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A MEASURE OF NON-IMMERSABILITY OF THE
GRASSMANN MANIFOLDS IN SOME EUCLIDEAN SPACES

by CORNEL PINTEA

(Received 19th April 1996)

Let Gj „ be the Grassmann manifold consisting in all non-oriented /c-dimensional vector subspaces of the
space Rl+". In this paper we will show that any differentiable mapping / : GM -+ R™, has infinitely many
critical points for suitable choices of the numbers m, n, k.

1994 Mathematics subject classification: 57R70.

1. Introduction

Recall that Gk „ is a compact manifold of dimension kn and that the manifold G, „
is just the real projective space Pn(R).

In the paper [4] it is proved that the Grassmann manifolds G2n and G2iJ_i, where
s = 2r is such that 2'"1 < n < X, cannot be immersed in the euclidean spaces R2*"3 and
R3*"3 respectively. This means that any differentiable mapping / : G2 „ -*• R21"3 or
9 '• G2,j_i -*• R3l~3, has one critical point at least. This observation justifies the
investigations on the cardinal number

<p(M, N) = min{|C(/)| : / e C°°(M, N)),

called the <p-category of the pair (M,N) of the differentiable manifolds M and N.
The (p-category of the pair (M, N) represents a measure of non-immersability of the
manifold M into the manifold N if dim M < dim N, and it is a measure of the distance
of the pair (Af, N) from a fibration of the manifold M over N, if dim M > dim N and
M, N are compact manifolds. If \C(f)\ is infinite for all / € C°°(M, N), we shall use the
notation <p{M, N) = oo. In the present paper the ^-category of the pairs (G2n,R

m),
(G3,„, Rm) and (Pn(R), RM) will be studied.

2. Preliminary results

The following theorem is the principal result of the paper.

Theorem 2.1. Let M™, N" be smooth manifolds such that m <n and f : M -*• N be
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an immersion. If y € Imf is such that /~'(y) is finite, then there exists an immersion

Proof. Supposing that / (y) = {x, xp], there exists the local charts (£/„ <p,),
(Vit i/f,.), i e {1 ,2 , . . . , p} and the real positive number r, such that

(i) UlnU) = idfoTi^j;

0 0 y e nf=i K. x, e U,, <p(Xi) = 0, fc(y) = 0 (V) i e {1,2 p};

(iii) If Z)J, denotes the pre-image of the open disk D = {x e Rk \ \\x\\ < s) (k e [m, n})
by a coordinate mapping q>: U -*• R* with (p(0) = 0 and D c (p(C/), then D% c L/j

d 5 J n L K C V ) i { 1 2 }

= ( x , , . . . , xm,Oj^^^O) (V) i e {1,2 p}.(iv) (i/̂ ( o / o
n—m times

Consider the smooth positive functions 0,: N -*• R which has the properties
i~'(O) = ^ \ D9, a n d t n e smooth vector fields XUX2,.. .,XP which are defined on N by

Obviously the norms ||AT, || \\XP\\ of the fields XUX2 Xp are bounded with
respect to any Riemannian metric on N, namely they are completely integrable (see [5,
pp. 183]). Denote by of, the global flow induced by AT, and consider the projection
P : R" -*• R, /?(x, xn) = xn. Observe that

08 o ^ of o p-'Xx, x j = 0 (V) x = (x l f . . . , x j € <pXU,).

One can therefore say that

Define the mapping g in the following way:

«?(/(*)) if

[/(x) if M \

Because a\,..., <xl
p are diffeomorphisms and / is an immersion, it follows that g is also

an immersion. It remains only to show that y & Img, that is, /JMGK*))) > 0 0 0 * e D%,
and (V) i e {1,2,..., p}. Further on, we have successively
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(6 a* — )

= (0 , . . . . o, 0,(«:

Hence for x e D'^ we have

0- •

Remark The mapping g constructed above is homotopic to / relative to the set
M \ U t i &<?,- More precisely we have the relation

where H : [0,1] x M -*• N is given by

Hit, x) =
af(/(x))

f{x)

Corollary 2.2. Le< Mm, TV" be smooth manifolds such that M is compact and m <n.
If f : M -*• N is an immersion and yt,.. .,y,e N are values of f, then there exists an
immersion g : M ->• N \ {y , , . . . , yt] such thatf ~ g.

We close this section recalling a useful result proved in [1].

Theorem 2.3. Let Mm be a compact differentiate manifold and let k be an integer
with m>k>2. Then the relation <p(M, R*) = K, is satisfied.

3. On the ^-category of the pairs (G2n, Rm) and (G3 „, Rm)

Theorem 3.1. (i) If the natural number n is not a power of 2, then we have
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oo

?

0

s = 2r is JMCA that 2'"1 < n < 2'.
(ii) //"« is a power of 2, then we have

- 1 ifm=\andn = 2"-\
if2<m<2n
if 2n < m < 2s — 3
i/2s-3<m<4n-l
if m > An - 1

K, if2<m<2n

oo i/ 2n < m < 3« — 3

? i/ 3n - 3 < m < An - 1

0 if m > An - 1.

Proof, (i) The inequality (p(G2_V-i. R) > 2P+I — 1 follows from the inequality
<p(M, R) > cat M and from [2, Theorem 1.2]. The fact that (p(G2n,R

m) = Kt for
2 < m < 2n = dimG2n follows from Theorem 2.3. For the proof of the fact that
(p(G2,„, R"1) = oo under the conditions 2n < m < 2s — 3, suppose that there exists a
smooth mapping / : Gln -> i?25"3 with a finite number of critical points x,, x 2 , . . . , x(.
Consider the usual embedding i: G2„_, c-> G2n and, according to Corollary 2.2, an
immersion g : G2,B_i -*• G2 „ \ {x, , . . . , x,} homotopic to i. Then the application
fog: G2 ,„_! ->• R21"3 is an immersion, that is a contradiction with the fact that there is
not any immersion from G2B_1 to R2*"3 proved in [4, Theorem 1. (/)]• The fact that
<p(G2B, Rm) = 0 for m > An — 1, follows from Whitney's embedding theorem.

The proof of the second statement can be made in an analogous manner, using the
Corollary 2.2 and [4, Theorem 1. (it)]. •

Theorem 3.2. Let s = 2r be the natural number satisfying the condition
2r+1 < 3n < 2r+2, with n > 3.

(i) If\ < n < s — 3, then we have

K, if 2 < m < 3n + 3

oo i/ 3« + 3 < m < 3s — 4

? i/ 3s - 4 < m < 6n + 4

0 i/ m > 6« + 5.

(ii) Ifs>S, then we have
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(p(G3,_i,R
m) =

K, if 2 < m < 3s - 3

oo if 3s — 3 < m < As — 4

? if 4s - 4 < m < 6s - 7

0 i/ m > 6s - 7

and

,, Rm) =

N, i/ 2 < m < 3s

cx> i / 3s < m < 5s — 4

? i/ 5s - 4 < m < 6s - 1

(iii) Ifs<n<\s, then we have

,n, R
m) =

K, if 2 < m < 3n

oo i/ 3n < m < 6s — 4

? if 6s — 4 < m < 6n — 1

0 i /m > 6 I I - 1 .

Proof, (i) Theorem 2.3 ensures us that </j(G3,n+|, R"1) = K, if 2 < m < 3 n + 3 =
dimG3l,+,, while «p(G3 n+1, Rm) = 0 for m > 6 n + 5, follows from Whitney's embedding
theorem. It remains only to show that <p(G3 n+l, R

m) = oo for 3n + 3 < m < 3s - 4, that
is, any differentiable mapping from G3n+I to R3'"4, has a finite number of critical
points. Assume that there exists a mapping / : G3 n+, -> R3*"4 having a finite number of
critical points {x,, x 2 , . . . , x,} and consider the standard inclusion j : G3n «-»• GJn+1. Let
h '• G3,n '-*• G3 n+, \ {x,, x 2 , . . . , x,} be the immersion (which is homotopic with j) ensured
by the Corollary 2.2. Obviously f oh: G3 „ -»• R35"4 is an immersion and we can
consider the associated 3(s — n) — 4-normal fibre bundle v. Taking into account the fact
that w3(l_B)_3(v) = w3(J_B)_3(G3,„), the relation vv3(j.n)_3(G3n) j* 0 proved in [4, Theorem 2
(01 finishes the proof of the statement (i). The statements (ii) and (iii) can be proved
analogously using the relations wJ+3(G3j_2) ^ 0, w2j(G3_,_,) ^ 0 and w3(2j_n+1)_3 / 0
respectively, which are also proved in [4, Theorem 2 (ii)] and [4, Theorem 2 (Hi)]
respectively. •

4. On the (p-category of the pair (Pn(R), R"1)

In this section the case of the pair (Pn(R), Rm) will be treated. For this purpose we
need some helpful results.
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Lemma 4.1. If AQSn. (n > 2) is a finite set, then there exists x e S" such that
(x)x n A = 0 where (x)x denotes the orthogonal complement ofx with respect to the usual
scalar product from RB+I.

Proof. The proof will be made by induction with respect to k = \A\. If k = 1, then
A = {a} and we can choose x = a. Suppose that \A\ = k + 1 and choose a e A. From
the induction hypothesis it follows that there exists x' € S" such that
(x'}x D (A \ {a)) = 0. If a # (x')x choose x = x', else we choose d € (0, m) where

m = min< \arctg
{a, x')

(a, a')
: d e A\{a)

with m = § if (a, a') = 0 (V) d e A\{a], and x = cosBx' + sinOa e S". Obviously
(a, x) = sinO > 0, that is a & {x)± and since (a1, x) = cosO (a1, x') + sind {a, a!) ^
0 (V) a' e A\{a], it implies that (A\{a)) n (x)x = 0 which together with a & (x)1 leads to
the conclusion that (x)1- r\A = 0. •

Proposition 4.2. If A c S",n>2 is a finite set Z2-invariant (symmetric), then there
exists a Z2-equivariant (odd) embedding f : S"~l —*• S"\A.

Proof. Let us consider x e S" such that (x)x HA = 0. Because the orthogonal group
O(ri) acts transitively on S\ it follows that there exists T e O(n) such that T(en+I) = x
where en+i = (0 , . . . . 0, 1) 6 Rn+1. But since (en+1 )

x = {(x,, x2 xn+t) e R"+1 | xn+1 =
0} ~ R" and T is an orthogonal diffeomorphism which leaves invariant the sphere S", it
implies that T(R") = (x)\ Choose / = 7 V i .

Corollary 4.3. If AC. Pn(R"), (n > 2) is a finite subset, then there exists an immersion
g : FB_,(R) ^ Pn(R)\A.

Proof. Let / : S""1 -)• S" \ p~l(A), where pn : S" -> Pn(R) is the canonical projection,
be the embedding ensured by Proposition 4.2. g will be chosen as being the mapping
which makes commutative the following diagram:

S- ' -U Sn\p;l(A)

Pn-l I' 4- Pnls»\p-'U)

^ •

Let A be a finite subset of Pn(R) and E(y\(A)) be the subset of (Pn(R)\/l) x R"+1

consisting in all pairs ({±x}, v) such that v is a multiple of x. Define nA : E(y\(A)) -*•
Pn(R)\A by nA({±x], v) = {±x}. Hence every fibre 7t;'({±x}) can be identified with the
straight line through x and —x from R"4"1. The resultant fibre bundle y],(A) will be
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called the canonical line bundle over Pn(R)\A. Note that yi(0) is even the canonical line
bundle y\ (over Pn(R)) defined in [3, pp. 16].

Proposition 4.4. The total Stiefel- Whitney class of the canonical line fibre bundle
y\(A) over Pn(R)\.4 is given by

=l+aA

where aA e H\Pn(R)\A; Z2) is not zero.

Proof. L e t / : S1 -> S"\p~'(.4) be a Z2-equivariant embedding. Obviously;' induces
an immersion j : Pt(R) -*• Pn(R)\A covered by an application of fibrations from y\ to
y\(A). Therefore denoting by aA the Stiefel-Whitney class co^y^A)), one can say that
}*{aA) — <ox(y\) 7̂  0 which shows that aA ^ 0. Q

Remark. If n > 2, then a\± 0, (V)fc e {1,2,.. . , n - 1}. Indeed if k : P,(R) -+ Pn_,(R)
denotes the usual inclusion, which can be obviously covered by an application of
fibrations from y\ to yj_, and; : Pn_!(R) -»• Pn(R)\^ the immersion ensured by Corollary
4.3, which can be also covered by an application of fibrations from yj_, to y\(A), then from
the second axiom of the Stiefel-Whitney classes, it follows that k*(j*(aA)) = co^yj) ^ 0,
and therefore j*(aA) = a e if'(Pn_!(R); Z2) is the generator (obviously non zero) of
Hl(Pn_x(Ry, Z2). But since ak =j*(ak

A) is the generator (obviously non zero) of
H(Pn-i(R); Z2) for any fce{1.2 n-l], it implies that a\ ^ 0, for each

Using a similar judgement with that from [3, Theorem 4.5, p. 45] one can show that
the manifold Pn(R)\/l has the total Stiefel-Whitney class

a>(Pn(R)\A) = (1 + aAf+l = 1 + Q+i)aA + (TV* + • • • + C V*-

For n = 2r we get

co(P2,(R)\A) = (1 + aAf+1 = \+aA + aA'

and also

co(Py(R)\il) = 1 + aA + a\ + • • • + a*'1.

Theorem 4.5. If n is a natural number such that n+\ and n + 2 are not powers of
2, then the <p-category of the pair (Pn(R), Rra) is given by:
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n+l ifm=l

K, if2<m<n
oo ifn<m< 2"OB2"1+1 - 2

7 if 2v°rt+l -\<m<2n-2

0 ifm>2n-\.

Proof. The case m = 1 is justified in [6]. The fact that (p(Pn(R), Rm) = K, for
2 < m < n follows from Theorem 2.3. Consider firstly the case when n is a power of 2,
that is, n - 2"092"1. Assume that n < m < 2[log2"]+1 - 2 and that there exists
/ : P^ionn](R) -> Rm such that C ( / ) is finite. If v is the associated normal fibre bundle
(over P2[i»m«i(R)\C(/)) to the immersion/|p2((c>nit)(R)a/) then

cu(v) = « ( i W 1 ( R ) \ C ( / ) ) = 1 + a ^ MaC(f) + aC(/) + • • • + a c ^ .

But since v is a m - 2[log2n]-vector fibre bundle and flcoo"' ' / 0 it follows that

m _ 2i<<>n>4 > 2['"«"1 - 1 which means that m > 2['°gi"]+l - 1 > 2['O»2"1+1 - 2 that is a
contradiction. If n is not a power of 2, then the hypothesis of the theorem ensures that

2Votln] + x < „ < 2[«"»"l+1 _ 3. Assume that n < m < 2[l092H]+1 - 2 and that there exists a
differentiable application g: Pn(R) - • R™ such that C(g) is finite. If
h : F2B.WM(R) —• Pn(R)\C(g) is the immersion ensured by Corollary 4.3, then obviously
goh : P2[i<>nni(R) -> Rm is an immersion. If v' is the associated normal fibre bundle (over
iVn»](R)) of the immersion g oh, then w(v') = w(P2l!o«»](R)) = l + a + a2-| h c?

ll°nn]-\
But since v' is a m — 22 °°2 -vector fibre bundle and a2 "' / 0 it follows that

m _ 2[i»n<4 > 2 ^ " l - l which means that m > 2['OB2"1+I - 1 > 2[logi"]+i - 2 that is a
contradiction. The fact that <p(Pn(R), Rm) = 0 for m > 2n - 1 follows from Whitney's
embedding theorem. •

Corollary 4.6. If m and n are natural numbers such that n + 1 and n + 2 are not
powers of 2 and 2 < m < 22 — 2, then any smooth T^-invariant (even) mapping
f : S" -*• Rm has an infinite number of critical orbits, that is, there exists infinitely many
points x e S" such that x and —x are critical points off.
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