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Abstract

Given a closed set C in a Banach space (X, ‖ · ‖), a point x ∈ X is said to have a nearest point in C if there
exists z ∈ C such that dC(x) = ‖x − z‖, where dC is the distance of x from C. We survey the problem of
studying the size of the set of points in X which have nearest points in C. We then turn to the topic of
delta convex functions and indicate how it is related to finding nearest points.
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1. Nearest points in Banach spaces

1.1. Background. Let (X, ‖ · ‖) be a real Banach space and let C ⊆ X be a nonempty
closed set. Given x ∈ X, its distance from C is given by

dC(x) = inf
y∈C
‖x − y‖.

If there exists z ∈ C with dC(x) = ‖x − z‖, we say that x has a nearest point in C. Let

N(C) = {x ∈ X : x has a nearest point in C}.

One can then ask questions about the structure of the set N(C). Such questions have
been studied in [4, 11, 13, 20, 22, 27, 28, 30, 35] to name just a few articles. More
specifically, the following questions are at the heart of this note:

Given a nonempty closed set C ⊆ X, how large is the set N(C)?
When is N(C) nonempty?

One way to answer such questions is to consider sets which are large in the set-
theoretic topological sense, such as dense Gδ sets. We begin with some definitions.

Definition 1.1. If N(C) = X, that is, if every point in X has a nearest point in C, then
C is said to be proximinal. If N(C) contains a dense Gδ set, then C is said to be almost
proximinal.
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In passing, we recall that if every point in X is uniquely proximinal, then C is said
to be a Chebyshev set. It has been conjectured for over half a century that, in Hilbert
space, Chebyshev sets are necessarily convex, but this is only proven for weakly closed
sets [7]. See also [17] for a recent survey of this topic that, in particular, gives a clear
construction of a nonconvex Chebyshev set in an incomplete inner product space.

Closed convex sets in reflexive spaces are proximinal, as are all closed sets in finite-
dimensional spaces (see [4]). One can also consider stronger notions of ‘large’ sets, as
in Section 1.4.

Definition 1.2. A Banach space is said to be a (sequentially) Kadec space if for each
sequence {xn} that converges weakly to x with lim ‖xn‖ = ‖x‖, {xn} converges to x in
norm, that is,

lim
n→∞
‖x − xn‖ = 0.

All locally uniformly convex Banach spaces are Kadec spaces, as are all finite-
dimensional spaces. With the above definitions in hand, the following lovely result
holds.

Theorem 1.3 [4, 22]. If X is a reflexive Kadec space and C ⊆ X is closed, then C is
almost proximinal.

The assumptions on X are in fact necessary.

Theorem 1.4 [20]. If X is not both Kadec and reflexive, then there exist C ⊆ X closed
and U ⊆ X\C open such that no x ∈ U has a nearest point in C.

It is known that under stronger assumptions on X one can obtain stronger results on
the set N(C) (see Section 1.4).

1.2. Fréchet sub-differentiability and nearest points. We begin with a definition.

Definition 1.5. Assume that f : X→ R is a real-valued function with f (x) finite. Then
f is said to be Fréchet sub-differentiable at x ∈ X if there exists x∗ ∈ X∗ such that

lim inf
y→0

f (x + y) − f (x) − x∗(y)
‖y‖

≥ 0. (1.1)

The set of points in X∗ that satisfy (1.1) is denoted by ∂ f (x).

Sub-derivatives have been found to have many applications in approximation theory
(see, for example, [4, 5, 7, 8, 25]).

One of the connections between sub-differentiability and the nearest-point problem
was studied in [4]. Given C ⊆ X closed, the following modification of a construction
of [22] was introduced. Consider

Ln(C) =
{
x ∈ X\C : ∃x∗ ∈ SX∗ with sup

δ>0
inf

z∈C∩B(x,dC (x)+δ)
x∗(x − z) > (1 − 2−n)dC(x)

}
,
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where SX∗ denotes the unit sphere of X∗. Also, let

L(C) =

∞⋂
n=1

Ln(C).

The following is known.

Proposition 1.6 [4]. For every n ∈ N, Ln(C) is open. In particular, L(C) is Gδ.

Finally, let

Ω(C) =
{
x ∈ X\C : ∃x∗ ∈ SX∗ , such that ∀ε > 0,∃δ > 0,

inf
z∈C∩B(x,dC (x)+δ)

x∗(x − z) > (1 − ε)dC(x)
}
.

While L(C) is Gδ by Proposition 1.6, under the assumption that X is reflexive, the
following is known.

Proposition 1.7 [4]. If X is reflexive then Ω(C) = L(C). In particular, Ω(C) is Gδ.

The connection to sub-differentiability is given in the following proposition.

Proposition 1.8 [4]. If x ∈ X\C and ∂dC(x) , ∅, then x ∈ Ω(C).

The following fundamental result is available.

Theorem 1.9 [6]. If f is lower semicontinuous on a reflexive Banach space, then f is
Fréchet sub-differentiable on a dense set.

In fact, Theorem 1.9 holds under a weaker assumption (see [4, 6]). Since the
distance function is lower semicontinuous, it follows that it is sub-differentiable on
a dense subset, and therefore, by the above propositions, Ω(C) is a dense Gδ set.
Thus, in order to prove Theorem 1.3, it is only left to show that every x ∈ Ω(C) has a
nearest point in C. Indeed, if {zn} ⊆ C is a minimising sequence, then by extracting a
subsequence, assume that {zn} has a weak limit z ∈ C. By the definition of Ω(C), there
exists x∗ ∈ SX∗ such that

‖x − z‖ ≥ x∗(x − z) = lim
n→∞

x∗(x − zn) ≥ dC(x) = lim
n→∞
‖x − zn‖.

On the other hand, by weak lower semicontinuity of the norm,

lim
n→∞
‖x − zn‖ ≥ ‖x − z‖,

and so ‖x − z‖ = lim ‖x − zn‖. Since it is known that {zn} converges weakly to z, the
Kadec property implies that in fact {zn} converges in norm to z. Thus z is a nearest
point. This completes the proof of Theorem 1.3.

This scheme of proof, taken from [4], shows that differentiation arguments can be
fruitfully used to prove that N(C) is large.
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1.3. Nearest points in non-Kadec spaces. It was previously mentioned that closed
convex sets in reflexive spaces are proximinal. It also known that nonempty ‘Swiss
cheese’ sets (sets whose complement is a mutually disjoint union of open convex sets)
in reflexive spaces are almost proximinal [4]. These two examples show that for some
classes of closed sets, the Kadec property can be removed. Moreover, one can consider
another, weaker, way to ‘measure’ whether a set C ⊆ X has ‘many’ nearest points: ask
whether the set of nearest points in C to points in X\C is dense in the boundary of
C. Note that if C is almost proximinal, then nearest points are dense in the boundary.
The converse, however, is not true. In [4] an example of a non-Kadec reflexive space
was constructed where for every closed set, the set of nearest points is dense in its
boundary. The following general question is still open, even in renormings of Hilbert
space.

Question 1.10. Let (X, ‖ · ‖) be a reflexive Banach space and suppose C ⊆ X is closed.
Is the set of nearest points in C to points in X\C dense in its boundary?

Relatedly, if the set C is norm closed and bounded in a space with the Radon–
Nikodym property, as is the case for a reflexive space, then N(C) is nonempty and is
large enough so that convC = convN(C) [4].

1.4. Porosity and nearest points. As was mentioned in Section 1.2, one can
consider stronger notions of ‘large’ sets. One is the following notion.

Definition 1.11. A set S ⊆ X is said to be porous if there exists c ∈ (0, 1) such that for
every x ∈ X and every ε > 0, there is a y ∈ B(0, ε)\{0} such that

B(x + y, c‖y‖) ∩ S = ∅.

A set is said to be σ-porous if it a countable union of porous sets. Here and in what
follows, B(x, r) denotes the closed ball around x with radius r.

It is known that everyσ-porous set is of the first category, that is, a union of nowhere
dense sets. Moreover, it is also known that the class of σ-porous sets is a proper
sub-class of the class of first category sets. When X = Rn, one can show that every
σ-porous set has Lebesgue measure zero. This is not the case for every first category
set: R can be written as a disjoint union of a set of the first category and a set of
Lebesgue measure zero. Hence, the notion of porosity automatically gives a stronger
notion of large sets: every set whose complement is σ-porous is also a dense Gδ set.
We recommend [23, 36] for a more detailed discussion on porous sets.

We recall that a Banach space (X, ‖ · ‖) is said to be uniformly convex if the function

δ(ε) = inf
{
1 −

∥∥∥∥∥ x + y
2

∥∥∥∥∥ : x, y ∈ SX , ‖x − y‖ ≥ ε
}

(1.2)

is strictly positive whenever ε > 0. Here SX denotes the unit sphere of X. In [11] the
following was shown.

Theorem 1.12 [11]. If X is uniformly convex, then N(C) has a σ-porous complement.
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In fact, [11] contains a stronger result, namely that for every x outside a σ-porous
set, the minimisation problem is well posed, that is, there is unique minimiser to which
every minimising sequence converges. See also [16, 27, 28] for closely related results
in this direction.

The proof of Theorem 1.12 builds on ideas developed in [30]. It would, however, be
interesting to know whether one may use differentiation arguments as in Section 1.2.
This raises the following question.

Question 1.13. Can differentiation arguments be used to give an alternative proof of
Theorem 1.12?

More specifically, if one can show that ∂dC , ∅ outside a σ-porous set, then by
the arguments presented in Section 1.2, it would follow that N(C) has a σ-porous
complement. Next, we mention two important results regarding differentiation in
Banach spaces. See also [23, Section 3.3].

Theorem 1.14 [26]. If X has a separable dual and f : X→ R is continuous and convex,
then X is Fréchet differentiable outside a σ-porous set.

Theorem 1.14 implies that if, for example, dC is a linear combination of convex
functions (see more on this in Section 2), then N(C) has a σ-porous complement.
Also, we have the following theorem.

Theorem 1.15 [10]. If X has a separable dual and f : X → R is Lipschitz, then the set
of points where f is Fréchet sub-differentiable but not differentiable is σ-porous.

Since dC is 1-Lipschitz (nonexpansive), the issues from a porosity perspective of
seeking points of sub-differentiability or points of differentiability are similar. We also
observe that Theorems 1.14 and 1.15 remain true if we consider f : A→ R where
A ⊆ X is open and convex.

We now turn from results depending on the geometry of the space to those
exploiting the finer structure of dC or C.

2. DC functions and DC sets

2.1. Background.

Definition 2.1. A function f : X→ R is said to be delta convex (DC) if it can be written
as a difference of two convex functions on X.

This notion was introduced in [18] and was later studied by many authors, see, for
example, [2, 8, 9, 12, 14, 21, 24, 34]. In particular, [2] gives a concise introduction to
this topic. We will discuss here only the parts that are closely related to the nearest-
point problem.

The following is an important and attractive proposition. See, for example, [19, 33]
for a proof.
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Proposition 2.2. Assume that f1, . . . , fk are DC functions and f : X→ R is continuous
and f (x) ∈ { f1(x), . . . , fn(x)} for every x ∈ X. Then f is also DC.

The result remains true if we replace the domain X by any convex subset.

2.2. DC functions and nearest points. Showing that a given function is in fact DC
is a powerful tool, as it allows us to use many known results about convex and DC
functions. For example, if a function is DC on a Banach space with a separable dual,
then by Theorem 1.14, it is differentiable outside a σ-porous set. In the context of
the nearest-point problem, if we know that the distance function is DC, then using the
scheme presented in Section 1.2, it follows that N(C) has a σ-porous complement. The
same holds if we have a difference of a convex function and, say, a smooth function.

The simplest and best-known example, originally due to Asplund, is that when
(X, ‖ · ‖) is a Hilbert space, we have

d2
C(x) = inf

y∈C
‖x − y‖2

= inf
y∈C

[‖x‖2 − 2〈x, y〉 + ‖y‖2]

= ‖x‖2 − 2 sup
y∈C

[〈x, y〉 − ‖y‖2/2],

and the function x 7→ supy∈C[〈x, y〉 − ‖y‖2/2] is convex as a supremum of affine
functions. Hence d2

C is DC on X. Moreover, in a Hilbert space we have the following
result (see [8, Section 5.3]).

Theorem 2.3. If (X, ‖ · ‖) is a Hilbert space, dC is locally DC on X\C.

Proof. Fix y ∈ C and x0 ∈ X\C. It can be shown that if we let fy(x) = ‖x − y‖, then fy
satisfies

‖ f ′y (x1) − f ′y (x2)‖X∗ ≤ Lx0‖x1 − x2‖, x1, x2 ∈ Bx0 ,

where Lx0 = 4(dS (x0))−1 and Bx0 = B(x0,
1
2 dC(x0)). In particular,

( f ′y (x + tv1) − f ′y (x + t2v))(v) ≤ Lx0 (t2 − t1), v ∈ SX , t2 > t1 ≥ 0, (2.1)

whenever x + t1v, x + t2v ∈ Bx0 . Next, the convex function F(x) = 1
2 Lx0‖x‖

2 satisfies

(F′(x1) − F′(x2))(x1 − x2) ≥ Lx0‖x1 − x2‖
2 ∀x1, x2 ∈ X. (2.2)

In particular,

(F′(x + t2v) − F′(x + t1v))(v) ≥ Lx0 (t2 − t1), v ∈ SX , t2 > t1 ≥ 0. (2.3)

Altogether, if gy(x) = F(x) − fy(x), then

(g′y(x + t2v) − g′y(x + t1v))(v)
(2.1)∧(2.3)
≥ 0, v ∈ SX , t2 > t1 ≥ 0,
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whenever x + t1v, x + t2v ∈ Bx0 . This monotonicity implies that gy is convex on Bx0 [7].
It then follows that

dC(x) = 1
2 Lx0‖x‖

2 − sup
y∈C

[ 1
2 Lx0‖x‖

2 − ‖x − y‖] = h(x) − sup
y∈C

gy(x)

is DC on Bx0 . �

Remark 2.4. Even in R2 there are sets for which dC is not DC everywhere (not even
locally DC), as was shown in [2]. Thus, the most one could hope for in Theorem 2.3
is a locally DC function on X\C.

Given q ∈ (0, 1], a norm ‖ · ‖ is said to be q-Hölder smooth at a point x ∈ X if there
exists a constant Kx ∈ (0,∞) such that for every y ∈ SX and every τ > 0,

‖x + τy‖
2

+
‖x − τy‖

2
≤ 1 + Kxτ

1+q.

If q = 1 then (X, ‖ · ‖) is said to be Lipschitz smooth at x. The spaces Lp, p ≥ 2,
are known to be Lipschitz smooth. In general, Lp, p > 1, is s-Hölder smooth with
s = min{1, p − 1}.

A Banach space is said to be p-uniformly convex if for every x, y ∈ SX ,

1 −
∥∥∥∥∥ x + y

2

∥∥∥∥∥ ≥ L‖x − y‖p.

Note that this is similar to assuming that δ(ε) = Lε p in (1.2). The spaces Lp, p > 1, are
r-uniformly convex with r = max{2, p}.

One might well ask whether the scheme of proof of Theorem 2.3 can be used in a
more general setting. The results which follow indicate that this is not possible.

Proposition 2.5. Let (X, ‖ · ‖) be a Banach space and C ⊆ X a closed set, and fix
x0 ∈ X\C and y ∈ C. Assume that there exists r0 such that fy(x) = ‖x − y‖ has a
Lipschitz derivative on B(x0, r0):

‖ f ′y (x1) − f ′y (x2)‖ ≤ Lx0‖x1 − x2‖. (2.4)

Then the norm is Lipschitz smooth on −y + Bx0 = B(x0 − y, r0). If, in addition, there
exists a function F : X → R satisfying

(F′(x1) − F′(x2))(x1 − x2) ≥ Lx0‖x1 − x2‖
2 ∀x1, x2 ∈ B(x0, r0), (2.5)

then (X, ‖ · ‖) admits an equivalent norm which is 2-uniformly convex. In particular, if
X = Lp then p = 2.

Proof. To prove the first assertion, note that (2.4) is equivalent to

‖x − y + h‖ + ‖x − y − h‖ − 2‖x − y‖ ≤ Lx0‖h‖
2, x ∈ Bx0

(see, for example, [15, Proposition 2.1]).
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To prove the second assertion, note that a function that satisfies (2.5) is also known
as strongly convex: one can show that (2.5) is in fact equivalent to the condition

f
( x1 + x2

2

)
≤

1
2

f (x1) +
1
2

f (x2) −C‖x1 − x2‖
2,

for some constant C (see, for example, [29, Appendix A]). This implies that there
exists an equivalent norm which is 2-uniformly convex [7, Theorem 5.4.3]. �

Remark 2.6. From [1] it is known that if F : X → R satisfies

(F′(x1) − F′(x2))(v) ≥ L‖x1 − x2‖
2,

for all x1, x2 ∈ X, and F is also twice (Fréchet) differentiable at one point, then (X, ‖ · ‖)
is isomorphic to a Hilbert space.

Remark 2.7. If we replace the Lipschitz condition by a Hölder condition

‖ f ′y (x1) − f ′y (x2)‖ ≤ ‖x1 − x2‖
β, β < 1,

then in order to follow the same scheme as in the proof of Theorem 2.3, instead of
(2.2) we would need a function F satisfying

(F′(x1) − F′(x2))(x1 − x2) ≥ ‖x1 − x2‖
1+β, x1, x2 ∈ Bx0 ,

which implies

‖F′(x1) − F′(x2)‖ ≥ ‖x1 − x2‖
β, x1, x2 ∈ Bx0 . (2.6)

If G = (F′)−1, then we get

‖Gx1 −Gx2‖ ≤ ‖x1 − x2‖
1/β, x1, x2 ∈ F′(Bx0 ),

which can occur only if G is a constant. Hence (2.6) cannot hold and the scheme
of proof cannot be generalised if we replace the Lipschitz condition by a Hölder
condition.

2.3. DC sets and DC representable sets. The next definition is quite natural.

Definition 2.8. A set C is is said to be a DC set if C = A\B where A, B are convex.

We can also consider the following class of sets.

Definition 2.9. A set C ⊆ X is said to be DC representable if there exists a DC function
f : X → R such that C = {x ∈ X : f (x) ≤ 0}.

Note that if C = A\B is a DC set, then we can write C = {1B − 1A + 1/2 ≤ 0}, where
1A, 1B are the convex indicator functions of A, B, respectively. Therefore, C is DC
representable. Moreover, we have the following theorem.

Theorem 2.10 [31]. Assume that X and Y are two Banach spaces and T : Y → X is a
surjective bounded linear map which is not an isomorphism, that is, ker(T ) , {0}. Then
for any set M ⊆ X there exists a DC representable set D ⊆ Y, such that M = T (D).
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Also, the following ‘converse’ is known (see [19]).

Proposition 2.11. If C is a DC representable set, then there exist A, B ⊆ X ⊕ R convex,
such that x ∈ C ⇐⇒ (x, x′) ∈ A\B.

Proof. Suppose that C = {x ∈ X : f (x) ≤ 0} where f = f1 − f2 and f1, f2 are convex.
Define g1(x, x′) = f1(x) − x′, g2(x, x′) = f2(x) − x′. Let A = {(x, x′) : g1(x, x′) ≤ 0},
B = {(x, x′) : g2(x, x′) ≤ 0}. Then x ∈ C ⇐⇒ (x, x′) ∈ A\B. �

In particular, every DC representable set in X is a projection of a DC set in X ⊕ R.
The next theorem was proved in [32].

Theorem 2.12 [32]. If X is a reflexive Banach space and C ⊆ X is closed, then C is DC
representable.

This makes relevant the following question.

Question 2.13. Are there any classes of spaces X, say uniformly convex spaces, such
that there exists α > 0 such that dαC is locally DC on X\C whenever C is a DC
representable set?

If the answer to Question 2.13 is positive, then by the discussion in Section 1.2
we can conclude that N(C) has a σ-porous complement, thus giving an alternative
proof of Theorem 1.12. One may also ask Question 2.13 for DC sets instead of DC
representable sets.

To end this note, we discuss some simple cases where DC and DC representable
sets can be used to study the nearest-point problem.

Proposition 2.14. Assume that C = X\
⋃

a∈Λ Ua, where each Ua is an open convex set.
Then dC is locally DC (in fact, locally concave) on X\C.

Proof. First, it is shown in [4, Section 3] that if a ∈ Λ, then dX\Ua is concave on Ua.
Next, it is also shown in [4] that if x ∈ Ua then dX\Ua (x) = dC(x). In particular, dC is
concave on Ua. �

Proposition 2.15. Assume that C = A\B is a closed DC set and that A is closed and B
is open. Then dC is convex whenever dC(x) ≤ dA∩B.

Proof. Since A = (A\B) ∪ B, we have

dA(x) = min{dA\B(x), dA∩B(x)} = min{dC(x), dA∩B(x)}.

Hence, if dC(x) ≤ dA∩B(x) then dC(x) = dA(x) is convex. �

Proposition 2.16. Assume that C is a DC representable set, with the representation
C = {x ∈ X : f1(x) − f2(x) ≤ 0}, and that f2(x) = max1≤i≤m ϕi(x), where ϕi is affine. Then
dC is DC on X.
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Proof. Write

C = {x : f1(x) − f2(x) ≤ 0}

=
{
x : f1(x) − max

1≤i≤m
ϕi(x) ≤ 0

}
=

{
x : min

1≤i≤m
( f1(x) − ϕi(x)) ≤ 0

}
=

n⋃
i=1

{x : f1(x) − ϕi(x) ≤ 0},

where the sets {x : f1(x) − ϕi(x) ≤ 0} are convex sets. Hence,

dC(x) = min
1≤i≤m

dCi (x)

is a minimum of convex sets and therefore, by Proposition 2.2, a DC function. �

In [9] it was shown that if X is super-reflexive, then any Lipschitz map is a uniform
limit of DC functions. See also [7, Section 5.1]. We have the following simple partner
result.

Proposition 2.17. Suppose that X is separable. Then dC is a limit (not necessarily
uniform) of DC functions.

Proof. If X is separable, that is, there exists a countable set Q = {q1, q2, . . .} ⊆ X with
Q = X, we have

dC(x) = inf
z∈C
‖x − z‖ = inf

z∈C∩Q
‖x − z‖ = lim

n→∞

[
min

z∈C∩Qn
‖x − z‖

]
,

where Qn = {q1, q2, . . . , qn}. Again by Proposition 2.2, we have that minz∈C∩Qn ‖x − z‖
is a DC function as a minimum of convex functions. �

3. Conclusion

Despite many decades of study, the core questions addressed in this note are still far
from settled. We hope that our analysis will encourage others to take up the quest and
also to reconsider the related Chebshev problem [3, 7, 17].
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[14] J. Duda, L. Veselý and L. Zajíček, ‘On d.c. functions and mappings’, Atti Semin. Mat. Fis. Univ.
Modena 51(1) (2003), 111–138.

[15] M. Fabián, ‘Lipschitz smooth points of convex functions and isomorphic characterizations of
Hilbert spaces’, Proc. Lond. Math. Soc. (3) 51(1) (1985), 113–126.

[16] M. Fabián and D. Preiss, ‘On intermediate differentiability of Lipschitz functions on certain
Banach spaces’, Proc. Amer. Math. Soc. 113(3) (1991), 733–740.

[17] J. Fletcher and W. B. Moors, ‘Chebyshev sets’, J. Aust. Math. Soc. 98(2) (2015), 161–231.
[18] P. Hartman, ‘On functions representable as a difference of convex functions’, Pacific J. Math. 9

(1959), 707–713.
[19] R. Horst, P. M. Pardalos and N. V. Thoai, Introduction to Global Optimization, 2nd edn,

Nonconvex Optimization and its Applications, 48 (Kluwer Academic, Dordrecht, 2000).
[20] S. V. Konjagin, ‘Approximation properties of closed sets in Banach spaces and the characterization

of strongly convex spaces’, Dokl. Akad. Nauk SSSR 251(2) (1980), 276–280.
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