A NOTE ON UNIQUELY MAXIMAL BANACH SPACES

by E. R. COWIE

(Received 16th September 1981)

Let X be a real or complex Banach space with norm $\|.\|$. Let G denote the set of all isometric automorphisms on X. Then G is a bounded subgroup of the group of all invertible operators GL(X) in B(X). We shall call G the group of isometries with respect to the norm $\|.\|$. A bounded subgroup of GL(X) is said to be maximal if it is not contained in any larger bounded subgroup. The Banach space X has maximal norm if G is maximal. Hilbert spaces have maximal norm. For the (real or complex) spaces c_0, l_p $(1 \le p < \infty), L_p[0, 1]$ $(1 \le p < \infty)$, Pelczynski and Rolewicz have shown that the standard norms are maximal ([3], pp. 252-265). In finite dimensional spaces the only maximal groups of isometries are the groups of orthogonal transformations. Given any bounded group H in B(X), X can be renormed equivalently so that each $T \in H$ is an isometry, by $||x||_1 = \sup\{||Tx||; T \in H\}$. Therefore corresponding to every maximal subgroup G there is at least one maximal norm for which G is the group of isometries. In this paper we shall investigate those maximal groups G for which there is only one maximal norm with G as its group of isometries.

We have the following definition:

Definition 1. The Banach space X has uniquely maximal norm if it has maximal norm and there is no equivalent norm, not a linear multiple of the original norm, with the same group of isometries.

Uniquely maximal and maximal are not equivalent for norms on a Banach space. Consider the following examples.

Example 2. The standard norm in the real Banach space l_1 is maximal. The isometries in l_1 are of the form $U(\{x_n\}) = \{\alpha_n x_{\sigma(n)}\}$ where $\alpha_n = \pm 1$ and σ is a permutation ([1], p. 178). Define

$$||x_n||_0 = \sup \{\sum x_n y_n; |y_n| \le 1, |y_n - y_m| \le 1, |y_n + y_m| \le 1\}.$$

Then $\|.\|_0$ is an equivalent norm on l_1 with the same group of isometries as the usual norm $\|.\|_1$, and is not a linear multiple of the original norm. Hence the standard norm in l_1 is not uniquely maximal.

Example 3. In [2], Kalton and Wood showed that the uniform norm is a maximal norm for the complex Banach space C[0, 1]. The isometries in C[0, 1] are of the form $U(f)(t) = \alpha(t) f(\phi(t))$ for all $f \in C[0, 1]$, $t \in [0, 1]$ where $\alpha(t)$ is a continuous function such

E. R. COWIE

that $|\alpha(t)|=1$ for all $t \in [0,1]$ and ϕ is a homeomorphism of [0,1] (see [1], p. 173). Define $||f||_1 = ||f|| + |f(0)| + |f(1)|$ for all $f \in C[0,1]$. Then $||.||_1$ is an equivalent norm with the same group of isometries but is not a linear multiple of the original norm. Hence the uniform norm on C[0,1] is not uniquely maximal.

We shall now obtain a characterisation of uniquely maximal norms. They turn out to be exactly those norms which are convex transitive. A norm is called convex transitive if $\overline{co} \{Ux; U \in G\} = \{y; ||y|| \le 1\}$ for each $x \in X$ with ||x|| = 1.

In order to prove this result we shall require the following lemma.

Lemma 4. Let X have a uniquely maximal norm. Then $||f|| = \sup \{|f(Ux)|; U \in G\}$ for each $x \in X$ with ||x|| = 1 and each $f \in X^*$.

Proof. Fix $f \in X^*$. Define

 $||x||_1 = ||x|| + \sup \{|f(Ux)|; U \in G\}$ for all $x \in X$.

Then $\|.\|_1$ is an equivalent norm on X.

If $V \in G$, then

$$||Vx||_1 = ||Vx|| + \sup\{|f(UVx)|; U \in G\} = ||x|| + \sup\{|f(Ux)|; U \in G\} = ||x||_1.$$

Therefore $\|.\|_1$ has at least the same isometries as $\|.\|$. Hence as the norm is uniquely maximal,

$$||x||_1 = ||x|| + \sup \{|f(Ux)|; U \in G\} = k||x||$$

for all $x \in X$ and some constant k > 0. We have $\sup \{|f(Ux)|; U \in G\} = r ||x||$ for all $x \in X$ and some constant r > 0.

Now $|f(Ux)| \leq ||f|| ||Ux|| = ||f|| ||x||$ for all $U \in G$. Therefore $r \leq ||f||$. Given $\varepsilon > 0$ there exists $y \in X$ with ||y|| = 1 such that $|f(y)| \geq ||f|| - \varepsilon$. Hence

$$r = \sup\left\{ \left| f(Uy) \right|; \ U \in G \right\} \ge \left| f(y) \right| \ge \left\| f \right\| - \varepsilon.$$

We have proved $\sup \{ |f(Ux)|; U \in G \} = ||f|| ||x|| \text{ for all } x \in X.$

Theorem 5. For a Banach space X, the norm is uniquely maximal if and only if the norm is convex transitive.

Proof. Assume X has a convex transitive norm. Fix $x \in X$ with ||x|| = 1. Then $\overline{co} \{Ux; U \in G\} = \{y; ||y|| \le 1\}$. Suppose there exists an equivalent norm $||.||_1$ on X with isometries G_1 such that $G \subseteq G_1$. Let $y \in X$ with ||y|| = 1. Given $\varepsilon > 0$ there exists $\{U_1, \ldots, U_n\} \subseteq G$ and $\{\lambda_1, \ldots, \lambda_n\} \subseteq \mathbb{R}^+$ such that

$$\left\| y - \sum_{1}^{n} \lambda_m U_m(x) \right\| < \varepsilon$$
, and $\sum_{1}^{n} \lambda_m = 1$.

We have

$$\|y\|_{1} \leq \left\|y - \sum_{1}^{n} \lambda_{m} U_{m}(x)\right\|_{1} + \left\|\sum_{1}^{n} \lambda_{m} U_{m}(x)\right\|_{1}$$
$$\leq K \left\|y - \sum_{1}^{n} \lambda_{m} U_{m}(x)\right\| + \sum_{1}^{n} \lambda_{m} \|U_{m}(x)\|_{1}$$

 $\leq K\varepsilon + ||x||_1$ for some constant K by equivalence.

Hence $||y||_1 \leq ||x||_1$, and similarly $||x||_1 \leq ||y||_1$. Therefore $\{x; ||x|| = 1\} \leq \{y; ||y||_1 = r\}$ for some r > 0, that is, $r||x|| = ||x||_1$ for all $x \in X$. Hence the norm is uniquely maximal.

The above proof is essentially the proof given by Rolewicz ([3], p. 256) that a convex transitive norm is a maximal norm.

Suppose that the norm is not convex transitive. Then there exists $x \in X$ with ||x|| = 1 such that

$$B = \overline{\operatorname{co}} \{ Ux; \ U \in G \} \subsetneq \{ y; \| y \| \le 1 \}.$$

Let $z \in \{y; ||y|| \le 1\} \setminus B$. By the Hahn Banach separation theorem (see [4], p. 60) there exists $f \in X^*$, the dual space of X, such that $|f(x)| \le 1$ for all $x \in B$ and |f(z)| > 1. But by Lemma 4, B is a norming set for f, which is a contradiction.

By the results of Rolewicz ([3], §6 and 7) on convex transitive norms, the spaces $L_p[0,1]$ $(1 \le p < \infty)$ and the space $C_0[0,1]$ (all continuous complex valued functions vanishing at the end points, see Example 2) have uniquely maximal norms.

REFERENCES

1. BANACH, Theorie des operations lineaires (Warsaw, 1932).

2. N. J. KALTON and G. V. WOOD, Orthonormal systems in Banach spaces and their applications, *Math. Proc. Camb. Phil. Soc.* 79 (1976), 493-510.

3. ROLEWICZ, Metric linear spaces (PWN, Warsaw, 1972).

4. RUDIN, Functional analysis (McGraw-Hill, New York, 1973).

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY COLLEGE OF SWANSEA SINGLETON PARK SWANSEA, SA2 8PP