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REFINEMENTS OF SOME BOUNDS IN INFORMATION THEORY

M. MATIC!, C. E. M. PEARCE? and J. PECARI¢?
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Abstract

Recently Dragomir and Goh have produced some interesting new bounds relating to entropy
measures in information theory. We establish several refinements of their results.

1. Introduction

Entropy, conditional entropy and mutual information for discrete~valued random
variables play important roles in information theory (see, for example, Ash [1] and
McEliece {5]). A number of simple bounds have long been known for key quantities.

Suppose X is a discrete random variable assuming value x; with probability p; > 0
(1 <i € n). For b > 1, the b—entropy of X is defined by

H(X):=)_pilog, 1/p:.

i=1
It is well-known (see Ash [1, Theorem 1.4.2)) that H(X) is maximized when all its
values occur with equal probability 1/#, in which case H(X) = log, n.
Recently refinements have been provided for some of these results by Dragomir
and Goh [3]. Thus the above-mentioned result is sharpened by Theorem A below.

THEOREM A. If

max | | < 2elnb
1ragn TP S n(n-1)’
then
O<log,n—H(X)<e.
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For a pair of discrete random variables X and Y with finite ranges {x;}, {y;}, the
conditional b—entropy of X given Y is defined by

HX | V)= pilog, 1/py. (1.1)
ij

where, as in the sequel, p;; ;= P{X =x;, Y =y;}and py; := P{X =x; | Y = y;}
(see [S, p. 22]). The following result relating to conditional entropy in the context
of three discrete random variables X, ¥, Z was proved in [3]. As subsequently in
the paper we denote the range of Z by {z,} and the three marginal distributions by
(i), (g;), (re), respectively. Further we put p;; = P(X =x;,, Y = y;, Z = 2z,),
rgij =P(Z=z|X=x,Y=y)andry := P(Z=2z|Y = y).

THEOREM B. Let X, Y, Z be discrete random variables with finite ranges and let
£ > 0 be given. If

max |pyj — Pupl < V2¢Inb/K, 1.2)

() (u,v)

then we have
0<H(Z)+ E(Qog,A)—H(X |Y) <¢, (1.3)

where H(Z) is the b—entropy of Z and

Pi '.t. . .
A[ = ZaiJ_¢ y a,"j'z = qulll'.j = ;i— . Vl,], 8,
ij iy

1 1
K = zt: "; gai.j.l ;au.u.t = Z -I'—[Af

The expectation in (1.3) is taken over the sample space of Z.
The mutual information between two random variables X, Y is defined by

I =HX) -HX | =Y pi,log, T (1.4)
i pig;
If X, Y, Z are given random variables, then the mutual information I (X, Y; Z),
which may be interpreted as the amount of information X and Y provide about Z, is
defined by

T,
I(X,Y:2) =) _piyelog, = (1.5)

li.j
ijit .

(see [5, p. 26)). Itis implicit that p;; > O for all pairs (i, j ).
In [3] the following result was given.
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THEOREM C. We have

0<IX,Y;2)-1(Y;2)

1 i Puw
= 2Ind Z Z p—Lp [r‘U Toluy = rwh)r[”'j]z . (1.6)

ij, L uv,w Ty Twpy

Both inequalities become equalities if and only if ry;; = ry; for all (i, j, £) with
D ij.e > 0.

In this paper we show how further improvements can be given for these results. In
Section 2 we give a rather more general form of Theorem A, in which log, n— H (X) is
shown to be less than or equal to each of two bounds. One of these gives a refinement
of the bound given by Theorem A.

In Section 3 we give several bounds pertaining to conditional entropy, one of which
provides an improvement to Theorem B. Our arguments have the simple but apparently
novel feature of exploiting the fact that p; > 0 and g; > 0 can coexist with p;; = 0.

Finally, in Section 4, we give some results relating to mutual information.

2. Bounds on the entropy of a random variable

We now proceed to a strengthened version of Theorem A. We shall need the
following result of Biernacki, Pidek and Ryll-Nardzewski [2].

THEOREM D. Let (a;) and (b;) be n-tuples suchthatc, < a; < c;andd, < b; < d&;

forl <i<n. Then
<=[3] (1 - [g]) (e = e)(ds — d).

1 n 1 n n
; Zaibi - ;2- Za,- Zb]
Here, as in the following theorem, [x] denotes the largest integer less than or equal

i=] i=1 j=l
tox.

THEOREM 2.1. Suppose the random variable X admits values x; with respective
probabilities p; > 0(i = 1,... ,n) and let M = max; p; and m = min; p;. Then

o<togn- 00 = U= (2] (o~ [2]). g1}

elnbd
max_|p; — p;| s\/——— @D
l<i<j<n ! [5] (n - [5])
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then

O<log,n—-H(X)<e.

PROOF. From {3, Theorem 4.3] we have

i=1

oslog,,n-H(X) <— [an, —1]

Putting a; = b; = p; in Theorem D provides

13 1

i=1

or
Sorto1=[2] (- D o
Combining (2.2) and (2.3) yields

0 <log,n— H(X) < —— [3] (n - [g]) (M — m)?.

“Inbl2

In [4, Theorem 2.1] we showed that if p := max;; p;/p:, then

1 1)

1 M —-=m)?
°<1°gb"‘”<x>—4mb(wr)

Here p = M/m, so

Combining (2.4) and (2.5) gives the first part of the enunciation.
Since

max |p; —pil=M—m,

l1<i<j<n

the second part follows at once from (2.1) and (2.4).

(4]

2.2)

(2.3)

2.4)

(2.5)

Since 2[2](n — [2]) < n(n — 1) for n > 2, the second part of the theorem is

2
clearly stronger than Theorem A.
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3. Bounds on conditional entropy

We shall need the following preliminary result established in [3].

LEMMA 3.1. Let & € (0,00) and s; = 0 (1 < k < n)with Y ,;_sx = 1 and
suppose b > 1. Then

0 <log, (i skék) Zsk log, & < [Z Z sk — 1]

k=1 =1 5 k=l

We shall need also the following discrete version of the Griiss inequality (see [6,
Chapter 10]).

1

LEMMA 3.2. Supposes,t >0withu<ay, < Uandv <by < V(1 <k <n). Then

Zs,Zs,a,b - Zs,a,Zs,

i=1 j=

2
-—(U— u)(V —v) (Zs) . @)

i=1

We now proceed to provide an upper bound on the conditional entropy of a pair
of discrete~valued random variables. We shall take advantage of the fact that in the
definition (1.1) of conditional entropy, the summation is only over those pairs (i, j)
for which p;; > 0.

THEOREM 3.3. Suppose X, Y are random variables each with a finite ranée. Define
Vii={i:pij >0, put U:={(i,j):i € V}andlet

r':=Zq,-|V,~[.
j

Further deﬁne M= max jyeu Pilj andm = min(;_j)eup,-u. Then

0<1 —HX = 7 -
=log,r ( IY)_ YA Mm’r
If min
2
' - pVeinb, ' 2
(‘J)("v)eulplf Pupl = r’m a2

then
O<log,ry—H(X |Y)<e. (3.3)
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PROOF. We may label pairs (i, j) € U ask = 1,... ,n, say, and then apply
Lemma 3.1 with St = Pij and{-'g = l/pili =qj/p,',j. This gives

qj gj
0<log,| > pij —J-:| — Y pijlog, ==
L(i.j)eu Pij G))ev Pij
1 [ Pij qe ]
ey pij— Pre— —1
Inb _(i.jgu 9 doeu Pkt .
B 2
1
= 1nb quizu Z q.— ( Z quiU)
L(i.j YeU [(X)13/4 (i.j)elU
1 2 :
< — i — min py; il . 34
< 35 | P ~ iy (Eq) G4
The last inequality follows from Lemma 3.2 with s; = g; and a; = b, = p;; in (3.1).
Now
da=) g 1=r,
(i.j)eU j ieV]
so from (_3.4)_"'we get
1
< ' — H(X < ——(M — m)*r. 3.5
0<log,r — H( IY)‘“4lnb(M m)‘r (3.5)

_ In [4, Theorem 3.1] we proved that

1 1)’
<l "— H(X < — - —
0<log,r—H( IY)_41nb(f «/3)
where p := MaX(j),w.vev Pij /Pupp = M/m. So we have
1 (M—m)?
0<l - HX < — 3.6
<log,r ( IY)._41nb Y (3.6)

The first part of the enunciation follows from (3.5) and (3.6).
For the second we need only note that if (3.2) holds, then (3.3) follows from (3.5).

Qur next theorem gives an improvement of Theorem B.

~ THEOREM 34. Let X, Y be a pair of random variables as in Theorem 3.3 and let
Z be a discrete-valued random variable assuming values z; (1 < k < t) each with
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positive probability ry (1 < k < t). We define an associated random variable A which

assumes the value

Ap = Z Piji/Pij
(ij)eU
with probability r, (1 < k < t). We define also
2
L1 1,
I PIIAES o7
=1 Tk | e = Tt

where a;j ; := pij/piy for (i, j) € U. Finally we put

M = max py;, m= min py;.
(iJ)eUp'l’ (i.j)eup'l’

Then we have
— )2
05H(Z)+E(log,,A)—H(X|Y)sumin{K, 1 }

4lnb Mm

Ife > 0 is given and

elnd
iti = Pulo] < 2 s 3.7
(.-J?(‘%Eu"’ i = Pupl < X (X))
then
O0<H(Z)+ E(log,A)—H(X |Y) <e. (3.8
PROOF. By Lemma 3.2 with g; = bk = Dy and Sk = ®ije (k = (l,j) € l]), we
have for fixed £ that
Dij.t Piae 1
> Putp, 3 Bl
Gnev Tt wmeu Tt Phn
1 [ Pije > Piht 2
== — Py -n
4 _(i.;z);t/ Piy (k%u Pk
- 2
1
= 2 Z du.tp?v Z Ok.ht — ( Z a.’.j.tP.'u)
¢ | Gj)ev (k.h)eU G.j)eU
2 2
<L max p;; — min py; Za
= 4z \epev™ V' " apevt V) \ Lor THH
1
= —(M — m)*A2.
y) r?( m)°A,
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By Lemma 3.1 with s; = p;; (/r, and & = 1/py; (k = (i, j) € U) we have

e 1 Y 1
OSIog,,[Z "——”"—]— 3 Bit g, —

@pev Tt Pu Gpeu Tt Piyj

1 i 1
< — [ p J.CP‘U Z Prhe 1 1:|
Inb| Sy e wkmev Tt

1 2,2
L a—eere— p— R
_4(2 b(M m)°A;

Multiplication by r, and summation over€ = 1, ... , ¢ yields

0<H(Z)+E(og,A)—H(X | Y)
 A? _ (M - m)*K

< _I_(M _m)2z_

3.
= 4nb =, 4Inb G9)

‘We deduce that (3.8) follows if (3.7) holds.
In [4, Theorem 3.2] we proved that

1 1\’
0< H(Z) + E(log, A) — HX | V) < m(f—ﬁ> ,

where p := max jy,w,vyev Pijj /Pup- Here p = M /m so

1 (M —m)?
0<H(Z)+E(og,A)—H(X | V) < b Mmoo

Combining this with (3.9) gives the main part of the theorem.
The factor 2 in (3.7) replaces the 2 of (1.2), so the second part of Theorem 3.4

represents a strengthening of Theorem B.
‘We can use Theorem 3.4 to improve [3, Corollary 5.4].

COROLLARY 3.5. Suppose X, Y have the same range. Define

0 ifX=Y,
{1 ifX#7.

Further, define :

T =1{i:i #J,piy > O},

1 ifp;,; >0,
R,-:=|Vj|—7}=[ IPij >
0 otherwise.
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Let P, := P{X # Y} = P{Z = 1} and let ¢ > 0 be given. If

e(1-P,)P,Inb

Goj ) (u, u)eu'p'u pulv' =< 2\/A2(0)P¢+A2(1)(l — Pe) s (3.10)

then
0< H(P.)+ P.log,A(1) + (1 — P,)log, A(Q) — H(X | Y) < ¢,
where AO) =Y, q;R;, A) =Y, ¢;T; and
H(P) = H(Z)= —P.log, P. — (1 — P.)log,(1 — P.).

PROOF. We may take y; = x; for all j, since X and Y have the same range. The
random variable A assumes the values

AO) = Y aijo=)_ g ) oy =2 4R
J

(i.j)eU j ieV;
and
AD= D ayu=>¢Y = 4T
@i,j)eU J eV, J
‘We derive

A%(0) + A1) _ AXO)P. + A1) - P)
1-P, P. P.(1 - P.)
As in the proof of Theorem 3.4 we have

K =

M —m)’K
4Inb
3.11)

0 < H(P.) + P.log, A(1) + (1 - P)1og, AQ) — H(X | Y) <

Under (3.10), the result follows from (3.11).
REMARK 3.6. We have 0 < A(0) <1and 0 < A(1) <r— 1. Hence
PA*O)+ (1 - P)A’) < P.+ (1 —P)r—1)> =1+ (1 — P)(r* —2r)
and our condition (3.10) is better than the corresponding condition

26P.(1— P,)Inb
M-ms\/1+(l~P,)(r2—2r)

in [3].

REMARK 3.7. It can happen that p; ; = O for all j. In this case R; = Oforall j and
s0A(0) =0,andalso P{X = Y} = Oandhence P, = 1. Then (1-P,)log, A(0) =0,
since 0log0:=0. Also AQ)+ A1) =r' <r.
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4. Bounds on mutual information
Aswith Theorem 3.3, our analysis in the following result hangs on the fact that in

the definition of mutual information (1.4), the summation is over those pairs (i, j ) for
which Dij > 0.

THEOREM 4.1. Let V := {(i, j) : p;; > O} and

K:=Z—pi2'j— §:= Zp-q
iyj -

(i,j)eVpiqj i.j)ev
If
@ o 2
Pidj _Pulv| _ 2 /o, (4.1)
G)wneV | pii Puy K
then ‘

O<log,S+I(X;Y)<e

PROOF. Take s; as p;; and &; as p;q; /p;;,for (i,j) € V,in Lemma 3.1. This gives

Pig;j Pig;

»J
Gpev  Pij ()ev j

1 [ Piq; Puy ]
5 I 1 pi,j Duy — —1
Inb _(i,jév Pij (,‘;v Puqy
B 2
_1 Z'fﬁf_(ﬂ)zzﬂ_ Zﬂ-lz&
Inb | S2vpPigi \Pij /] SvPedv  \GevPidi Pij

. . 2 2 2
<L [ max P9 _ pin P Zm <s,
4Inb | Giev pyj  GieV p;; wwev Pudy

pPig; _ Puqy
Pi.j Puy
where M = max(,-,,-)evp,-qj/p,-,j andm = min(,-‘j)evp,-qj /p,"j. The third mequahty in
the proof follows from Lemma 3.2 with a; = by = piq;/p.; and 5, = p?; /piq; for
(i,j)e V.

since

max =M—m,

(i.j)(uv)eV

REMARK 4.2. Wehave 0 < S < 1 and it can happen that § < 1. For example, if X
and Y both have range {0, 1} and

Poo=pP11=0, piro=po1=1/2,
then we have § = 1/2. Of course S = 1if p;; > O for all pairs (i, j).
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REMARK 4.3. In [3] the same conclusion is given but without the improvement
provided by the term log,, S and under the condition M — m < (1/K)+/2¢Inb. Our
condition (4.1) is weaker. Also, in [4] it was shown that I (X;Y) < (1/4In b)(\/p —
1/./P)*, where p = M/m. The improvement provided by the term log, S was missed
but follows at once from the argument, so that in fact we have

1 1\
X: —_ -1
log, S + (X,Y)s4lnb (f JE)

Combining this with the proof above we get

M-mp(_, 1
0 D < .- .
<log,S+I(X;Y) < Zinb {K M

Finally we address strengthening Theorem C. Definition 1.5 requires that p;; > 0
hold for all pairs (#, j). The summations need only be over the set of triples

W= {(iy.]v e) ‘Pijt > 0}'

T:= Z Pijry;-

(hj.OeW

Then 0 < T. < 1 and it can happen that T < 1. For example, if X, Y, Z have the
range {0, 1} and

Let

P10,0 = Po,1,0 = P1.1,0 = Poo, = 1/4

with p;; . = O for other all triples, then T = 3/4. As with our discussion in Remark
4.3, the proof of Theorem C actually provides the improvement that the middle
quantity in (1.6) be replaced by log, T + I(X, Y;2Z) — I(Y;Z). We can make a
further improvement.

THEOREM 4.4. Suppose the conditions of Theorem C are satisfied and

M = max ﬁi m:= min _2L
Wj.OeW ry; GJ.OEW Ty);
Then
. (M_m)z . 2 1
0<log, T X, Y;2) - 3 Z) € ———— T, —1t. 4.2
<log, T + I( )-1(Y;2) < ST S Y 4.2)

PROOF. Relation (1.6) can be rewritten in the form
log, T+ I1(X,Y;Z)- I(Y;2)

2
1 Twlu,v 2 LT
= 1‘;‘5[ Z PijTy Z Pu.urww( m ) —( Z Pu’tur—u .

G.j.yew (u,v.w)eW wlv Gij.Oew ¢
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Now we can apply Lemma 3.2 with s, = p;;ry; and ax = by = ry;;/ry;, for
(i,j,€) € W,toobtain

O<log, T+I1(X,Y:Z)—-1(Y;2Z)

~ 2
|
< m(M —m)2< Z Pufzu)

(i.j.O)eW

_ ﬁw — mPT?. 4.3)

In [3, Theorem 4.2] it was proved that

1(X,Y;2) - 1(Y; Z) = (1/4Inb)(\/p — 1//p)
and again we may insert the term log, T on the left. Since p = M /m, we have

: 1 (M —m)?
0<log, T+I(X,Y;2) - I(Y;2) < ——". 4.4
< log, T + I( ) =113 2) = == 4.4)

Combining (4.3) and (4.4) provides the desired result.
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