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. GENERAL OUTLINE

1. Introduction

We will be concerned with the number of solutions of polynomial-exponential
equations. Our equations will be of the type

k
> P(af =0 (1.1)
=1
in variablesx = (x4, ..., x,) € Z", where theP, are polynomials with coefficients

in an algebraic number fiel#l, and thea are characterd” — K*, i.e.,a} =
o, ..o, With givenay; € KX (1< €<k, 1< j<n).

Very roughly speaking, we will show that subject to certain conditions, the num-
ber of solutions is less thars®°#%4%, whereA is the total number of coefficients
of the polynomialsPy, ..., P, andd is the degree oK . As compared to our earlier
work [16], our new bound incorporates two improvements. Firstly, it no longer de-
pends on arithmetic properties of tag, except on the degrekof the number field
K they lie in. This improvement was made possible by Schlickewei’s new method,
introduced in [14]. Secondly, our bound is only singly exponential in the number
of coefficients, whereas formerly it was triply exponential. One saving of exponen-
tiation stems from Evertse’s version [4] of the Subspace Theorem, which in turn
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rests on Faltings’ Product Theorem [8]. Due to these authors’ works, a saving of
one exponentiation was almost automatic and would not have warranted a lengthy
exposition. Most of the novelty of our present work is a new method to save another
exponentiation. In most work up to now, and we will mention only a few instances,
e.g., work of Evertse, Gyory, Stewart and Tijdeman [5], Schlickewei and Schmidt
[16], Bombieri and Mueller [1], dependency on the coefficients was eliminated by
a determinant argument. But this argument changes an equatiod witmmands
into an equation witlA! summands. In contrast, our new argument hinges on an
idea from the Geometry of Numbers, which might see further applications.

Before giving a precise formulation of our result, let us briefly recall how par-
titions & of the set{1, ..., k} in (1.1) come into play. The equatiori 2 x> +
F -3 =0in(x,y,z,w) € Z*is of the type (1.1) withkk = 4 and constant
polynomials. This equation has infinitely many solutions, namely solutions with
x =y, z = w. The point is that ifP is the ‘partition of the equation’ into the two
equations 2— 2° = 0, 3 — 3" = 0, this system of equations has infinitely many
solutions. A more detailed motivation for the partitions is given in [16].

Now let us give precise definitions. L&tbe a partition of the seX = {1, ..., k}.
The setsh C A occurring in the partition will be considered elements of
P:a e P.Givend, the system of equations

Y PXaf=0 (e, (1.12)
Ler

is a refinement of (1.1). Whe€l is a refinement of?, then (1.1Q) implies (1.1
P). Asin [16], let 8(#) consist of solutions of (1.%) which are not solutions of
(1.1@Q) where@ is a proper refinement aP. Every solution of (1.1) lies i ()
for some, but the sets§(£) for various partitions? need not be disjoint.

sett £ mis £, m lie in the same subsetof &. Let G(#) be the subgroup of

Z" consisting ofz with af = o, for any €, m with ¢ L m.
Laurent [9] had shown that() is finite if G(£) = {0}. Write

n+34
A=Z< ne>, (1.2)

e

where§, is the total degree of the polynomi&l,. Note thatA is the potential
number of nonzero coefficients of the polynomi&is. .., P;. Set

B = maxx, A), (1.3)

so thatB = max(n, k) if all the polynomialsP, ..., P, are constants, anBl = A
otherwise. Denote the cardinality of a geby | 4.

THEOREM 1. Supposé&5 (£) = {0}. Then
18(P)| < N(d, B) = 2%58°485°, (1.4)
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If the polynomialsP, are constants, i.e., when we are dealing with a purely
exponential equation, the dependence on the defyjoe@ now be avoided (cf. the
forthcoming paper by Evertse, Schlickewei and Schmidt [7]).

Another formulation of our Theorem is as follows. Consider a system of equa-
tions

k./
> Puat, =0 (j=1....m). (1.5)
=1

A solution x will be calleddegeneratéf a subsum of one of the: sums in (1.5)
vanishes, i.e., if there is ain 1 < j < m and a nonempty, proper subgdebf
{1,....k;}with 37, ; Pj(X)a’}, = 0. LetG be the subgroup dt" consisting of

vectorsz with oejl =...= ocikj (G=1....,m.
Write
m_ K n-—+ 8]@
A:ZZ i , B =maxn, A),
j=1t=

wheres, is the total degree of the polynomigl,. ThenwhenG = {0}, (1.5)has
at mostN (d, B) nondegenerate solutions

In a forthcoming paper S. Ahigren will give a quantitative version of a more
general theorem of Laurent [9] which describes the set of solutions when the group
G (&) is not necessarily0}.

Before commencing with the proof of Theorem 1 in Section 3, we will now give
some applications.

2. Applications of Theorem 1 to Linear Recurrence Sequences
Let {u,,}.cz be a linear recurrence sequence of ordere., a not identically
vanishing sequence satisfying a relation

Unyt = Vi1Umii—1+ -+ Villyg1 + volt,, (M € Z), (2.1)

with r > 0 and fixed coefficientsy, . . ., v,_1, but no such relation with & ¢’ < ¢.
Thenvy # 0. We will suppose that all members of the sequence lie in a number
field K, and this (by the minimality of) easily implies thaty, ..., v,_4 liein K.

Let
k
F@) =2 —voad = == [ e — a)™ (2.2)
=1
be thecompanion polynomiabf the relation (2.1), withx, ..., a; being the dis-

tinct roots. Asyg # 0, these roots are nonzero. The sequence will be called
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nondegeneratd no quotiente, /o, with £ # n, 1 < £,n < k is aroot of unity. It
will be calledstrictly nondegenerati, with «g = 1, no quotienty, /o, with £ # n,
0 < £,n < kis aroot of unity. Thezx-multiplicity of {u,,}, denotedU (a), is the
number ofm € Z with u,, = a.

THEOREM 2.1. Let{u,,} be of orders, and with elements in a number fiekd of
degreed. When{u,,} is nondegenerate, then

WUO0) < (21)%°q5°, (2.3)
When{u,,} is strictly nondegenerate, then for everyg K,
U(a) < (26)30+D?gbu+1?, (2.4)

The bounds fofl(0) and U (a) derived in [16] also depended only drandt,
but the dependence arwas triply exponential. When the companion polynomial
has only simple roots, we are reduced to a purely exponential equation, so that
there is a bound independent df(cf. [7]). But this bound is doubly exponential
in . Recently Schmidt (in work in progress) obtained in the one variable case
of Theorem 1 an estimate independent/pfvhich is however triply exponential
in ¢, and this entails a version of Theorem 2.1 independemt, afhich is triply
exponential irr. His work depends on Proposition A formulated below, as well as
on our Lemma 15.1.

Proof of Theoren2.1. It is well known that:,, has a representation

k
Uy = Z Pﬂ(m)azn, (25)
=1

where P, is a nonzero polynomial of degrege — 1 with coefficients in the field
L = K(ay, ..., o). SincekK has degred, (2.2) yields ded. < dt!. Now U(0) is
the number of solutions of the equation

k
Z Py(m)oy' = 0. (2.7)

(=1

This equation is of the type (1.1) with= 1. The quantityA from (1.2) becomes
o1+ --- + oy = t, and thus also the quantity from (1.3) equals. It will suffice
to study equations (2.22) for every partition? of {1, ..., k}.

When £ contains a singleton, thel (#)| < ¢, since our polynomial®, have
degrees; — 1 < t. Otherwise contains a sek with |A| > 2, and when our
sequence is hondegenerate, we may concludedli@&) = {0}. Theorem 1 in
conjunction with (2.6) give$s ()| < 235°(dt1)®°. This estimate therefore holds
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for every partition?. Using the bound* for the number of partitiong, we obtain
U(0) < kk - 235°(qr)®* < (21)35° 48",

We next note thatl(a) is the zero-multiplicity of the sequeneg, = u,, — a.
When{u,,} is strictly nondegenerate of orderthen{u/, } is nondegenerate of order
t + 1. Therefore the argument given above may be appliedmitii in place of:.
We now havet < ¢ + 1. However, (2.6) is still valid as before. Hence

Ua) < kk235(t+l)3(dt!)6(t+l)2

< (t+1)t+l_235(t+l)3t61(t+1)2d6(t+1)2
< (2t)36(’+1)3 80+D?

Remark. Since we suppose thét,,} is (strictly) of orderz, so that the poly-
nomials P, are nonzero, the hypothesis for (2.3) that,} be nondegenerate may
be replaced by the weaker hypothesis that for sagneno quotiento, /«,, with
1< ¢ <kandf # nis aroot of 1. Similarly for (2.4) with &< ¢ < k and{ # n.

Now let {u,,}..cz and{v, },cz be nondegenerate recurrence sequences of order
< t, and consider the equation

Uy = Uy (2.8)

in integersn, n. In view of the special réle played by roots of unity, we will change
the notation (2.2) for the polynomidl(z) associated withu, }. Letaq, ..., o, be
the roots ofFF which are not roots of unity. We will writé (z) = 1‘[’;1:0<z — )P,
where eithekyg is a root of F which is a root of unity (suck then is unique), or
ap=1,p00=0.Then

k1

m =Y _ Py(m)ay’, (2.9)

£=0

whereP, is a polynomial of degreg, — 1. (A polynomial of degree 0 is a nonzero
constant, and a polynomial of degred is zero.) Similarly,

k2
Uy = Z Q@(n)ﬁz (210)

¢=0

The sequencelt,,}, {v,} are said to beelatedif k; = k, (= k, say), and after
a suitable reordering &4, ..., B,

al =B (6=1,...,k), (2.11)

with nonzero integerg, g. They aredoubly relatedif there is a second reorder-
ing of B4, ..., B¢ with this property, i.e., if there is a nontrivial permutatienof
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{1,....k} such that we have both (2.11) andl = g%, (¢ = 1,....k) with
nonzero integery’, ¢’. Then it was shown in [17] that is even, thatp’ /g’ =

—p/q, and after a suitable reordering @f, ..., «; andpg, ..., B we have both
(2.11) and
o =L,  al,=p" fortodd 1<¢<k. (2.12)

The sequences,,} and{v,} are callecsimply relatedf they are not doubly related.
A sequencdu,,} is always related to itself; it is callesymmetricif it is doubly
related to itself.

THEOREM 2.2 Suppose the members {f,}, {v,} lie in a number fieldK of
degreed. Supposé; > 0, k, > 0in (2.9), (2.10) Then
(a) the Equation(2.8) has at most

Z = 2310°g24t (2.13)

solutions wheru,,}, {v,} are not related.
(b) When{u,,}, {v,} are simply related witl§2.11), then all but at mosE solutions
of (2.8) have

Pum)el = Qu(m)B] (£ =0,... k). (2.14)

(c) When{u,,}, {v,} are doubly related with{2.11), (2.12), then all but at mosZ
solutions satisfy2.14) or the system

Pym)ay' = Quy1(n) By 1 Py(m)ay’yy = Qu(n) By
(Lodd 1< <k), (2.15i)
Po(m)ag = Qo(n)fy. (2.15:ii)

It may easily be deduced that when, } is not symmetric, the equation, = u,,
has at mosg solutions withvn # n.

An estimate given in [18] was weaker in its dependenceamdd, and moreover
it involved the number of prime ideal factors of the roatsand 8,. The order or
magnitude of our estimates can be further reduced wheathadg, are simple
roots.

Proof of Theoren2.2. We rewrite (2.8) as

k1 k2
> P@e =Y 03B =0, (2.16)
=0 =0

to be solved in integers, y. We symbolize the summands in (2.16) by

(Ox)a 1,\’5 . ~5klxv (Oy)v 1'7 . ~5k2y~

https://doi.org/10.1023/A:1001719425893 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001719425893

SOLUTIONS OF POLYNOMIAL-EXPONENTIAL EQUATIONS 199

The parentheses indicate that, e.g.,d@curs only whenxg is a root of F(x),
i.e., only if Py # 0. Let » be a partition of this set, and(#) the associated
group. Similarly to (1.19), let (2.16) denote the system obtained by splitting
(2.16) into vanishing subsums, the summands of each subsum parametrized by a set
A € 2. Suppose at first tha® contains a singleton, say. Then (2.167) yields
Q.(y)B; = 0, and since, is of degree< ¢, there are fewer thanchoices fory.
Giveny, (2.16) becomes an equation.irof the type considered in Theorem 2.1.
We therefore can estimate the number of choicesxftwy (2.4). Thus wher®
contains a singleton8(2)| < ¢ - (2r)3%+D°q8¢+1* Now suppose thaP does
not contain a singleton. Then, as shown in [1G}.?) = {0} unless{u,,} and
{v,} are related. Note that the field = K (a1, ..., o,, B1. ..., Bi,) has degree
< (t)%d < 2@347°g, sincet! < 23/ We apply Theorem 1 with = 2 and
observe that (witld, = degP, = p, — 1,8, = degQ, = p, — 1, say),

ET)E0)

=0 =0
1 k1 ko
= > (Z(pez +p)+ ) (pF+ pé))
£=0 =0
1 2 2 2
< 5((1 + 1)+ (@ +1) <27,

so thatB = A < 2r2. Therefore

|/S(¢7))| < 23633(2(3/4)12d)632

624
< 23060 j2u,

Since the number of partition® is at most(2)% < 22f6, the first assertion of
Theorem 2.2 follows.

Now if {u,,} and{v,} are simply related, it was shown in [17] that the only
partition # which does not contain a singleton and l@sP) # {0} is {O,, 0,},
{1, 1,}, ..., {k, k,}. (Here{O,, 0,} occurs only if P, Qg are nonzero.) So (b)
follows as well. As for (c), in addition to the exceptional partition from (b), again
by [17], we need only consider partitions containing the §bts2,}, {2,, 1,}, ...,

{(k - l)x, ky}v {kxv (k - 1))}

3. A Proposition on Linear Equations

We will formulate a proposition which may be of independent interest.
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Consider the multiplicative grougC*)” = C* x --- x C*, and a subgroup
of finite rankr. In [7] we had studied the equation

2t tzn =1 (3.-1)

in variablesz = (z4, ..., z») € I'. Here we will need this equation in varialde
which lies ‘almost’ inl".

We cannot go further without introducing heights. We define the hdifjlat)
of a point(wo: - - - :at,,) i projective spac®”(Q) as usual. SUppos®, ... ., a,, lie
in a number fieldK, and letV = V(K) be the set of places & . With eachv € V
we associate the absolute value|,, normalized so that it extends the standard
or a p-adic absolute value d®, and we further sefa|l, = |«|?"/, whered is
the degree oK, andd, the local degree. We then defili(a) = ]_[vev(K) llee]lys
where |||, = maX{|laglly, .-, llenll}- By the product formulaH (e) depends
only on the projective point = («o: - - - :ex,). It is independent of the fiel& with
a; € K (i =0,...,m)andis usually called thabsolute multiplicative heighiVe
will also use theabsolute logarithmic heighi(e) = log H ().

Whenx = (xq, ..., x,) is in affine spac@m, we set

HX) = H(Lxq: - :x,), h(X) = h(Lixy:---:x,) =log H(x).
In particular, whenn = 1, we haveH (x) = H(1lx), h(x) = h(1x).

Now let K be a number field of degre¢. WhenXx = (x1,...,x,), Y =
(Y1, ..., ym) @reinK™, we seiX « Y = (X1¥1, « - . » Xou Yim)-

PROPOSITION A.Letm > 1and letI" be a finitely generated subgroup @ *)™”
of rankr > 0. Then the solutiong of (3.1) of the typez = x x y wherex € T,
y € Q" and

h <1hx 3.2
(y)\m() (3.2)

are contained in the union of at mogtin, r, d) = 23%"*(32m2)"d¥+2" proper
linear subspaces ™.

4. The Germ of the Proof of Theorem 1

Letay, ..., a; be as in the theorem. Asruns througtz”, the vector
(o, ..., a)) (4.1)

runs through a subgroup of (K *)* of rank < n. If in (1.1) the polynomialsP,
are all identically equal to 1, we obtain an equation

z1t+ -+ =0, (4.2)
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with z = (z1, ..., zx) € I'. This is a homogeneous version of Equation (3.1). Now
(4.2) defines a subspadeof K* of codimension 1, and it is known (cf. [7]) that
the solutionsz € T lie in a finite number (and this number may be effectively
estimated) of proper subspacesTofthus subspaces &* of codimensior> 2).

This gives us information on the equatidn;_, & = 0. The situation is similar
for

k
> awe =0 (4.3)
=1

with coefficientsa, € K*: one could consider it of the type (4.2) wikththe group
of rank< n + 1 generated by the points (4.1) and(ay, ..., ay).

Now in Equation (1.1), leM, be the set of monomials of total degrees,.
Write P, = ZM€M4 agyM (1< <k).

Then Equation (1.1) may be rewritten 23, .. M (X)aryoy = 0, where A
consists of the pairgt, M) with 1 < ¢ < k, M € M, andayy, # 0. With the
notationn,y (X) = M (X)a,u e, the equation becomes

> ) =0, (4.4)
,M)cA

If it were not for the monomiald (x), this would be the type (4.3). The vector
n(X) with components;,,, (X) lies in K* wherea = ||, and (4.4) says thaf(x)

lies in a certain subspacE of K“ of codimension 1. We wish to show that as

X € Z" ranges through the solutions of (4.4), thegx) lies in a finite union of
proper subspaces @f, and we want to estimate the number of required subspaces.
This can in fact be done if the vector with components

is ‘'small’ compared to the vector with components
amo; (€, m) € A). (4.6)

Let 3, (X) be the logarithmic height of the vector (4.5), ang(x) the height of the
vector (4.6).

PROPOSITION B. Suppose: > 3. Then asx ranges through solutions @#.4)
with
1
hyu(X) < @hE(X), 4.7)
the vectory(x) will be contained in a union of not more than

230a2 (32a2)n 30+ (4.8)
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proper subspaces df.
We will now deduce Proposition B from Proposition A. L@y, M) be a par-
ticular element of4, andA’ the complement oféq, Mp) in A. Define

Be=oy/otgy, = (cpr/egr, - - s Oon/Qegn)- (4.9)

Then whenMy(x) # 0, (4.4) may be rewritten as

> Zim=1 (4.10)

e, M)eA
whereZ,y = XopYerr with
Xy = —(agm/ag,Mo) By, Yoy = M(X)/Mo(X).
Let X, Y, Z respectively be the points iK“~* with componentsX,y, Yur, Zey

where(¢, M) € A’. ThenX lies in a group of ranki n + 1, andY lies inQ*~1.
Furtherh,; (X) = h(Y), hg(X) = h(X), so that

1
h(Y) < @h(X) (4.11)
by (4.7).
By Proposition A withm = a — 1, the solution& of (4.10) with (4.11) lie in
the union of

fla—1ln+1d) = 230(a—1)2(32(a — 1)2yrtl 3+ +2a-D
< 230a2(32a2)nd3(n+a) (4.12)

subspaces af“~1. Here then + 1 comes from the fact that runs through a group

of rank < n 4+ 1. WhenW is one of these subspaces, the solutions of (4.4) with
Z(x) € W will have n(x) in a certain proper subspa®® of 7. To these subspaces
W’ we have to add the subspace wiifa(x) = 0, thus giving the bound (4.8).

5. Induction on the Dimension of Subspaces

The vectorst with component$,,, where? € A, M € M, lie in K# with A given
by (1.2).

Whena is any subset of\, let V, be the coordinate subspacefof consisting
of vectorsé with &, = 0 when¢ ¢ A. For any partition? of A,

Kt =P (5.1)

re@
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WhenW is a subspace ok4, let W(Q) = >, o(W N V;), so thatW (@) is a
subspace oV. We haveW (@) C W(Q) if @' is a refinement of2. We will say
that@ is agreeablewith W if W(Q) = W. If @' is agreeable withV where@' is
a refinement of2, then@ is agreeable witlV. Write @ < W if @ is agreeable
with W, but no proper refinement @ is agreeable wittW. For anyW, there is a
@ with @ < W, but this@ is not necessarily unique.

Suppose for each € A we are given a polynomia?, of degree< §,. Thus

Po= " auM (L€A) (5.2)
MeM,

Givenx € Z", leté§ = §(x) = K have componentsy = &y (X) = M (X)ay.
The equations (1.#) mean that (x) lies in the subspac# of K4 defined by

Z Z agm€ey =0 (A € P). (5.3)

ler MeMy

For any subspacg of K4, let X(T') consist ok € Z" with&(x) € T.Let X(T, )
consist ofx with £§(x) € T(P), buté(x) ¢ T (Q) for any proper refinemer@ of
Z. In the notation of the Introduction§(£) = X(W, ) whereW is given by
(5.3).

PROPOSITION C.Recall the definitior{1.3) of B and set
C = 2348458, (5.4)

Let » be a partition of A with G(2) = {0}. LetT # {0} be a subspace af*
with # < T. Then there is a subspa@€ & T having7’(#) = T’ and

|X(T, P)| < CIX(T, P)NX(TH| + C. (5.5)

We are going to derive Theorem 1 from the proposition. First we claim that
every subspacg with » < T and dimension has

1X(T, P)| < (20)". (5.6)

This is done by induction on Whenr = 0, thenX (T) is empty, since& (x) = 0is
impossible becausg&(x) has the nonzero componeris; (X) = a; whenM = 1.
Thus (5.6) is true in this case. Wher- 0, let7’ be the subspace of the proposition.
There are two possibilities.

Either # < T’ fails to hold. There is then a proper refineméhiof & with
T'(@Q) = T'. ThenX(T") = X(T'(Q)) € X(T(Q)) has empty intersection with
X(T, »), so thatX (T, ) = @ by (6.5).0r P < T'. Then ever € X (T, ) N
X(T") hasé(x) e T' = T'(P), but in view ofx € X (T, &) it cannot have (X)
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T'(@) C T(Q) for a proper refinemen® of #. Thereforex € X(T’, P), i.e.,
X(T, P)YNX(T") Cc X(T', ). Now (5.5) together with the induction hypothesis
gives

|X(T, P)| < CIX(T", P)|+C < C-(20) T+ C < (20)'".

The theorem is about(P) = X (W, £) with W given by (5.3). ClearlyW (£) =
W. Again there are two possibilities. Eith@ < W fails to hold (this could only
happen if some polynomialB, are zero). TherW = W(Q) where@ is a proper
refinement ofP, so thatX (W, ) = @. Or 2 < W. Then we may apply (5.6) to
T = W. Since dimT < A < B, we obtain|8(2)| < (2C)8 < 2355°468° The
theorem follows.

It remains for us to prove Proposition A, and to show that Proposition B can
be used to deduce Proposition C. The first of these tasks will be accomplished in
Sections 6-11, the second in Sections 12—-17. The second task is the more original
one. The geometric idea alluded to above will occur in the proof of Lemma 15.1.
Unfortunately, our arguments will be rather complicated.

IIl. PROOF OF PROPOSITION A

6. Small Solutions

We will initially only study solutionsz = x %y of (3.1) withx € T, y € (Q*)™, so
that all the components afare nonzero. A solution will be callesimallif

h(x) < 2mlogm. (6.1)
A solution which is not small will be callethrge.
LEMMA 6.1. The number of small solutiorzsoccurring in Proposition A is

< (4d®™(86d%m logm)". (6.2)

Proof. According to Theorem 4 of Schmidt [19] the number of elementsT
with 2(X) < 2mlogm does not exceed

(2d%)™ (86d°m logm)". (6.3)
Further,i(y) < (4m®)~*h(x) < (2m)~tlogm < 1/2 by (3.2). Therefore each
componenty; of y hash(y;) < 1/2, henceH (y;) < €Y? < 2, so thaty;, being

rational, is 1 or—1. This gives 2 choices fory. Allowing a factor 2’ in (6.3) we
get the assertion.
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7. Remarks on Heights

Forx € K* we note that

h(x) =h(lx) = Y max0,log|x],}

veV(K)
1
=5 2 lloglxl. (7.1)
veV(K)

We then havé:(1/x) = h(x), h(xy) < h(x) + h(y).
As was pointed out in [17], it is an immediate consequence of work of Dobro-
wolski [3] that whenx is of degreel, and not zero or a root of unity, then

h(x) > 1/214°. (7.2)

Whenx = (x1,...,x,) € Q , we will also use the logarithmic height (x) =
3", h(x;). We notice that

h(X) < hy(X) < mh(X), (7.3)
h(x*y) < h(X) + h(y), hy(X*xYy) < hy(X) + hy(y), (7.4)
hy(x 1) = hy(X), (7.5)

wherex—! denotes the inverse afin (@X)’".
LetI' C (K*)™ be a finitely generated group of rank> 0. Letaq, ..., a, be
a set of generators @f, so that the elements &f may be written as

X=1¢ k0 % xol, (7.6)
where(uy, ..., u,) runs througtZ”, and¢ runs through the torsion group(I") =
' NU™ of ', with U the group of roots of unity ok .

Foru= (uq,...,u,) € Z" we put
Y (U) = hy(ay - xadr). (7.7)

Forv € V write
whereo; = (a1, ..., ). By the product formula we gét_,., Bij» = 0 (1 <

i <r,1<j<m).LetS bethe subset of consisting of the Archimedean places
of K and ofv’s with g;;, # 0 forsomei, j (1 <i <r,1< j < m). Then also

> ves Bijp = 0.
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For&é € R” we define

gw® = Bk A< j<muveV). (7.8)
i=1
Then again) | ¢g;v(§) =01 < j < m)andg;,(§) = O0forv ¢ S, j =
1,...,m.
As

r
log lles} ... ef 1y = Zﬂijvui = gjv(U),

i=1
we obtain from (7.1) and (7.7)

1 m 1 m
YW =32 > lsn@i=32 > lguWl (7.9)
j=1lveV j=1 veS
More generally, fo€ € R” we put

l m
V& =52 > len®l (7.10)

veV j=1

It was shown in [19] (Section 3) thdt is a distance function in the sense of Cassels
[2] (Chapter 1V) and that the set

UV={eR Y& <1 (7.11)
is a symmetric, convex body.
8. Special Solutions
LetK, T, aq,...,a, be asin Section 7. Put

qg =8m + 4. (8.1)

Whenx € T, set

h = h(x), H=HX) =¢" (8.2)
Express< as in (7.6). Giverp € R”, an elemenk € I' will be called p-specialif
h > 0and

ue h/q)V + hp, (8.3)
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whereW is the set&|y (§) < 1} from (7.11); the right-hand side of (8.3) signifies
(h/q)V¥ translated by:p.

Let ® be a symmetric convex body IR". Let A = A(®) be the least covering
density ofR” by translates ofd (not necessarily by points of a lattice). Thasis
least such that there apg, p,, ... in R" such that the union of the translates- p;

i =12..)isR", and ifv(€) is the number of translates which contgirthen

d dé < A1 8.4
/|§|<XV(£) E//|§|<x £ < AL+e) (8.4)

whene > 0 andX > Xg(¢). Here|&| denotes the maximum norm, say. L&tr)
be the supremum of the covering densities of symmetric convex bodis Ihis
relatively easy ([11]) to show that

A(r)y < 2. (8.5)
Better bounds are known (cf. [12]), but (8.5) will do for us.
LEMMA 8.1. Let® be a symmetric convex bodyi. Suppose. > 0. Theni®
can be covered by not more théh+ 2)" A(r) < (2r + 4)” translates ofd.

Proof. In view of (8.4), it is not hard to see that there is a translaté.of 2) ®,
say(A + 2)® + 1, such that

/ V(E)JE/ (L + 2" V(D) < A(r)(1+ 2¢), (8.6)
A+2)o+T

whereV (®) is the volume ofb (so that(d + 2)" V (P) is the volume of A +2)P +
7). Then (replace the; by p, — 7 (i = 1,2,...)), there is also a covering such
that (8.6) is true withe = 0. Now if Z of the translate® + p; intersectL @, then
these are contained (A + 2)®, so that

/ V(E) dE > ZV ().
(A2

Comparison with (8.6) yields
Z<(A+2 A1+ 2). (8.7)

For everye > 0 there is a covering of® by Z translates ofb with Z satisfying
(8.7). The lemma is now obvious.

Applying Lemma 8.1 with® = mW¥, . = 1/(mq), we may conclude that
mW¥ may be covered by = (2mq + 4)" translates of; W, say byg =¥ + p,
((=1,...,Z). ThenhmW¥ is covered byh/q)m¥ + hp, i =1,...,Z). When
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(8.2) holds, ther as in (7.6) lies im,(x)¥ C mhW¥ (by (7.3)). Thux is special
for at least one op,, ..., p,. With our valueg as in (8.7) we obtain

Z = (16m? + 8m + 4)" < (21n?), (8.8)
sincem > 2. By (8.3), wheru € hmV, thenp € (m +¢~1)W. Hence we may take

01, Py € (m+qg W,

9. Properties of Special Solutions

Letp € (m + ¢~ Y)W be fixed, wheren > 2. Set

gn(p), fveV,1<j<m, ©.1)
mi, = ) .
! 0, if veV,j=0.

Then, as was seen below (7.8), we have

Y mpuy=0 (j=01....m). (9.2)

veV

By the definitions (7.10), (7.11) of, ¥ and by (9.1),

DO impl < 20(p) <2m+g7H. 9.3)
veV j=0
LetLo,..., L, bethelinear forms iiX = (X4, ..., X,,) defined by
LoX) = X1+ + Xp,
_ (9.4)

Suppose now we have a solutian= x *y of (3.1) wherex e T', y € (Q)™
and where (3.2) holds. Writg; = w;/wo with wo,...,w, € Z and g.c.d.

(wo, ..., wy,) = 1. Then (3.1) may be rewritten as
2+ + 2, =20 (9.5)
wherezg = wo andz; = x; - w; for j = 1,...,m. We writez’ = (2}, ..., z,,).

Recall the definition of in Section 7.

LEMMA 9.1. Letp be as above. Then there areelement subsets(v) of {0, 1,
..., m} defined forv € V, and there are numbers;, (v € V, j € 4(v)) with the
following properties.

Iw)y=1{1,...,m} forvegs, (9.6)
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£, =0 forvgs,jed), (9.7)
veV jel(v) veV jel(v)

Moreover, ifz = x x y andZ' are as above, whereis p-special, then

/ —L{; — m2 mn
[T max(iL;@),0 ™) < @ V2, ©.9)
veV

with O = H (x)?"+1,

Proof. We defined(v) as follows. Forv € § we setd(v) = {1,...,m} ac-
cording to (9.6). Fow € S we consider the elements;, from (9.1). Pickj (v) €
{0, ..., m} such that

M j(),0 = MaXmoy, - . .., Myy). (9.10)
and set

I)=1{0,....mN\{j(w)} (eSI).

Now letx € T be p-special. Then withu as in (7.6) we have (8.3) with =
h(x). So

giv(U) = h(gju(p) +q 1g;u(€) = hmj, + (h/q)g; (&), (9.11)

for asuitablet e Wandforv e V,j =1,...,m. Ifwe putgy,(§) =0forv eV
andé € R’, then (9.11) will be true for; = 0 as well. Sincé€ € ¥ we have
>, 1gjiv(&)| < 2, and therefore

DY hmy, —guWI<2h/g (j=0,....m). (9.12)

veS j=0
By our definition ofS in Section 7, and by (7.6), (7.8), amye I" has

h(x) = Y max0,logllxl,, ..., 109 [xull,)

ves

= Z maX(gOU(U), ) gmv(u))-

ves

Thus by (9.10) and (9.12),

WY miee = hx) — (2h/q) = h(1— 2/q).

ves
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so that

ij(v),v P 1—2/61 (913)

ves

This estimate holds if there exists apyspecial poinx € T.
Lets be the cardinality of and write

1
- = . 9.14
v s ij( ) ( )

ves

We define numbers;, (v € V, j € 4(v)) by

my,+y, fveS jelw), o015
Ciy = ] .
J m}l}(z 0)’ If v ¢ S,] S l(v)

We infer from (9.2), (9.3) that

Y =0, DY el <2m+g7h. (9.16)

veV jel(v) veV jed(v)
Observe thatfoj = 1, ..., m,
log |lx;ll, = gju(U) = h(gju(p) + gjv(§)/q)
= h(mj, +g;v(§)/q), (9.17)

by (9.11), (9.1). But

log [w;| < h(wg: -+ w,) = h(y) <h/dm?® (j=0,...,m)
by (3.2), so that by definition of; and by (9.5), (9.17),

log |L;(@)ly = 1091121, < h(m s + g;u(&)/q + 8,/4m?),
whered, = d,/d whenv € V. (the set of Archimedean places), afid= 0
otherwise. Since, = wg and sincemg, = go,(§) = 0, this inequality holds for
j=0,...,m.Whenj e J(v) we have by the definition (9.15) of the, that

log IL; @)l — hejo < h(gju(E)/q + 8u/4m® — n,y),

wheren, = 1 whenv € S, andn, = 0 otherwise. We note that

> maxig;,(6)l < 2y®) <2

veV
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sinceé € v, and therefore
>~ max(log | L; @), — hej)
jei)
veV
< h((2/q) + (1/4m?) — ys)

< h((1/4m) + (1/4m®) — (1/m)(1 — 1/8m) < —h/2m,

by (8.1), (9.13), (9.14), and sinee > 2. Exponentiating, we obtain

[ 1 max{iz;@l.a-cy < B2, (9.18)
vevje“v)

We now renormalize using the quanti®y= H (x)?"*. We define
Liy=1cjp/@2m+1) (@eV,jel).

Then (9.7), (9.8) hold as a consequence of (9.15), (9.16), and (9.9) holds by virtue
of (9.18).

10. Large Solutions

We quote a very special case of a theorem of Evertse and Schlickewei [6].
PROPOSITION D. Supposé < § < 1, and letL; be the linear forms 0{9.4).
Forv e V let (v) be as in Lemm&.1, and let¢;, (v € V,j € 4(v)) be as in
(9.7), (9.8). Then there are proper linear subspacgs. . ., T; of K™ with

t < 22(m+5)26—m—4, (101)

such that everg € K™ having

[ [ max{iiL;@ll,0~"*} < %™, (10.2)
jed(w)
veV
for some
0 >m"? (10.3)
lies in the union offy, ..., T;.

When we are dealing with a large solution of (3.1), tikes 2m logm by the
definition (6.1), so thap = H?"*! satisfies (10.3) witth = 1/(4m + 2). By
Lemma 9.1, a point’ arising from a large special solution satisfies the hypotheses
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of Proposition D. With our value af, we see that the large-special solutions will
havez contained in not more than

22(m+5)2(4m 4 2)n1+4 < 249m2/2(5m)3m < 2301412

proper linear subspaces Kf", sincem > 2. AsZ is proportional taz in (3.1), also
z will be in the union of these subspaces.

Allowing a factor (21m?)” from (8.8) for the number of pointg needed, we
may conclude that the set of large solutions of (3.1) may be covered by

< 230m% (2 1,2)r (10.4)

proper subspaces.

11. Proof of Proposition A

Let us recall that in the preceding sections, according to the convention adop-
ted at the beginning of Section 6, we had restricted ourselves to solutieas

(z1, ..., zm) With z1...z, # 0. Clearly all the other solutions may be covered by
the m coordinate subspaces = 0 (( = 1,...,m). It will suffice to combined

this bound with the bounds from Lemma 6.1 for the small solutions and the bound
(10.4) for the large solutions. Altogether we need fewer than

m 4 (4d2)m(86d3m Iogm)r + 2301412(21’/”2);’ < 2301412(32’/”2)rd3r+2m

lll. PROOF OF PROPOSITION C

It remains for us to deduce Proposition C from Proposition B. The main difficulty
will be to satisfy condition (4.7) of Proposition B. A priori, it would seem that the

height/,,(x) of the vector (4.5) of monomials should be much smaller than the
height g (x) of the vector (4.6) of exponentials. But lacking information on the

basesx, of these exponentials, condition (4.7) is difficult to enforce.

12. Minimal Forms

Recall thatk 4 is the space of vectos = (&,) where? € A = {1,...,k} and
M € My, i.e., the set of monomials of total degrges,. Every linear formL on
K4 may be written as

L&) =LY + -+ L5 &y, (12.1)
where§ = (§,,...,§&;,) and§, = (&) with M € M, and whereL* is a linear

form on a space of dimensidi,| = cardM, (¢ = 1,...,k). In fact L‘(§,) =
ZMeMZ beyéenr With coefficientsb,,, € K. Write 8(L) for the set oft € A with
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L* # 0. Write A(L) for the set of pairg¢, M) with by # 0. Thus8B (L) consists
of £ € A for which there is a € M, with (¢, M) € A(L). We call A(L) the
supportof L.

Let T be the subspace &“ of Proposition C and£(T) the space of linear
forms vanishing o' If we had.£(T) = {0}, thenT = K4, so that® < T would
imply that & is the partition into singleton§l}, ..., {k}, which is incompatible
with G(£) = {0}. ThereforeL(T) # {0}.

A form L # 0 in L(T) will be called aminimal formif there is no nonzero
form L’ in L(T) with A(L") a proper subset oft(L). Sinces < T, a minimal
form L has8B(L) c A for somex € #. Say the minimal form is

L= Z bem&em- (12.2)

,M)eA(L)

Whenx e X(T), then.L(&(x)) = 0 whereé(x) is the vector having components
Em(X) = M(X)a; with £ € A, M € M. Let us restrict to the vectady; (x) with
componentg,,, (X) where(¢, M) € A = A(L). By a slight abuse of notation

L, (X)) =0. (12.3)

Hereé, (x) € K* witha = a;, = |A(L)|, and (12.3) says tha(x) lies in a
subspacd/; c K* of codimension 1. The idea will be to show via Proposition B
that wherx lies outside an exceptional set@felements, the set of solutiogg (x)
lies in a number of proper subspacedgf, sayU;1, ..., U.c. Now Uy; is given
by L;(&§,) = 0 for a linear formL; which is, of course, not proportional tb.
SinceA(L;) € A(L), we may replacd.; by L; = L; — o; L with suitablee; in
such away thatt (L) is a proper subset of(L). In other words, we may suppose
thatA(L;) is a proper subset ok (L). By the minimality property ofL, we have
L; ¢ L£(T), and therefore wheéfy, (X) € Uy;, theng, (x) lies in a proper subspace
T; of T. Moreover, sinceB(L;) C B(L) C A for somei € £, we haveP < T;.

The plan, then, will be to apply Proposition B to a minimal fofmAt least
one of the resulting subspac&samongTy, ..., T¢c will have | X(T, )| — C <
C|X(T, )N X(T;)|, and Proposition C will follow withl"” = T;.

Note that the minimality of forms may be destroyed by the transformations of
Sections 13 and 15 below, and that useful minimal forms will only be constructed
in Section 16.

13. The Initial Transformation

Given a vector = (a1, ..., a,) € (K*)", setl;, = logllajll, (1 < j <n,ve
V = V(K)). Then)_ ¢;, = 0 (1 < j < n) by the product formula; here and
below, a sum over, unless indicated otherwise, is ouee V. Foré € R" set

g (&) = Ljk;, (13.1)
j=1
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so thatg, is a linear form. We havg_, g,(§) = 0. Put

Y€ =) max0, g, ) = %ng@n. (13.2)
Note that
vE+n) <yE)+vm, v(ré) = IlyIv @), (13.3)
for y € R. Since log||le*||, = g,(X), we see from (7.1) that
¥ (X) = h(a®), (13.4)
forx € Z".
Givenasy, ..., o as in our theorem, define, /e, in analogy to (4.9). Define

Yem (E) asy (€) above, but withe = a;/a,,. Then
wém (X) = h((“@/‘xm)x) = h(‘x)é:“z)’
forx € Z". Given a subset of A = {1, ..., k}, put
h*(X) = maxh(a)e), o™ (&) = maxyr, (§).
£, mer £,mer
Given a partition? of A, write
h” (x) = maxh*(x), o” (&) = maxw™(£).
LEP LEP

The maximum of several functions with (13.3) still has this property, and therefore

o”E+m <o”E +"m), 0T yE =Iylo” ). (13.5)
Clearly

o” (x) = h” (x), (13.6)
forx e 7.

Now suppose that the grodp(#) = {0}. Then wherx € Z"\{0}, there ar&, m
with ¢ <~ m anda # a,, hence with(ee, /at,,)* # 1. In fact there is such a pair

m?

£, m for which (ey /e, )* is not aroot of 1. Then according to (7.2)(ct, /e,,)*) >
1/(214%). We may conclude that for € Z"\ {0},

o’ (X) > 1/(214°). (13.7)

In view of (13.5), (13.7), the function” is a Minkowski distance ifR" (see [19,
Lemma 3)), i.e., the se® of £ € R" with »” (§) < 1 is convex, symmetric (that
is, & € Qimplies—& € 2), compact, and contairsin its interior.
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Since 2 will be fixed, we will write more brieflyw for »”. By a theorem of
Schlickewei [15], there is a badis, ..., b, of Z" such that

a)(slbl + -+ Snbn) = 47" maX |E!|a)(bl)a
1<i<n
and in view of (13.7) this is
> (4" 214°%) 7Y E),

where |&]| denotes the maximum norm. In other words, there is a transformation
T € GL(n, Z) such that

w(t(§)) = c1lél,

with

1= (4" 214371, (13.8)

Now

k k

D P =Y Pi0p, (13.9)

=1 =1
whereﬁg(x) = Py(7(X)) is a polynomial of the same total degreefasand where
B, = (@, ..., al®®) with e, ..., e, the standard basis 6t". Our » was
defined in terms obeq, ..., a; Write @ = w,. Similarly definews in terms of
B, ..., By Then

wp(§) = wa(1(§)) = c1l§].

As is suggested by (13.9), and as was explained in detail in [16, 87], we may apply
a substitutionr. Therefore we may suppose from now on that

(&) > c1l§]. (13.10)

This is essentially [16, (7.8)], except that we went to the logarithm, and that we
have a better value far.

14. Producing Large Heights (i)

Let L € L£(T) be minimal, and write it as in (12.2). Sty (X) = by M (X)at; =
bem&en (X), and lety(x) be the vector ink® (wherea = |4(L)|) having compon-
entsng (X) with (¢, M) € A(L). Then (12.3) is the same as (4.4), andx) lies
in a subspac&; < K¢ of codimension 1. It will suffice to show that (x) lies in
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the union of proper subspacés,, ..., U, of U;, for then&, (x) will lie in the
union of proper subspacég 1, ..., U,c of U;.

To apply Proposition B, we will need (4.7). So lefz(x) be defined as in
Section 4, i.e., as the heighte (X)) of the vector

er(X) = {bemo)} 0. myencr)- (14.1)

We need formd. with &, z(X) large. This we cannot do at once; we will first have
to deal with the height; , (X) = k(8. (X)) where

0. (X) = {Ol)é}eeia(L)- (14.2)

LEMMA 14.1. Suppose for each € » we have formd.,; (j = 1,...,t(})
wherer (1) < |A] < k) with B(L,;) € A, and such that for any, m in X, there
is a chain of formix,j(l), ey L)n,j(q) with qg < t(A) and? e £(L)~J(1))’ m €
"(B(L)n,j(q)) haVing

B(Ly, ji) NB(Ly,ji+1) # 9, (14.3)
forl<i <gq.Then
T&XhLA,,D(X) 2 c2|X| (14.4)
»J
with
cr =c1/k = WUd® - 4L (14.5)

Proof. By (13.6), (13.10) we have” (x) > c1|x|, thereforeh*(x) > c1|x| for
somei € £, and therk (o} a,) > c1|X|, forsomel, mini.LetL; jay, ..., L; jq)
be as above, and let be in the set (14.3). Then (since generallx:y) <
h(o:B) + h(B:y)),

calx| < h(egie,)
< h(ogiey) + hlog eg) + -+ h(e)_jlay)
< hL;Mj(]_)(X) +---+ hL)Mj(q) (X)

The assertion follows.
15. Producing Large Heights (ii)

Givena = (o1, ...,a,) € (K*)", we have defined, (§), v&) by (13.1), (13.2).
Now let vectors,, ..., B, in (K*)" be given, and defing;, (&), v;(§) as above
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but withee = 8, (i = 1,...,r). Setx(§) = max<;<, ¥:(§). We make the extra
hypothesis that

x (&) = c2lél, (15.1)
for & € R". Then yx is a Minkowski distance oiR”. Let X consist of¢é with

x(§) <1
We have (in analogy to (13.4));(x) = h(BY) (i = 1,...,r)forx € Z", hence

x(X) = max(h(BY), ..., h(B))). (15.2)
LEMMA 15.1 Letys, ..., v, in K* be given, and set

X () = maxth(y1BY). ... h(yB))). (15.3)
Then there is a1 € Z" such that

X(x—u) > zcalX|,

forx € Z".
Proof. We haveg;, (§) = 3__; £ij§; with £;;, = log | 8;; I, and

1
Vi (§) = Z max(0, gi(§) = 7 Z lgiv(8)],

for1<i <r. Setc;, = log|y:|l, and

8iv(€,0) = gin(§) + it

for (&, ¢) e R* x R = R"*1, Further set

- 1
Vi€, 0) =Y max0 g (& ) = 5 318w Ol.

x(&.¢) = maXl/fl(E £).

1<i<r

Let X c R"*! consist of(&, ¢) with x(&,¢) < 1. ThenX is convex, symmetric,
closed, and it contain@in its interior. But it may be unbounded. The intersection
of X with the coordinate hyperplarie= 0 is X.. We havex (X, 1) = x (X).

When X is unbounded, there is soni&,, ¢o) # (0, 0) with x (&, ¢o) = O.
SinceX is boundedy, # 0. By homogeneity, there is sonig;, 1) with X(gL 1=
0. On the other hand, wheX is bounded, hence compact, pid, ¢o) in X with
Zo maximal. We rewrite , = o4, So that;p(§4, 1) € X.
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Now suppose tha, ¢) € X. WhenX is unbounded; (£, 1) € X; but this is
also true wheri is bounged, sincg | < ¢ in that case. Taking the difierence, we
see thaté — ¢&,,0) € 2X, which yieldsé — ¢&, € 2X. Thus(&, ¢) € X implies
& — &, € 2X. Therefore, by reason of homogeneixyé — ¢&;) < 2x(&, ¢). Put

differently,
x (&) < 2x(§+¢84,0), (15.4)
forany (&, ¢) e R"*1.
Picku € Z" such thatu = —&,; + u, where the coordinateg:;| < % i =

1,....n). Then by (15.4) withr = 1,
AX—U) = yX—Uu,D)=xX—pn+&,1
> Ix(X—p) = 3clX — pl = 3calX,

in view of (15.1).
As was pointed out above, we walnt z(x) large for certain formd., and not
hrp(X) as in Lemma 14.1. One might try to writeyef = by, with y = 1,
i.e., to add a variable, so thath),,ef = (&,)* with &; = (b, o, - - -, 0en)
andX = (y, x). This way the coefficients seem to disappear miraculously. How-
ever, then the initial transformation of Section 13, which now is in/Gk 1, Z),
will transform a polynomial having all its coefficients equal to 1 into a poly-
nomial whose coefficients are not necessarily 1, thus reintroducing coefficients.
For this reason this simple idea does not seem to work. We will take recourse to
Lemma 15.1 instead. _
We order the monomials lexicographically: write > N whenM = X7 ... X"

n?

N = X' X with iy > i, igp1 = Jjosds ... in = j, fOr somes. We also
introduce a ‘pseudomonomidll and writeM > [ for every genuine monomial
M. Let
L=L'++ L =33 bk
LeA MeM,

be a form in the notation (12.1). Wheéne B(L), so thatL’ # 0, let M,(L) be
the monomial which is largest with respect to the ordetingmong the monomi-
als with nonzero coefficients,,,, and letb,(L) be the corresponding coefficient.
Whent ¢ B(L), so thatL’ = 0, we setM,(L) = [J, b,(L) = 0, b,(L)M,(L) =
. We callM, (L), b,(L) andb, M, (L) theleading monomials, leading coefficients
and leading termsof L, respectively. To every forni there belongs &-tuple
of leading termab(L)My(L), ..., by (L)M (L)), as well ask-tuples of leading
monomials and leading coefficients.

Clearly

hpe(X) = hpp(X), (15.5)
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whereh’, (X) is the height of the vectos;(x) with components,(L)a} where

L e B(L).
An examination of the proof of Lemma 14.1 shows that we have really proved
that
x(X) == ryaxh((ae/oem)x) = ryaxh(aﬁ:az) > clX|, (15.6)

where the maximum is over all paifsm having?¢,m € B(L,;) for somea, j.
Thus x (X) = Maxh(aj:a,) = Maxh((a,/e,,)*), Where Max signifies the max-
imum over all quadruples, j, m, £ withi € £,1< j <t(d) andl, m € B(L,;).
Consider

X(X) = Maxh(be(Lyj)o):by(Lyj)ec,)

= Maxh((be(Ly;)/bm(L;;))(0te/0t,)").

In view of (15.6) and Lemma 15.1, there isia& Z" with

X(X—=u) > c3lx|, (15.7)
for x € Z", where we set

3= 2 = (84kd® - 4" (15.8)

The idea now is to apply the translatien— X — u. Then P,(x)ey becomes
Py(Xx— U)ax u Pg(X)Ote with Pg(X) —(!ZUP@(X u). We hadL = ZZMb@MEfM
and P, = ZM by M; now write Pg = ZMbZMM and SetL = ZebeMg@M
ThenL(§(x — u)) = L(g(x)) The subspacér consists ofé havingL(¢§) = 0
for L € L(T). Let T be the space of havmgL(g) = 0for L € L(T), so that
£(T) consists of forms. W|th L € £L(T). Our transformation does not mess up
ai, ..., o, Sothat agai? < T.

In short, we may replac& by 7, the formsL by L. We haveB(L) = B(L),
and when formg.;; have the property enunciated in Lemma 14.1, then so do the
forms LM The leading monomials are not changed by a substititien x — u.
Therefore whenb@(L) was a leading coefficient df, thenb,(L)e, " is a leading
coefficient ofL. By (15.7) and the definition df,

Max A (b(L; ;) etS:by (L j)eck) > calX|.

In other words, after performing the substitution—> X — u, we may suppose
that X (X) > c3|x]. In view of the definition oft), ., we have the following.

LEMMA 15.2. After a suitable translation x> x—u, the formsL,; of Lemmél4.1
have

rgfjlxh’LME(X) > c3|X], (15.9)
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where the maximum is overe 2,1 < j < t()).

16. Construction of Minimal Forms

As pointed out in Section 12, we need to apply Proposition B to a minimal form.
Now it would be easy to construct formis,; (A € #£,1 < j < t(X)) as in
Lemma 14.1 which are minimal. However, minimality may be destroyed by the
substitutionx — x — u, i.e., changingL,; to fkj. This difficulty necessitates a
somewhat complicated construction.

Suppose

P <T. (16.1)

Forx € &, let £,(T) consist of formsL € £(T) with B(L) C A. As a con-
sequence of (16.1),

L(T) = P L(T). (16.2)

reP

We now begin our construction. L&te » with |A]| > 1 be given. To fix ideas,
suppose that = {1, ..., r}. We will construct a partition of, A = U;-:1 wj, into
nonempty subsets, ..., u;, aswell as formd.,, ..., L; in £, (7).

A form L € .£,(T) will be called 1stableif |8(L)| > 1 and if L cannot be
written asL = L'+ L” whereL’, L” are nonzero, lie inC,(T), and haveB (L") N
B(L") = . There are 1-stable forms, for otherwise every formcin(7) would
be a sum of forms whose seBare of cardinality 1, so that i is obtained from
P by chopping up: into the singletong1}, ..., {r}, then@ would be agreeable
with T', contradicting (16.1). Pick1 C A of minimal cardinality such that there is
a l-stable fornL with B(L) = p1. Clearly|uq| > 1.

Supposej > 1, and subsets, ..., u;j—1 of A have been chosen. Set ; =
U{:—ll wi. We are finished ifv;_; = A (just setr = j — 1); otherwise letv;_;
be the complement af;,_, in A. A form L € £, (T) will be called j-stableif L
cannot be written ag = L' + L"” whereB(L') C v;_1, 8(L") C v;_1. There are
j-stable forms, for otherwise every forfn € £, (T) could be written as a sum:
L =L+ L" as above, so that @ is obtained from# by dividing 2 into v;_; and
v;j_1, then@ would be agreeable witli, contradicting (16.1). Pick.; C v;_; of
minimal cardinality such that there isjastable formL with

O(B(L) N ﬁj,]_ =M. (163)
Clearly u; # #. Continuing in this way we finally get sefsy, ..., u, which
partition i.

We may renumber the elementsioBuch thatu; = {r;_1 +1,...,7r;} (j =
1,...,0)with0 = rg < rp < --- < r, = r. Now recall thatM,(L), ...,
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M.(L), ..., M,(L) were the ‘leading monomials’ of.. Given formsL, L’ in
L,(T), write L’ < L if

M(L") < My(L), Ms11 (L)) = My1a(L), ..., M, (L") = M, (L),

for somes.

Our construction was such that for eaghl < j < ¢, there arej-stable forms
L ; with (16.3) (where we sefy = @, vg = A). A form L ; will be calledproperif it
is minimal (with respect ta<) among;j-stable forms with (16.3). Since induces
only a partial ordering of the forms (only the leading monomials matterfpr
Jj-proper forms are not uniquely determined. However, if biothL’; are j-proper,
then

(Ma(Ly), ., My (L) = (My(L), ..., My, (L)),

LEMMA 16.1. Supposel ;, L’; are j-proper. Then the;-tuples of leading coeffi-
cients

(ar(Lj), ... a,(Ly)) and (ar(L)),...,a,, (L)) (16.4)

are proportional.
Proof. The coefficientss,, (L;), anda,,(L’;) are nonzero by (16.3). Set =
ar,(L))L; —a, (L;)L’;. Then

J<Lj (16.5)
J

If the r;-tuples (16.4) were not proportional, there would bg with M,(J) =
M,(L;) # . Thereis anx € K with

My(L; —alJ) < My(L)). (16.6)
In the casgi = 1 write

J=J 4, (16.7)

Ly=Li+---+L} (16.8)

in the notation of (12.1). Now (16.5), i.e/, < L1, and the hypothesis thdt;
is minimal imply thatJ is not 1-stable, and by the minimality of; it is easy to
conclude that eacli’ € .£,(T). We say thatJ splits completely.” Then

Li=L,—aJ® e L£3(T) (16.9)
andL, < L, by (16.6). Therefore alsp, splits completely. But

Ly=Ll4 L8P (LS —as) + LT 1 L
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ThereforeL) for i # g isin £,(T), hence so id;, and L, splits completely,
against the fact that it is 1-stable.
In the casg > 1 write

_gx Hk oy *ok
J=UJ"+J"  L;=L}+L%,

with 8(J*), B(L}) Cvja andB (J*), B(LT) C pnj. Now (16.5) implies that
is not j-stable, so that*, J** € £,(T). We say thatJ splits.” Set

~ Lj—OlJ*, if 8§ €Vj_1,
L= o (16.10)
Lj—aJ*, if geup;.

ThenL; € £,(T), furtherL; < L; by (16.6). Thereford ; also splits. E.g., in the
case wherg € v;_y,

Lj= (L} —aJ*)+ LY,

so thatL* € L,(T), henceL; splits, against the fact that it ig-stable. The
situation is similar wheg € ;.

LEMMA 16.2. LetL; be aj-proper form with|A(L ;)| as small as possible. Then
L ; is a minimal form.

Proof. Suppose to the contrary that there is a fofrg 0 in £, (T) with A(J) &
A(L;). By the special choice dof ;, the formJ cannot bej-proper. But/ < L;
or J ~ L; (meaning that/, L; have the same leading monomials), and hehce
cannot bej-stable.

Write
J=J 4 T, (16.11)
L,~=L}+---+L;.’ (16.12)

in the notation of (12.1). Somé$ # 0. Every monomial occurring with nonzero
coefficient inJ¢ also occurs so iliLf. Therefore there is a € K with

ALE — aJ®) G ALY). (16.13)

In the casgj = 1, J (being not 1-stable) splits completely, and we have (16.9)
again. ButA(L1) & A(L1) by (16.13). Therefore by the special property af the
form L, cannot be 1-proper. But; < L, or Ly ~ L,, so thatL, is not 1-stable,
hence splits completely. We get a contradiction as in the proof of Lemma 16.1.

Inthe casg/ > 1, J splits, andL as defined by (16.10) is £, (T). We have
,A(L ) S A(Lj) by (16.13). We may infer thdt is not j-proper, further that it is
not j- stable and it splits. Again we get a contradlctlon asin Lemma 16.1.
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17. End of Proof

For eachh € &2, construct setg; 1, ..., iy, and linear formsL, 4, ..., Ly, with
t=1t() < |A| as described in the preceding section, suchthats j-proper.

LEMMA 17.1. The formsL,; (x € #,1 < j < t()) satisfy the hypotheses of
Lemmal4.l.

Proof. We may suppose thatis given and we write the corresponding sets and
forms again a1, ..., u, and L4, ..., L,. We will show by induction ory that
if £,m € v, = JI_; i, then there are forms; ), ..., L) amongLy, ..., L,
with £ € £(Lj(1)), m € £(Lj(q)) and£(Lj(,~)) N £(Lj(i+1)) #~ Pforl<i < q.
This is trivial forq = 1, for thené,m € u, = B(L1). Wheng > 1, we may
suppose that € v,_1, m € p, (for if both £,m € p,, then both are inB(L,)).
Nowm € B(L,). There is ann’ in the nonempty seB(L,) Nv,_1. By induction,
there are formij(l), ey Lj(q—l) with £ € £(Lj(1)), m' € £(Lj(q—l))’ and with
any two successivé’s having their$’s with nonempty intersection. The assertion
now holds withL ;) = L,,.

By Lemmas 14.1, 17.1 we have (14.4). Further by Lemma 15.2, we have (15.9)
after a suitable translation— x — u.

Now a translation changes formisnto formsi. ButB(L) = :B(Z). Therefore
the new forms/L}, are againj-stable £ € 2,1 < j < #(3)). In fact the leading
monomials are not changed, and therefore the new fdrmsare againj-proper
(with respect to the new spadd. These new forms have leading coefficients such
that (15.9) holds. We finally repIadaM by a j-proper formLM whose support
,A(LM) is minimal. ThenLM is a minimal form by Lemma 16.2. In view of
Lemma 16.1, the leading coefficients bﬁ, (j = 1,...,¢())) are proportional
to the leading coefficients dtM (j=1,...,t(n), so that again (15.9) holds.
Therefore in view of (15.5)we may suppose that we have minimal forims
(L e P, 1< j<t(D)with

TaXhLAjE(X) = c3|X|.
J

We now divide the solutiong € X (T, #) into possibly overlapping classes
C)Lj, with x € C)\j if

hLAjE(X) 2 63|X| (171)

Sincer (1) < |A|, the number of classes§|A| =k < A

Now let &, j be fixed and consider solutiomse C,;. HereL,;(x) = 0, and
this equation is as in Proposition B, i.e., (4.4) with= A(L;;). Suppose initially
thata = |A(L,;)] > 3. The monomials occurring if,; have total degreec
max(8y, ..., &) < A, so thatH,(x) < [X|*. In view of (17.1), the condition (4.7)
will be satisfied ifA log |x| < 1/(4a?)cs|x|. Sincea < A, this will certainly be
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true if |x| < exp((4A43%)cs|x|). Since exp > t?/2, the condition will be amply
satisfied if

x| > 3245¢;2. (17.2)

By Proposition B, the solutions with (17.2) yield at most (4.8) proper subspaces of
T. (Here we used thdt,; was minimal — see the discussion in Section 12.)
Summing over the classes, of which there are at mMosind noting that each
a = |A(L;;)| < A, we get a bound - 2304%(3242)n430+4) Since 2< A < B
andn < B, the total number of subspaces<is2345° %8 = C.
We are left with the solutions where (17.2) is violated, so that by (15.8),

IX| < 32B®(84kd® - 4")? < 218,256 (17.3)

Since 2< k < B andn < B we obtain|x| < 2'°84%, and the number of such
xeZ"is

< 2082 ybn _ (.

This establishes Proposition C wher 3.
Whena = 2, the equatiorL,; = 0 is of the typeu,y M (X)a} +aey M’ (X)et), =
0, so that

hL)LJ'E(X) = hL)LJ'M(X) < A Iog |X|

Together with (17.1) this yieldss|x| < Alog x|, so that|x| > exp(A~ c3|x|) >
1A72c2|x)2, i.e., IX| < 2A%;?. This gives (17.3) and hence leads again to fewer
thanC solutions. So when = 2, thenX (T, )| < C, and Proposition C follows.
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