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Abstract

It is shown that for the computation of the Kazhdan constant for a compact group only the regular
representation restricted to the orthogonal complement of the constant functions needs to be taken into
account.
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Kazhdan constants are a quantitative version of property T, which was introduced by
Kazhdan [8] in 1967. This property is representation theoretic with remarkable appli-
cations, see [7] for an account. The related constants yield a sort of distance between
the trivial representation and those not containing it. The question of calculating
Kazhdan constants appears as a natural question in [7, page 133]. Explicit Kazhdan
constants can be useful, for example, in connection with expanding graphs [9], random
walks [12], or the product replacement algorithm [10].

Although it is an easy observation that a compact group has property T, the com-
putation of Kazhdan constants is nevertheless not trivial even for this class of groups,
compare with, for example, [1-4, {1]. The purpose of the theorem in this note is
to facilitate in some sense further computations of Kazhdan constants for compact
groups.

Let G be a locally compact group. For a subset Q of G and a strongly continuous
unitary representation 7w of G on the representation space H,, let

kG(Q,m) = inf sup |7 (g)é — &l,
§€5x geQ
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where S, = {§ € H, : ||E|| = 1} is the unit sphere in H,. The Kazhdan constant is de-
fined by k¢ (Q) = inf,¢, ) k6 (Q, ), where r(G) is the set of ali equivalence classes
of representations of G on separable Hilbert spaces not containing the trivial repre-
sentation. Another constant depending only on the irreducible representations can
be defined by k6 (Q) = inf, 5\ k6(Q, 7), where G denotes the set of equivalence
classes of irreducible representations of G.

Note that if ¢ is a subrepresentation of 7 then «5(Q, 7) < kg(Q,0). Letm €
NU{oc}, and denote by mr the m-fold direct sum of the representation r on H. Then
in general only k6 (Q, mm) < kg(Q, ), but equality need not hold necessarily. An
explicit example where equality does not hold is given in [11]. There, G = SU(2), Q
is any conjugacy class of a non-central element and i, is the unique (up to equivalence)
irreducible representation of degree 3. In this case k5(Q, m2) > ks (Q, 3m,).

Let now G be compact and denote by Lj(G) the orthogonal complement of the
constant functions in L?(G) where the compact group G is naturally equipped with
the unique normalised Haar measure. Let p be the regular representation of G
restricted to L(Z)(G). Obviously k6 (Q) < xg(Q, p) < k(Q) holds in general. An
easy consequence of the Peter-Weil theorem, see, for example, [6, page 133], is
k6 (Q) = ks (@, 00p). The following result, which will be proven below, states in
fact that oo can be omitted.

THEOREM. Let p be the regular representation of the compact group G restricted
1o L}(G) and Q a subset of G. Then kg(Q) = k(Q, p).

For special cases of G and Q, this appears in [1-4, 11].

To be more precise, [2] states that the result holds in the special case of the
dihedral group G = D, = (a,b :al, b?, (ab)") and QO = {a, b}, as well as for
any abelian compact group G with a compact generating set (). In the first case
also kg(Q) = Kc(Q). The result for abelian G appears likewise in [3, page 463].
For the instance, where G is the cyclic group of order n and Q = G, the result
can be found again in [1] and furthermore for G the symmetric group and Q@ =
{(1,2), 2,3),..., (n—1,n)}. Notealso that in the first case kg (Q) < k(Q)ifn > 4
while in the second k¢ (Q) = k¢ (Q). Moreover, in the latter case the Kazhdan constant
is equal to xc(Q, m) where r is the irreducible representation corresponding to the
natural action of S, on C”, that is, the representation corresponding to the partition
(n — 1, 1). Itis observed in [1, page 496] that kc(Q) = kc(Q) or kc(Q) < kc(Q)
really depends not only on G but also on Q. For any compact group G with Q = G
the theorem is included in [4, page 309]. It is contained in [11] for any compact group
G and @ a conjugacy class.

For the proof of the theorem note that by definition «¢(Q) < x¢(Q, p). Hence
it suffices to demonstrate that k¢ (Q, p) < kg(Q, ) for any 7 € r(G). As noted
before, by the Peter-Weil theorem a restriction to the case # = 0op would be possible.
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However, this would not significantly simplify the proof presented below.

PROOF. Let # be a representation of the compact group G not containing the
trivial representation and £ € H,. Then the function g — (mw(g)£, &) is continuous,
and thus square-integrable, as G is compact. By [5, page 309] and the fact that
n does not contain the trivial representation, there exists an f € L3(G) such that
(m(g)E, &) = (p(g)f, f) forall g € G. Then ||§]| = || f|| can be read off for g = 1.

Hence
()¢ — &1I° = 2||&||* — 2Re(n (g)§, &)
=2[fII>—2Re(p(g) f, f)
=lp)f - fI*
Thus

kg(Q,m) = Eigf sup flw(g)s — &l > inf sug lo@) f — fll =«xc(Q, p),

i
1 geQ f€5% ge
and this proves the theorem. O

Finally note that in general the statement of the theorem does not hold for non-
compact locally compact groups as for example a compactly generated group which
is not amenable and does not have property T with a compact generating set Q
satisfies k¢ (Q) = 0 < x5(Q, p). A specific example would be the free group on two
generators. Here, of course, p is just the regular representation as L(z)(G) = LX(G)
because there are no non-zero constant functions.

A remark pointed out by A. Zuk is that the theorem also holds for non-compact
amenable groups G and compact subsets Q, since both constants are then 0. Even
more generally, this holds for any subset Q of G, since for an amenable group G any
representation of G is weakly contained in the regular representation see, for example,
{5, page 358] which implies x5 (Q, p) < xc(Q).
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