ ))≤ e−3/(4

√
γ ). (4.52)

Hence,
P
(
Z∗

n + Ẑ∗
n > x

)≤ 2P(Z∗
n > x′) + e−3/(4

√
γ )

P(Z∗
n > x − x′).

We easily check that we can apply (4.49) to θ = x′ and to θ = x − x′, which yields

P
(
Z∗

n + Ẑ∗
n > x

)≤
(

2
( x

x′
)1−γ + e−3/(4

√
γ )
(

x

x − x′

)1−γ) 1 + e−2/
√
γ

1 − 2e−1/(2
√
γ )

P(Z∗
n > x).

We have ( x

x′
)1−γ ≤ x

x′ = 1

1 − e−1/(4
√
γ )
< 1 + e−1/(5

√
γ )
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(noting that (1 + e−1/(5
√
γ ))(1 − e−1/(4

√
γ ))> 1 because

√
γ ≤ 1

20 by (4.48)),( x

x − x′
)1−γ ≤ x

x − x′ = e1/(4
√
γ ).

Thus,

2
( x

x′
)1−γ + e−3/(4

√
γ )
( x

x − x′
)1−γ ≤ 2(1 + e−1/(5

√
γ )) + e−1/(2

√
γ ) ≤ 2

(
1 + 2e−1/(5

√
γ )),

which implies that

P
(
Z∗

n + Ẑ∗
n > x

)≤ 2
(
1 + 2e−1/(5

√
γ )) 1 + e−2/

√
γ

1 − 2e−1/(2
√
γ )

P(Z∗
n > x)

≤ 2
(
1 + 2e−1/(5

√
γ )
)2

1 − 2e−1/(2
√
γ )

P(Z∗
n > x).

Let Vn := (Zn + Ẑn)En + (Zn ∧ Ẑn)(1 − En), where En denotes a Bernoulli random variable
that is independent of (Zn, Ẑn) and such that P(En = 1) = 1

2 + ε. Then

P(Vn ≥ xτn) =
(

1

2
+ ε

)
P(Z∗

n + Ẑ∗
n > x) +

(
1

2
− ε

) (
P(Z∗

n > x)
)2.

We use the trivial inequality 1
2 − ε≤ 1. By (4.52) P(Z∗

n > x) ≤ P(Z∗
n > x − x′) ≤ e−3/(4

√
γ ).

Therefore,

P(Vn ≥ xτn) ≤ (1 + 2ε)

(
1 + 2e−1/(5

√
γ )
)2

1 − 2e−1/(2
√
γ )

P(Z∗
n > x) + e−3/(4

√
γ )

P(Z∗
n > x)

≤ (1 + 2ε)

(
1 + 2e−1/(5

√
γ )
)3

1 − 2e−1/(2
√
γ )

P(Z∗
n > x).

To complete the proof of the lemma, we observe that

LHS(4.5) := P(Vn ≥ xτn) − P

(
Zn+1 > τn

x

1 + ηγ

)

= P(Vn ≥ xτn) − P

(
Z∗

n+1 >
τn

τn+1

x

1 + ηγ

)

≤ (1 + 2ε)

(
1 + 2e−1/(5

√
γ )
)3

1 − 2e−1/(2
√
γ )

P(Z∗
n > x) − P

(
Z∗

n+1 >
τn

τn+1
x

)
.

We can apply (4.49) to x ≥ e1/
√
γ > e1/(2

√
γ ) and we get P(Z∗

n > x) ≤ (γ /x1−γ )(1 + e−2/
√
γ ),

which is bounded by (γ /x1−γ )
(
1 + 2e−1/(5

√
γ )
)
. Thus,

LHS(4.5) ≤ (1 + 2ε)

(
1 + 2e−1/(5

√
γ )
)4

1 − 2e−1/(2
√
γ )

γ

x1−γ − P

(
Z∗

n+1 >
τn

τn+1
x

)
. (4.53)

We look for a lower bound for P(Z∗
n+1 > (τn/τn+1)x). By definition, limn→∞ τn/τn+1

= (1 − (2 + η)ε)1/γ and limε→0+ (1 − (2 + η)ε)1/γ = 1. Therefore, there exists ε9(η) ∈
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(0, ε8(η)) such that for ε ∈ (0, ε9(η)), there is an integer n7(η, ε) ≥ n15(η, ε) such that for
all n ≥ n16(η, ε),

τn

τn+1
≥ e−1/(2

√
γ ) and

(τn+1

τn

)1−γ ≥ (1 − 2e−1/(2
√
γ ))(1 − (2 + η)ε)−(1−γ )/γ .

Since τn
τn+1

x ≥ e1/(2
√
γ ), (4.49) applies to θ := τn

τn+1
x and for all ε ∈ (0, ε9(η)) and all n ≥

n16(η, ε), we get

P

(
Z∗

n+1 >
τn

τn+1
x

)
≥ (1 − 2e−1/(2

√
γ ))(τn+1

τn

)1−γ γ

x1−γ

≥ (1 − 2e−1/(2
√
γ ))2 (1 − (2 + η)ε)−(1−γ )/γ γ

x1−γ .

Going back to (4.53), for all ε ∈ (0, ε9(η)), all n ≥ n16(η, ε), and all x ∈ [e1/
√
γ , ∞), we obtain

LHS(4.5) ≤
(

(1 + 2ε)

(
1 + 2e−1/(5

√
γ )
)4

1 − 2e−1/(2
√
γ )

− (
1 − 2e−1/(2

√
γ ))2 (1 − (2 + η)ε)−(1−γ )/γ

)
γ

x1−γ ,

which is negative according to (4.48). This implies Lemma 6 in the fourth case, and thus
completes the proof of the lemma. �

5. Proof of Theorem 2

Let (Graphn(p))n∈N be the sequence of graphs that are constructed as explained in the
introduction, i.e. Graphn+1(p) is obtained by replacing each edge of Graphn(p), either by two
edges in series with probability p = 1

2 + ε, or by two parallel edges with probability 1 − p =
1
2 − ε, whereas Graph0(p) is the graph of two vertices connected by an edge.

Let m be a non-negative integer. We construct a Galton–Watson branching process (Z(m)
k )k∈N

whose offspring distribution is the law of Dm(p), such that Z(m)
1 = Dm(p) and such that

P-a.s. for all k ∈N, Dkm(p) ≤ Z(m)
k . (5.1)

Indeed, suppose that Dkm(p) ≤ Z(m)
k . Then Graph(k+1)m(p) is obtained by replacing each

edge of Graphkm(p) by an independent copy of Graphm(p). Choose a geodesic path in
Graphkm(p) and denote by Dm,j(p) the distance joining the extreme vertices of the graph
Graphm,j(p) which replaces the jth edge of the specified geodesic path of Graphkm(p)
in the recursive construction of Graph(k+1)m(p) from Graphkm(p). Conditionally given
Graphkm(p), the Graphm,j(p) are independent and identically distributed (i.i.d.) with the same
law as Graphm(p), as mentioned previously. It entails D(k+1)m(p) ≤∑1≤j≤Dkm(p) Dm,j(p). Let
(�(k, j))k,j∈N be an array of i.i.d. random variables with the same law as Dm(p). Assume,
furthermore, that (�(k, j))k,j∈N is independent of the graphs (Graphn(p))n∈N. Then, we set
Dm,j(p) =�(k, j − Dkm(p)) for all integers j>Dkm(p) and we set Z(m)

k+1 =∑
1≤j≤Z(m)

k
Dm,j(p).

Therefore, D(k+1)m(p) ≤ Z(m)
k+1 and conditionally given Z(m)

k , Z(m)
k+1 is distributed as the sum of

Z(m)
k i.i.d. random variables having the same law as Dm(p). This completes the proof of (5.1).

For all k ∈N, we set W (m)
k = Z(m)

k /E[Dm(p)]k. Then (W (m)
k )k∈N is a martingale which is

bounded in L2 (here the support of the law of Dm(p) is finite). Therefore, P-a.s. limk→∞ W (m)
k =
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W (m)∞ > 0 (because there is no extinction since P(Dm(p) = 0) = 0). Since (Dn(p))n∈N is a
non-decreasing sequence of random variables, we P-a.s. get for all n ∈N that

Dn(p) ≤ Dk(n)m(p) ≤ W (m)
k(n)E[Dm(p)]k(n) where we have set k(n) = �n/m� + 1.

Therefore, for all m ≥ 2,

P-a.s. lim sup
n→∞

1

n
log Dn(p) ≤ 1

m
log E[Dm(p)],

which implies the last inequality in (1.4) in Theorem 2.
Let us prove the first inequality in (1.4). To this end, let Yn be a random variable with law

νn as defined in Lemma 1. As already explained in the proof of the lower bound of Theorem 1,
for all η ∈ (0, η0), there exists εη ∈ (0, 1/2) such that for all ε ∈ (0, εη), there is nη,ε ∈N and

θη,ε that satisfy θη,εYn
st≤Dn for all n ≥ nη,ε and, thus,

P
(
Dn ≤ θη,εn−2/δλn

)≤ P
(
Yn ≤ n−2/δλn

)= 2anϕδ
(
n−2/δλn

)
,

where we recall from (3.2) that ϕδ(x) = 1
2 (xδ + x−δ) − 1, that

δ = 2ζ (2)−
1
2 (1 + η)

√
ε, that an = 1

4

(
1 − 2ε+ ηδ2)n, n ∈N.

and that λn is such that 2anϕδ(λn) = 1. Since limn→∞ anλ
δ
n = 1 (by Lemma 1(i)) we get

2anϕδ(n−2/δλn) ∼n→∞ n−2 and
∑

n≥1 P(Dn ≤ θη,εn−2/δλn)<∞, which implies by Borel–
Cantelli that

P-.a.s. for all sufficiently large n, Dn ≥ θη,εn−2/δλn.

Since limn→∞ anλ
δ
n = 1, it implies for all η ∈ (0, η0) and for all ε ∈ (0, εη) that

P-.a.s. lim inf
n→∞

1

n
log Dn(p) ≥ −1

δ
log (1 − 2ε+ ηδ2) =:ψη(ε).

Then observe that

ψη(ε)√
ε

∼ε→0+

√
ζ (2)

1 + η

(
1 − 2

ζ (2)
η(1 + η)2

)
−−−−→
η→0+

√
ζ (2).

This easily entails the existence of a function α̃(·) as in the statement of Theorem 2.
Then we derive (1.4) from (1.5) by noticing that for all p, p′ ∈ [0, 1] such that p< p′, we

have

Dn(p)
st≤Dn(p′),

which is an easy consequence of the equation (1.1): we leave the details to the reader.

Appendix A. Heuristic derivation of (2.3) from (2.1) using the scaling form (2.2)

For p = 1
2 + ε, we can rewrite (2.1) as

an+1(k) − an(k) = S1 + εS2 + S3,
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where

S1 := 1

2

∑
1≤i<k

an(i)
(
an(k − i) − 2an(k)

)
,

S2 := −2an(k) +
∑

1≤i<k

an(i)
(
an(k − i) + 2an(k)

)
and S3 := −(1 − p)an(k)2.

Using the scaling form (2.2)

an(k) = 1

k
√

n
f
(

n,
log k√

n

)
with f regular and bounded, and the fact that

1

i(k − i)
= 1

ki
+ 1

k(k − i)
,

we have ∑
1≤i<k

an(i)an(k − i) = 2

kn

∑
1≤i<k

1

i
f
(

n,
log i√

n

)
f
(

n,
log (k − i)√

n

)
,

and, thus,

S1 = 1

kn

∑
1≤i<k

f
(

n, log i√
n

)
i

[
f

(
n,

log (k − i)√
n

)
− f

(
n,

log k√
n

)]
.

Writing log k = x
√

n, we get that

f

(
n,

log i√
n

) [
f

(
n,

log (k − i)√
n

)
− f

(
n,

log k√
n

)]

≈ f

(
n, x + log i

k√
n

)[
f

(
n, x + log (1 − i

k )√
n

)
− f

(
n, x

)]

≈ f
(
n, x) ∂xf

(
n, x)

log (1 − i
k )√

n
.

By taking i = ku, we get that, for large n,

S1 ≈ 1

k n
√

n
f
(
n, x) ∂xf

(
n, x)

1

k

∑
1≤i<k

log (1 − i
k )

i/k

≈ 1

k n
√

n
f
(
n, x

)
∂xf
(
n, x

) ∫ 1

0

log (1 − u)

u
du.

Similarly, we can show that

S2 ≈ 1

k
√

n

[
−2f

(
n, x

)+ 4f
(
n, x

) ∫ x

0
f
(
n, y

)
dy

]
.
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On the other hand,

an(k)2 = 1

n
O

(
1

k2

)
,

and

an+1(k) − an(k) ≈ 1

k
√

n
∂nf (n, x) − 1

2kn
√

n
f (n, x) − x

2kn
√

n
∂xf (n, x).

By neglecting terms of order O(k−2) and of order k−1o
(
n−3/2

)
, we can rewrite (2.1) as

1

k n
√

n

[
n∂nf (n, x) − 1

2
f (n, x) − 1

2
∂xf (n, x)

]

= 1

k n
√

n
f
(
n, x

)
∂xf
(
n, x

) ∫ 1

0

log (1 − u)

u
du

+ ε

k
√

n

[
− 2f

(
n, x

)+ 4f
(
n, x

) ∫ x

0
f
(
n, y

)
dy

]
,

and this leads to (2.3).

Appendix B. Proofs of Lemmas 4 and 8

Proof of Lemma 4

(i) Observe that ϕ′
q(x) = (q/x) sinh (q log x) that is non-negative on [1,∞). Since ϕ′

q(1) =
0 = limx→∞ ϕ′

q(x), there exists xq ∈ (1,∞) such that ϕ′
q(xq) = supx∈[1,∞) ϕ

′
q(x) =: Mq.

Then

ϕ′′
q (x) = q

x2
cosh (q log x)

(
q − tanh (q log x)

)= q

x2
cosh (q log x)

(
2

x2q + 1
− (1 − q)

)
.

Thus, xq =
(

1+q
1−q

)1/(2q)
, and (i) follows immediately.

(ii) Note that ϕ′′
q is positive on [1, xq) and negative on (xq, ∞), which implies the existence

of the inverse functions �q and rq as in (ii). As y → 0+, �q(y) → 1 and rq(y) → ∞. Set
λ= �q(y) − 1 and observe that

y = ϕ′
q(1 + λ) = q

(
(1 + λ)q − (1 + λ)−q

)
2(1 + λ)

= q2λ
(
1 + Oq(λ)

)
,

which implies the estimate in (ii) for �q(y) as y → 0+. Similarly, observe that

y = ϕ′
q

(
rq(y)

)∼y→0+
q

rq(y)

1

2
rq(y)q ∼y→0+

q

2
rq(y)−(1−q),

which implies the estimate in (ii) for rq(y) as y → 0+.
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(iii) Observe that �q(Mq) = rq(Mq) = xq and, thus, �q(Mq) = 0. Note for all y ∈ (0, Mq)

that�′
q(y) = y

(
r′

q(y) − �′q(y)
)
< 0. Since�q(y) ∼ 1

2 rq(y)q ∼ 1
2 (2y/q)−

q
1−q as y → 0+, the

function �q : (0, Mq] →R+ is a C1 decreasing bijection and the estimates for �−1
q (x),

�q(�−1
q (x)), and rq(�−1

q (x)) as x → ∞ are immediate consequence of the previous
equivalence and of (ii).

(iv) First note that

2g(x) = xq((1 + ax−1)q − 1
)+ x−q((1 + ax−1)−q − 1

)∼x→∞ qax−(1−q).

Thus, g> 0 and g(x) → 0 as x → ∞. Suppose there exists x∗ ∈ [1, ∞) such that g′(x∗) =
0. Then with y∗ := ϕ′

q(x∗), we have x∗ = �q(y∗) and x∗ + a = rq(y∗). Let us check that
g′ < 0 on (x∗, ∞). Assume there exists x′ > x∗ such that g′(x′) ≥ 0. Since

2

q
g′(x) = x−(1−q)((1 + ax−1)−(1−q) − 1

)− x−(1+q)((1 + ax−1)−(1+q) − 1
)

∼x→∞ −(1 − q)ax−(2−q),

which would imply that g′(x)< 0 for all sufficiently large x. Therefore, there would
exist x′′ ∈ [x′, ∞) such that g′(x′′) = 0. This would imply that x′′ = �q(y′′) and x′′ + a =
rq(y′′), with y′′ := ϕ′

q(x′′). But y 	→ rq(y) − �q(y) being increasing, we would have
y′′ = y∗ and, thus, x∗ = x′′, which would be absurd. Consequently, g′(x)< 0 for all
x ∈ (x∗, ∞), which proves (iv).

Proof of Lemma 8

Fix q ∈ (0, q0]. (i) Let a ∈ (0, e−1) and θ ∈ [a, e1/
√

q]. By definition, gq(θ ) = (θ + 1)q [1 −
e−q log ( 1

θ
+1)]. Since 1 − e−x ≤ x (for x ∈R

∗+), this yields that gq(θ ) ≤ (θ + 1)qq log (1/a +
1). By observing that log ( 1

a + 1) = log 1
a + log (1 + a) ≤ log (1/a) + 1< 2 log (1/a) (for a ∈

(0, e−1)), we get that

gq(θ ) ≤ 2(θ + 1)qq log
1

a
.

On the other hand, let us write

gq(θ ) = q
∫ 1

0

du

(θ + u)1−q
.

Since
1

(θ + u)1−q
≤ (θ + 1)q

θ + u
≤ (θ + 1)q

θ

for u ∈ [0, 1], we get that

gq(θ ) ≤ (θ + 1)q q

θ
≤ 2(θ + 1)q q

θ
.

Therefore,

gq(θ ) ≤ 2(θ + 1)q q min

{
log

1

a
,

1

θ

}
= 2(θ + 1)q q

θ + 1
(θ + 1) min

{
log

1

a
,

1

θ

}
.
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By (4.25), (θ + 1)q ≤ (e1/
√

q + 1)q <
√

2. We claim that (θ + 1) min{log (1/a), 1/θ} ≤
2 log (1/a). This is obvious if θ < 1 because in this case, (θ + 1) log (1/a)< 2 log (1/a); this
is also obvious if θ ≥ 1, in which case (θ + 1)(1/θ ) ≤ 2< 2 log (1/a) (recalling that a< e−1).
The inequality (4.29) is proved because 4

√
2< 6.

(ii) Let r ∈ [1, 2] and θ ∈ [q3, e1/
√

q]. Then

gq

(
θ

r

)
− gq(θ ) = q(1 − q)

∫ 1

0
du
∫ θ

r−1θ

dt

(t + u)2−q

≥ q(1 − q)(r−1θ )q
∫ 1

0
du
∫ θ

r−1θ

dt

(t + u)2

= q(1 − q)(r−1θ )q log

(
θ + r

θ + 1

)
.

Since (1 − q)(r−1θ )q ≥ (1 − q)(q3/2)q > 1 − √
q (by (4.27)). We next apply the inequality

log (1 + x) ≥ x − x2/2, which holds true for all for x ∈ [0, 1], to x := (r − 1)/(θ + 1) and we
get

gq

(
θ

r

)
− gq(θ ) ≥ q(1 − √

q)
r − 1

θ + 1
− q(1 − √

q)
(r − 1)2

2(θ + 1)2
.

This yields (4.30) because

(1 − √
q)

(r − 1)2

2(θ + 1)2
≤ (r − 1)2

θ + 1
.

(iii) We set hq(θ ) := −g′
q(θ ) = q

(
θq−1 − (θ + 1)q−1

)= q(1 − q)
∫ θ+1
θ

(dw/w2−q). Then we
get∫ θ

0
hq(t)

(
gq(θ − t) − gq(θ )

)
dt = q

∫ θ

0
dt hq(t)

∫ 1

0
du
(
(θ + 1 − t − u)q−1 − (θ + 1 − u)q−1)

= q(1 − q)
∫ θ

0
dt hq(t)

∫ 1

0
du
∫ t

0
dv

(θ + 1 − v − u)q

(θ + 1 − v − u)2

≤ q(θ + 1)q
∫ θ

0
dt hq(t)

∫ 1

0
du
∫ t

0

dv

(θ + 1 − v − u)2
.

For t ∈ (0, θ ], we have

hq(t) = q(1 − q)
∫ t+1

t

wqdw

w2
≤ q(θ + 1)q

∫ t+1

t

dw

w2
= q(θ + 1)q

t(t + 1)
.

This leads to ∫ θ

0
hq(t)

(
gq(θ − t) − gq(θ )

)
dt ≤ q2(θ + 1)2qJ(θ ),

where

J(θ ) :=
∫ θ

0

dt

t(t + 1)

∫ t

0
dv
∫ 1

0

du

(θ + 1 − v − u)2
.

By (4.25), (θ + 1)2q ≤ (e1/
√

q + 1)2q ≤ 1 + 3
√

q.
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It remains to check that J(θ ) ≤ ζ (2)/(θ + 1) for all θ ∈R
∗+. By definition,

J(θ ) =
∫ θ

0

1

t(t + 1)

(
log

(
1 − t

θ + 1

)
− log

(
1 − t

θ

))
dt =

∫ θ

0

− log
(

1 − λ2t
(1−λ)(1−λt)

)
t(t + 1)

dt,

where we have set λ := 1/(θ + 1) ∈ (0, 1]. By means of the change of variables

v = 1 − λ2t

(1 − λ)(1 − λt)
,

we get that

J(θ ) =
∫ 1

0

log 1/v

1 − v

λ2

1 − (1 − λ2)v
dv.

Since ∫ 1

0

log 1/v

1 − v
dv =

∑
n≥0

∫ 1

0
dv vn log 1/v =

∑
n≥0

(n + 1)−2 = ζ (2),

this implies that

λ ζ (2) − J(θ ) =
∫ 1

0

log 1
v

1 − v

(
λ− λ2

1 − (1 − λ2)v

)
dv

= (1 − λ2)
∫ 1

0

log 1
v

1 − (1 − λ2)v
dv − (1 − λ)

∫ 1

0

log 1
v

1 − v
dv.

For all r ∈ (0, 1),∫ 1

0

log 1
v

1 − rv
dv =

∑
n≥0

rn
∫ 1

0
vn log

1

v
dv = 1

r

∑
n≥0

rn+1

(n + 1)2
= 1

r

∫ r

0

log 1
1−v

v
dv.

Therefore, λ ζ (2) − J(θ ) = K(λ), where

K(x) :=
∫ 1−x2

0

log 1
1−v

v
dv − (1 − x)

∫ 1

0

log 1
v

1 − v
dv, x ∈ [0, 1].

We want to prove that K(x) ≥ 0 for all x ∈ (0, 1]. Since K(0) = K(1) = 0, it suffices to show
that K is concave:

K′′(x) = 4
1 + x2

1 − x2

(
1 − x2

1 + x2
+ log x

)
= 4

1 + x2

1 − x2
( tanh (y) − y) ≤ 0,

where y := − log x ∈R+. This proves that

ζ (2)

θ + 1
− J(θ ) ≥ 0

for all θ ∈R+, which yields (4.31).
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