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Abstract

Recent hypercircle estimates for non-linear equations are extended to include a
new class of boundary value problems of monotone type. The results are
illustrated by the boundary value problem for the equilibrium-free surface of
a liquid with prescribed contact angle.

1. Introduction

The hypercircle, originally developed as a method for the approximate solution of
certain linear boundary value problems [6], has recently been extended [4] to
provide corresponding geometrical results for a class of non-linear boundary
value problems. These problems involve equations of the type

T*T<t> =/(<£), (1.1)

subject to certain boundary conditions, and many examples of such problems arise
in mathematical physics.

Also of interest for applications, but not included in (1.1), are nonlinear problems
of the form

(1.2)

where h represents a prescribed non-linear function and g may be linear or non-
linear. The problem of Plateau falls into this category, for instance, as do other
equilibrium surface problems and problems of diffusion. Associated hypercircle
estimates would therefore be useful for (1.2) and in this paper we present the results
for those cases where they can be established, namely for various non-linear
functions h and linear functions g. Our results are illustrated by calculations for
the non-linear partial differential equation that arises in the study of capillary
surface problems.
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2. Class of non-linear problems

Let Hu and H# be real Hiibert spaces of vectors u and scalars <t> defined on
some compact connected subset V of Euclidean space E" with smooth boundary
dV = dV1+dV2. The inner products on Hu and H^ are denoted by [ , ] and
< . > respectively. A linear operator T maps H^ into Hu. The domain of T is
dense in H^,, and we assume that an operator T* is defined on Hu, mapping Hu

into Hj,, where T* is the formal adjoint of T such that

[W,7</>] = <r*«, 0 > + [M. (X£W. (2.1)

Here a is an operator mapping H^ into //„ on <3K, with adjoint a* defined by

[M, <T<A]aK = <<T*M, <£>a./. (2.2)

A standard example of these inner products and operators is given by

[«,*;]= u.vdV, [M, v\dv = u.vdB,
J v J By

J v J

(2.3)

7' = grad, T* = - div, <7 = n, a* = n . ,
which we shall use later. More general examples arise when the inner products
involve weighting factors or when the operators are more complicated, but we do
not need the details here. ^

We shall consider boundary value problems described by equations of the form

T*[h(T<t>)]+a<p = b in V, (2.4)

4> = <}>B ondVu (2.5)

o*h(T<f>) = a*uB on dV2, (2.6)

where h is a known function of vectors u in Hu with an inverse, a > 0 and b are
given functions of position in V, and 4>B and «B are prescribed functions on parts
dVl and dV2 of the boundary. The boundary conditions here correspond to
Dirichlet and Neumann types on dVx and dV2 respectively. We assume the existence
of a scalar solution <f> of (2.4)-(2.6). Conditions for uniqueness are discussed in the
next section.

3. Geometrical formulation

To derive hypercircle results for the class of problems in (2.4)-(2.6) we first
employ the basic procedure of splitting equation (2.4) into a pair of canonical
equations by taking

T*u = b-acf> in V, o*u = a*uB on dV2, (3.2)
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where k is the inverse of h. A solution (w, <p) of these equations satisfies (2.4)-(2.6).
Next we introduce a new function space (F-space like phase space) with points

st = (M;, </>f), but without metric for the moment. Let s = (w, <j>) denote the solution
of (3.1) and (3.2). Then s is the intersection of two manifolds:

(1) a non-linear manifold Q, defined by

T<j)l=k(ul), <px=<pB on3Ki; (3.3)

(2) a linear afiine subspace Q2 defined by

T*u2=b-a4>2 in V, a*u2 = a*uB on dV2. (3.4)

Now we shall define the scalar or inner product for any two vectors st and Sj
in F-space by

a<Pj>, (3.5)

where /? is some positive constant. Since a is strictly positive, the metric is positive
definite if P > 0. If ft = 0 we work instead with the function space {<£;}.

If s = (u,<p) is the solution, st = («,,<£,) a point in Q1 and 52 = (u2,<p2) a
point in Q2>

 w e have

(s-si).(s-s2) = [u-uu /3(K-

by (2.1) and using the fact that the boundary terms vanish since <j)l = <j> = 4>B o n

3K, and <T*M2 = CT*M = a*uB on 5K2. By (3.3) we therefore have

/»(«-«!)]. (3-6)

To obtain a hypercircle result from this we must ensure that the right-hand side
is non-positive. Such a result depends upon our choice of /? and the properties of
jfe(«). If k(u) is monotone, so that

[u-v,k(u)-k(vy]>0 (3.7)

for functions u and v in Hu, then by requiring

«2 = "i , (3-8)
and choosing

0 = 0, (3.9)
we obtain

(j-J,).(i-i,)^0. (3.10)

Hence the solution s lies inside (or on) a hypersphere

( x - c ) 2 = J R 2 , (3.11)
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with centre c and radius R given by

2c=st+s2, 4R2 =(i,-J1)2. (3-12)
where s? = s^Sf.

Let us now examine the case when k{u) satisfies stronger conditions. Thus
suppose that k(u) is strongly monotone, so that

[«-»,*(«)-*(»)] > \\u-v\\ Ml «-o| |), (3.13)

where \\u\\ = [M,W]* and /?(/) is an increasing function of the real variable t ̂  0
such that /?(0) = 0 and /?(/) -> oo as f -» oo. Then if we again require

u2 = «„ (3.14)
it follows from (3.6) that

(s-Sl).{s-s2) < fi || « - « , | | 2 - 1 | I I - I I , || /Jdln-11,11). (3.15)

Choosing the constant /? in (3.5) so that

O^p^t-lP(t), t>0, (3.16)
we obtain

(s-Sl).(s-s2)^0, (3.17)

as in (3.10), and hence s lies inside (or on) the hypersphere (3.11). Because of
condition (3.14), the radius R of the hypersphere, given by

AR2 =(s1s2)
2 = [«1-«2,/J(M1-«2)] + <^ 1 -^ 2 , f l (^ 1 -0 2 )>.

is independent of the choice of ft allowed by (3.16). Other parameters however,
such as c2 = R2+st .s2, do depend on the value of /} used in the scalar product
(3.5).

If k(u) possesses an abstract derivative k\u), the monotone nature of k(u) may
be established by using the mean value theorem

[ I I - « „ *(«)-*(«,)] = [«-« i , *'(«)(«-«,)], (3.18)

where u = Mj+e(ii—Mt), 0 < e < 1. In some cases £' is bounded below so that

[ub k'(Uj) «,.] > /?, [«„ II,] > 0 (3.19)

for all non-zero uh Uj in //„. It then follows that k(u) is strongly monotone with

Pit) = Pi t. (3.20)

In this case equation (3.16) becomes

O^j8^/J, . (3.21)

Linear problems correspond to
k{u) = II (3.22)

which is strongly monotone with /?x = 1. If we now choose /? = 1, equation (3.6)
shows directly that the solution 5 lies on the hypersphere (3.11) and condition (3.8)
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or (3.14) need not be imposed. Thus we recover the original hypercircle results of
Synge [6] for linear boundary value problems with Dirichlet or Neumann boundary
conditions.

For our class of problems in (3.1) and (3.2) we can now establish uniqueness of
solution s under the weakest assumptions made here, namely that a is positive and
k{u) is monotone. To see this we note that if st = s2 = one solution, then any
other solution is contained in a hypersphere of radius R = 0 about c = sx and
hence is again s^.

4. An example

To illustrate these results we take the non-linear partial differential equation
problem described by the equations

div {£>(<£) grad <£} = <j> in V, (4.1)
with

n . D(<t>) g rad <j> = cos y o n d V, (4.2)
where

2 - * . (4.3)

This problem arises in the determination of an equilibrium-free surface 5 of a
liquid that partially fills a cylindrical container under surface forces, gravitational
forces and boundary adhesion (see [1]). Here <p = <j)(x,y) represents the height of
the capillary surface, y is the angle of intersection of 5 and the cylindrical container
(measured interior to the liquid) and n is the outward unit normal field on the
boundary dV of the cross-section V of the cylinder. For boundaries dV of class
C4 and y > 0, it has been shown [5] that a solution of the problem exists and is
unique. We shall suppose that these conditions are satisfied.

To obtain hypercircle estimates for this problem we set

D(4>)grad<f> = u (note u.u < 1), (4.4)

and then (4.1) and (4.2) take the canonical form

grad.0 = u ( l - u . u ) - * , (4.5)

— div u = 4> in V, n. u = cos y on d V. (4.6)

Comparing with (3.1) and (3.2) we see that

T = grad, T* = -div, a* = n . , (4.7)

dVl = 0 , dV2 =8V, (4.8)

A:(u) =u( l -u .u )"* (4.9)

a = l, b=0. (4.10)
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Now we examine the function k(a) in (4.9) for monotone properties. Consider

K = [u-v , *(u)-*00]

= [w, *'(u)w], (4.11)

where w = u —v and u = v+e(u —v), 0 < £ < 1. Since

we have

K = [w,(l -n.u)~*w] + [w, (l-u.u)-3/2iiu.w]

> [w, (l-u.u)-*w]

^ [w,w]

= 11 u - v ||2. (4.13)
This shows that £(u) is strongly monotone, a suitable function /?(/) in (3.13) being

Pit) = t. (4.14)

By (3.20) and (3.21) we see that possible values of /? are given by 0 ^ P < 1. For
definiteness let us choose

P = U (4-15)

and the scalar product (3.5) for this problem is then

Si.Sj = [u,,uj + <</>„ 4>j>. (4.16)

Since for this problem a is positive and k(u) is strongly monotone, it follows from
Section 3 that the solution s is unique.

We shall consider the case of a liquid in a cylindrical container with circular
cross-section of radius one. We take very simple trial functions JX in fJi and s2

in Q2 with st = (u,, </>i) and s2 = (u2, </>2) where

cj>l = a - ( s e c 2
V - r 2 ) * , (4.17)

u, = nrcos y, (4.18)
and

0 2 = 2 c o s y , (4.19)

u2 = nr cos y. (4.20)

Here u2 = u1? as required by (3.14), and a is a free parameter which is determined
by minimizing the radius R of the hypersphere given in this case by

J o J o
4K2=(s , -s2)2= P p(0,-02)2rdrdfl (4.21)

J o J o
in plane polar coordinates. With these trial functions the optimization can be
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carried out analytically. Taking the contact angle y equal to n/3, we obtain the
results

a = 2.869, R =0.074, \c\ = 1.88. (4.22)

The size of R here indicates that our simple optimized solution (4.17) is reasonably
good. From it we estimate, for example, that the height of the free surface S at
r = 0 is approximately 0.869, which is in quite good agreement with the value
0.887 given by a more elaborate variational calculation [2].

5. Concluding remarks

For problems of the form

T*lh(T<t>)-] = g(4>), (5.1)

hypercircle estimates are now available in the three cases
(i) h and g linear [6],

(ii) h linear, g non-linear [4],
(iii) h non-linear, g linear (this paper).
Cases (ii) and (iii) of (5.1) are basically different, but they reflect the formal sym-
metry that exists in the pair of associated canonical equations. For the case
(iv) h non-linear, g non-linear,
which provided the original motivation for this investigation, it does not appear
possible to establish similar hypercircle results. A formulation of case (iv) based
on the distance geometry of [3] is possible, however, and this involves a distance
function dtj given by

4 = \Mi ~ »J> Kut)~ KujJ] - <<(>, - 4>j, g(<Pt) - 9i<Pj)>, (5.2)

where k = h'1 and — g are strictly monotone. This geometry enables us to
calculate the distance between points in the non-linear manifolds Qt and Q2> but
it lacks the metric space structure of the hypercircle geometry.
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