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A MEASURE OF NON-IMMERSABILITY OF THE
GRASSMANN MANIFOLDS IN SOME EUCLIDEAN SPACES

by CORNEL PINTEA
(Received 19th April 1996)

Let G,, be the Grassmann manifold oonsisti'ng in all non-oriented k-dimensional vector subspaces of the
space R*™". In this paper we will show that any differentiable mapping f : G,, — R™, has infinitely many
critical points for suitable choices of the numbers m, n, k.

1994 Mathematics subject classification: STR70.

1. Introduction

Recall that G,, is a compact manifold of dimension kn and that the manifold G, ,
is just the real projective space P,(R).

In the paper [4] it is proved that the Grassmann manifolds G,, and G,,_,, where
s = 2" is such that 2""!' < n < 2', cannot be immersed in the euclidean spaces R*? and
R¥™? respectively. This means that any differentiable mapping f:G,, — R* or
g:G,,, > R*?, has one critical point at least. This observation justifies the
investigations on the cardinal number

@(M, N) = min{|C(f)| : f € C*(M, N)},

called the @-category of the pair (M, N) of the differentiable manifolds M and N.
The ¢-category of the pair (M, N) represents a measure of non-immersability of the
manifold M into the manifold N if dim M < dim N, and it is a measure of the distance
of the pair (M, N) from a fibration of the manifold M over N, if dim M > dim N and
M, N are compact manifolds. If |C(f)| is infinite for all f € C*°(M, N), we shall use the
notation @(M, N) =o0. In the present paper the ¢-category of the pairs (G,, R"),
(G; ., R™) and (P,(R), R™) will be studied.

2. Preliminary results

The following theorem is the principal result of the paper.
Theorem 2.1. Let M™, N" be smooth manifolds such that m <n and f: M — N be
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an immersion. If y € Imf is such that f~'(y) is finite, then there exists an immersion
g:M—> N\ {y.

Proof. Supposing that f7'(y) = {x,,...,x,}, there exists the local charts (U, ¢,),
(Vi,¢¥),ie{l,2,...,p} and the real positive number r, such that

@) ONnG=0fori#j
(ll) yenf=1 I/i,xieljb (P(x5)=0, lpi(y)=0(v)i€{1’2,"-rp};

(iii) If D;, denotes the pre-image of the open disk D = {x € R* | IIx|| < s} (k € {m, n})
by a coordinate mapping ¢ : U — R* with ¢(0) =0 and D € ¢(U), then I-)f," cy
and D7 <, V,Wie{l,2,...,pk

Gv) Wof o N(xps e en X)) =(X1s o ey X, 0,...,0)(Mie(l,2,...,p).

n—m times
Consider the smooth positive functions 6,: N - R which has the properties
67'(0)= N\ D}, and the smooth vector fields X, X,, ..., X, which are defined on N by

_|e@Z), ifzeDy,
X"(z)‘{o " i N\D,.

Obviously the norms || X,|,..., [IX,|| of the fields X, X,,..., X, are bounded with
respect to any Riemannian metric on N, namely they are completely integrable (see {5,
pp. 183]). Denote by o the global flow induced by X; and consider the projection
B:R"—> R, B(x,,...,x,) = x,. Observe that

Bov,of o071y s X)) =0 V) x = (x4, ..., X,) € o(U).

One can therefore say that
(ﬂolﬁ,of)(x):O(V)xeD:.
Define the mapping g in the following way:
a(f(x) if xe Df,’l
g(x) = ' '

G(f(x) if x €D,
[ if xe M\UL, D,
Because oy, .. ., «, are diffeomorphisms and f is an immersion, it follows that g is also

an immersion. It remains only to show that y ¢ Img, that is, f({,(g(x))) > 0 (V) x € Df,’,
and (v) i€ {l,2,..., p}. Further on, we have successively
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o’.(y))

L UM = Wy (%a‘;(y)) = ()X L) = @)y (0.-(a:'<y»—

P

ax,
Vi

= 0, Yo (;’7 |,4(,)) = 0,e(0e. = O, ..., 0, 6.

Hence for x € D, we have

BWi(g(x)) = B (@i (f (X)) = j: 0. (f(x)))ds > 0. O

Remark The mapping g constructed above is homotopic to f relative to the set
M\ U,.“:, D},. More precisely we have the relation

k
~u g(rel M\ UD;,)
i=1
where H : [0, 1] x M — N is given by
al(f(x) if xe Dﬁ,’l
H(t, x) = ’
af(f(x)) ifxe D:.
f(x) if x e M\ UL, Ds,.

Corollary 2.2. Let M™, N" be smooth manifolds such that M is compact and m < n.
If f: M — N is an immersion and y,,...,y, € N are values of f, then there exists an
immersion g: M — N\ {y,,..., y;} such that f ~ g.

We close this section recalling a useful result proved in [1].

Theorem 2.3. Let M™ be a compact differentiable manifold and let k be an integer
with m > k > 2. Then the relation (M, R*) = R, is satisfied.

3. On the p-category of the pairs (G,,, R™) and (G, ,, R™)

Theorem 3.1. (i) If the natural number n is not a power of 2, then we have
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> 1 ifm=landn=2" -1

R, if2<m<2n

¢(G,n, R") = { o0 if27n<m<2s-3
? if2s—3<m<dn—-1
0 ifm>4n—1

where s =2 issuch that2' <n<?2.
(ii) If n is a power of 2, then we have

R, f2<m<2n

oo if2n<m=<3n-3
G, R") = -
PG R =1y fan—3<m<dn—1
0 ifm=4n-1.

Proof. (i) The inequality @(G,»_;,R)>2""' —1 follows from the inequality
¢(M,R) > catM and from [2, Theorem 1.2]. The fact that ¢(G,,,R™) =R, for
2<m<2n=dimG,, follows from Theorem 2.3. For the proof of the fact that
¢(G,,. R™) = oo under the conditions 2n <m <25 —3, suppose that there exists a

smooth mapping f : G,, = R*™* with a finite number of critical points x,, x,, ..., ;.
Consider the usual embedding i: G,,_, <> G,, and, according to Corollary 2.2, an
immersion g:G,,_, = G,,\{x,,...,x;}] homotopic to i. Then the application

fog:G,,; = R* is an immersion, that is a contradiction with the fact that there is
not any immersion from G,,_; to R* proved in [4, Theorem 1. (i)]. The fact that
¢(G,,,, R™) = 0 for m > 4n — 1, follows from Whitney’s embedding theorem.

The proof of the second statement can be made in an analogous manner, using the
Corollary 2.2 and [4, Theorem 1. (ii)]. O

Theorem 3.2. Let s=2 be the natural number satisfying the condition
2! < 3n < 272 withn > 3.

() If% < n < s—3, then we have

R, f2<m<3n+3
if3n+3<m<3s-4
if3s—4<m<6n+4
0 ifm>6n+5.

@(Gs 11, R”) =

-~2

(ii) If s = 8, then we have

https://doi.org/10.1017/50013091500019507 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019507

GRASSMANN MANIFOLDS IN SOME EUCLIDEAN SPACES 201

R, f2<m=<35-3
if3s—3<m<4s—4
ifds—4<m<bs—17
ifm>6s—1

@(G3,-1, R") =

O'°8

and

R, if2<m<3s
if3s<m<5s—4
ifSs—4<m<b6s—1

0 ifm>6s—1.

(p(GJ,.n Rm) =

‘
(iii) If's < n <4s, then we have

R, if2<m<3n
if3n<m<6s—4
if6s—4<m<6n—1

0 ifm>6n-1.

(p(G},n ] Rm) =

Proof. (i) Theorem 2.3 ensures us that ¢(G;,.;,R") =R, if 2<m<3n4+3=
dimG,,,,, while ¢(G;,,;,R") =0 for m> 6n+ 5, follows from Whitney’s embedding
theorem. It remains only to show that ¢(G;,,,,R™) = oo for 3n+3 < m < 35— 4, that
is, any differentiable mapping from G,,,, to R*™, has a finite number of critical
points. Assume that there exists a mapping f : G, ,,, = R*™* having a finite number of
critical points {x,, x;, ..., x;} and consider the standard inclusion j : G;, <> G, ,,,. Let
h: G;, = Gy, \ {X}, X3, ..., x;} be the immersion (which is homotopic with j) ensured
by the Corollary 2.2. Obviously foh:G,;,— R*™* is an immersion and we can
consider the associated 3(s — n) — 4-normal fibre bundle v. Taking into account the fact
that wy,_,_3(v) = Wy,_,)_3(G3,), the relation wy,_, 3(G;,) # 0 proved in [4, Theorem 2
()] finishes the proof of the statement (i). The statements (ii) and (iii)) can be proved
analogously using the relations W,,3(G;,;) #0, Wy(Gs,)) #0 and Wiy 3 #0
respectively, which are also proved in [4, Theorem 2 (ii)] and [4, Theorem 2 (iii)]
respectively. O

4. On the p-category of the pair (P,(R), R™)

In this section the case of the pair (P,(R), R™) will be treated. For this purpose we
need some helpful results.
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Lemma 4.1. If ACS", (n>2) is a finite set, then there exists x € S" such that
(x)* N A = @ where (x)* denotes the orthogonal complement of x with respect to the usual
scalar product from R™",

Proof. The proof will be made by induction with respect to k = |A]. If k =1, then
A = {a} and we can choose x = a. Suppose that |A| =k + 1 and choose a € A. From
the induction hypothesis it follows that there exists x'€S" such that
(Y- N(A\{a})) =0. If a & (x')* choose x = X/, else we choose 8 € (0, m) where

(a, x')

arct
retd (a, @)

m= min{

:d € A\{a}],

with m=2 if (a,d)=0(V)d € A\{a}, and x=cosfx +sinfaec§". Obviously
(a,x) =sind >0, that is ag(x)* and since (a’,x) = cosf(d,x’)+ sind(a, a) #
0 (V) @’ € A\{a}, it implies that (4\{a}) N (x)* = @ which together with a ¢ (x)* leads to

the conclusion that (x)'! N A4 = @. O

Proposition 4.2. If A C §",n > 2 is a finite set Z,-invariant (symmetric), then there
exists a Z,-equivariant (odd) embedding f : S"' — S"\ A.

Proof. Let us consider x € S" such that (x)* N 4 = @. Because the orthogonal group
O(n) acts transitively on §”, it follows that there exists T € O(n) such that T(e,,,) = x
where e,,; =(0,...,0,1) € R™'. But since (e,.,)" = {(X;, X5, ..., %Xs1) € R™' | x,,, =
0} ~ R" and T is an orthogonal diffeomorphism which leaves invariant the sphere §", it
implies that T(R") = (x)*. Choose f = T|g1.

Corollary 4.3. If A < P,(R"), (n > 2) is a finite subset, then there exists an immersion
g: P, ,(R) > P(R)\4

Proof. Let f:S"' — S"\ p;'(A), where p, : S* = P,(R) is the canonical projection,
be the embedding ensured by Proposition 4.2. g will be chosen as being the mapping
which makes commutative the following diagram:

S AvA)
Do 4 l pr:lS"\p;'(A)
P_R) -5 PR\A 0

Let A be a finite subset of P,(R) and E(y)(4)) be the subset of (P,(R)\A4) x R™'
consisting in all pairs ({x}, v) such that v is a multiple of x. Define n, : E(3.(4)) »>
P,(R)\ A by n,({£x}, v) = {£x). Hence every fibre n;'({£x}) can be identified with the
straight line through x and —x from R™'. The resultant fibre bundle y!(4) will be
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called the canonical line bundle over P,(R)\ A. Note that y.(@) is even the canonical line
bundle y! (over P,(R)) defined in [3, pp. 16].

Proposition 4.4. The total Stiefel-Whitney class of the canonical line fibre bundle
¥a(A) over P,(R)\ A is given by

o(ya(A) =1+ a,

where a, € H'(P,(R)\ A4; Z,) is not zero.

Proof. Letj :S'— S"\p,'(A4) be a Z,-equivariant embedding. Obviously j’ induces
an immersion j: P,(R) - P,(R)\ A covered by an application of fibrations from y} to
9)(A). Therefore denoting by a, the Stiefel-Whitney class w,(y,(A4)), one can say that
j*(a,) = w,(y}) # 0 which shows that a, # 0. O

Remark. If n>2, then @ #0, Wke {1,2,...,n—1}. Indeed if k : P,(R) > P,_,(R)
denotes the usual inclusion, which can be obviously covered by an application of
fibrations from y; to y._, and j : P,_,(R) — P,(R)\ A the immersion ensured by Corollary
4.3, which can be also covered by an application of fibrations from y,_, to y!(4), then from
the second axiom of the Stiefel-Whitney classes, it follows that k*(j*(a,)) = w,(y;) # O,
and therefore j*(a,) =a € H'(P,_,(R); Z;) is the generator (obviously non zero) of
H'(P,_,(R); Z,). But since a*=j"(a%) is the generator (obviously non zero) of
H*(P,_,(R); Z,) for any ke{l,2,...,n—1}, it implies that a4 #0, for each
ke{l,2,....,n—-1}).

Using a similar judgement with that from [3, Theorem 4.5, p. 45] one can show that
the manifold P,(R)\ A has the total Stiefel-Whitney class

o(P,RN\A) = (1 +a)™ =1+ a, + G as +--- + ()l
For n =2 we get
o(PyR\A) =(14a,)" =1+4+a,+ad
and also

EJ(PZ'(R)\A)=1+aA+ai+"‘+ai'—l.

Theorem 4.5. If n is a natural number such that n+ 1 and n+ 2 are not powers of
2, then the p-category of the pair (P,(R), R™) is given by:
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n+l ifm=1

R, if2<mz<n
o(P,(R),R™) = { o0 if n < m < 2leent¥! _ 3

? if 2l _ 1 <m<2n-2

0 ifm>2n-1.

Proof. The case m=1 is justified in [6]. The fact that ¢(P,(R),R™) =¥, for
2 < m < n follows from Theorem 2.3. Consider firstly the case when n is a power of 2,
that is, n=2"""1 Assume that n <m <2"™ _2 and that there exists
f : Pyom(R) = R™ such that C(f) is finite. If v is the associated normal fibre bundle
(over Pynn(R)\C(f)) to the immersion f| Py @®\CL) thEN

Jlogan]-1

0(v) = A(Paopi(RNC(f)) = 1 + agyy + ag + - - - + aZ
But since v is a m—2"".yector fibre bundle and aéug;"l_l #0 it follows that
m — 2ol > ol _ 1 which means that m > 2P0+ _ 5 2lee+) _ 9 yhat is a
contradiction. If n is not a power of 2, then the hypothesis of the theorem ensures that
lleenl 4 ) < p < Qlom+l _ 3 Agsume that n < m < 2¥%"*! _ 2 and that there exists a
differentiable application g:P,(R)— R™ such that C(g) is finite. If
h: Pysm(R) — P,(R)\C(g) is the immersion ensured by Corollary 4.3, then obviously
goh: Pypnn(R) — R™ is an immersion. If v’ is the associated normal fibre bundle (over
Pyioni(R)) of the immersion g o h, then w(v') = W(Pyea(R)) = 1 +a+a* +---+a ",
But since v is a m—22"".vector fibre bundle and o #0 it follows that
m — 2eenl > Jleel _ 1 which means that m > 2! _ | 5 2l _ 5 that s a
contradiction. The fact that ¢(P,(R),R™) =0 for m > 2n — 1 follows from Whitney’s
embedding theorem. 0

Corollary 4.6. If m and n are natural numbers such that n+ 1 and n+ 2 are not
powers of 2 and 2 <m < 22" _ 2 then any smooth Z,-invariant (even) mapping
f : 8" > R™ has an infinite number of critical orbits, that is, there exists infinitely many
points x € S" such that x and —x are critical points of f.
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