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Abstract
We investigated the effects of body mass, geographic range size, the within-range richness of
host assemblages (diversity field) and the habitat breadth of small mammalian hosts from 6
biogeographic realms on the species richness of their flea and gamasid mite faunas. We also
tested whether the probability of between-host ectoparasite sharing is related to host phyloge-
netic relatedness, trait similarity or geographic distance/environmental dissimilarity between
their ranges.We askedwhether the effects of host-associated determinants of ectoparasite rich-
ness and the probability of ectoparasite sharing differ between (1) biogeographic realms and
(2) fleas and mites. Whenever significant effects of host body mass on ectoparasite richness
were found, they were negative, whereas the significant effects of geographic range size, diver-
sity field and habitat breadth were positive. The occurrence of each determinant’s effects on
ectoparasite species richness differed (1) within fleas or mites between realms and (2) between
fleas and mites within a realm. In all realms, the probability of a flea or a mite species being
shared between hosts decreased with a decrease in the hosts’ phylogenetic relatedness, trait
similarity, geographic distance between ranges or environmental similarity. The probabilities
of an ectoparasite species being shared between hosts were most strongly related to the hosts’
trait similarity and were least related to the environmental similarity. We conclude that cau-
tion is needed in making judgements about the generality of macroecological patterns related
to parasites based on the investigations of these patterns in limited numbers of localities and
when pooling data on various taxa.

Introduction

Parasites represent a large (if not the largest) component of global biodiversity (Poulin, 1996;
Poulin and Morand, 2004; Dobson et al., 2008; Okamura et al., 2018). One of the most funda-
mental challenges in ecological parasitology is elucidating the determinants of parasite species
richness (Poulin, 1997; Morand, 2015; Carlson et al., 2020; Dallas et al., 2020). Given that hosts
represent the ultimate resource for parasites, the search for factors explaining variation in par-
asite species richness has mostly focused on variation in host-associated attributes (Kamiya
et al., 2014; Morand, 2015). Among these attributes, parasite richness has most often been stud-
ied in relation to host body size (e.g., Morand and Poulin, 1998), density (e.g., Morand, 2000),
longevity (e.g., Cooper et al., 2012a), level of sociality (e.g., Bordes et al., 2007), the number of
host species cohabitating with a target host (e.g., Krasnov et al., 2004a) and geographic range
size (e.g., Dáttilo et al., 2020).

The effect of some host features, such as geographic range size, on their parasites’ species
richness has been found to be consistent in many host and parasite taxa, in many regions and
across multiple scales (Feliu et al., 1997; Krasnov et al., 2004a; Lindenfors et al., 2007; Dáttilo
et al., 2020). However, the relationships between parasite species richness and many other host
traits have appeared to be variable. For example, no effect of host body size on parasite species
richness was found for helminths in various terrestrial mammals (Morand and Poulin, 1998)
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or for fleas parasitic on rodents and shrews (Krasnov et al., 2004a),
whereas this effect was found to be positive for various parasite taxa
in ungulates (Ezenwa et al., 2006). Higher host assemblage species
richness promoted the parasite species richness of individual host
species in some, but not other, regions (Krasnov et al., 2004a vs
Dáttilo et al., 2020).

The contradictory findings regarding the links between parasite
species richness andhost characteristics suggest that these relation-
ships may vary between host–parasite associations. For example,
Sasal et al. (1997) reported a positive association between fish
body size and the species richness of monogeneans, but not of
gastrointestinal helminths, explaining this difference via the dif-
ferential ways fish hosts acquire ecto- and endoparasites. Other
likely reasons for the above-mentioned contradictions include the
study’s considered scale and geographic region. Given that par-
asite communities are fragmented among host individuals, pop-
ulations and species, the host-associated determinants of para-
site species richness have been considered at various scales, from
individual hosts (infracommunities; e.g., Spickett et al., 2017) via
host populations (component communities; e.g., Morand et al.,
2000a) to host species (parasite faunas; e.g., Kennedy and Bush,
1992). Parasite communities at different scales substantially differ
in their longevity and assemblymechanisms, with an infracommu-
nity being ephemeral and assembled during an individual host’s
lifespan via epidemiological and ecological mechanisms, whereas
the persistence of a parasite fauna (i.e., a set of parasites exploit-
ing a host species across its geographic range) is much longer,
being formed during the host species’ long phylogenetic history
via evolutionary processes (Poulin, 1996). From this perspective,
a parasite fauna seems to be the most suitable scale for investigat-
ing the host determinants of parasite species richness, especially
given that parasite infra- and component communities are obvi-
ously not appropriate for studying parasite richness in relation to
some host traits, such as geographic range size. Many studies on
the association between host traits and parasite species richness
have been carried out at the global scale (Morand and Poulin, 1998;
Nunn et al., 2003; Ezenwa et al., 2007; Dallas et al., 2019). To the
best of our knowledge, the revealed patterns have never been com-
pared between the same parasite–host associations from different
biogeographic realms. However, parasite–host relationships in dif-
ferent realms have different evolutionary histories (e.g., Medvedev,
2005; Lei et al., 2024), which can cause between-realm variation in
the responses of parasite species richness to the same or different
host traits.

The effects of host traits on parasite communities could be real-
ized not only via the number of parasite species but also via their
identities. This is because parasites coevolved with their hosts (e.g.,
Brooks, 1979), adapting to species-specific host traits for the sake
of successfully extracting resources from the hosts (e.g., Morand
et al., 2000b). This results in similarities in parasite species com-
position between hosts possessing similar traits (Huang et al.,
2014; Lehun et al., 2024). Given that many traits are usually more
similar between phylogenetically close species than between phy-
logenetically distant species, due to a shared evolutionary history
(Blomberg andGarland, 2002; Losos, 2008 and references therein),
the trait-based between-host similarity in parasite species com-
position leads to a tight link between the similarity of parasite
species composition and hosts’ phylogenetic relatedness (Poulin,
2010; Krasnov et al., 2010; Huang et al., 2014). If a parasite species
can exploit a set of functionally similar and phylogenetically related
hosts, it can thus alternate between these hosts, provided they

spatially co-occur. In other words, a sharing of parasites between
hosts is expected based on their trait and/or phylogenetic similar-
ity (Cooper et al., 2012b; Clark et al., 2018; Dallas et al., 2019).
Analogously to host determinants of parasite species richness, the
probability of sharing parasites in dependence on similarity in
traits or phylogenetic positions can vary geographically because
of the environmental variation, biogeographic barriers and differ-
ences in the evolutionary histories of parasite–host associations
(Clark et al., 2018; Gupta et al., 2019).

An additional factor that may affect a host’s parasite species
richness and a parasite’s probability of being shared between hosts
is the hosts’ spatial co-occurrence. First, the richer species compo-
sition of a host assemblage increases the probability of the lateral
transfer of parasites and, consequently, a host’s parasite richness
(Combes, 2001; but see Dáttilo et al., 2020). Second, similar par-
asite species compositions and the probability of parasite sharing
are obviously either more probable or can only occur, respectively,
between co-occurring hosts, all else being equal (Krasnov et al.,
2004a; Davies and Pedersen, 2008).These patterns, again,may vary
geographically.

Here, we used data on 2 taxa of arthropod ectoparasites (fleas
and gamasid mites), harboured by small mammalian hosts across
their geographic ranges (i.e., flea and mite faunas), from 6 bio-
geographic realms. First, we tested whether ectoparasite species
richness correlates positively with host body mass, geographic
range size, the number of co-occurring hosts within a focal host’s
geographic range and the number of habitats occupied by a host.
Larger hosts are expected to harbour richer parasite assemblages
than smaller hosts because of their greater longevity (facilitat-
ing parasite accumulation) and larger space and higher number
of niches provided for parasites (Poulin, 1995, 2004). Hosts pos-
sessing larger geographic ranges and/or occupying multiple habi-
tats have greater chances of encountering more parasite species
(Combes, 2001), whereas the reason for hosts in richer assem-
blages to have richer parasite fauna has been mentioned earlier.
Second, we tested whether the probability of ectoparasite sharing is
higher for hosts that (1) are phylogenetically close, (2) are similar
in their traits, (3) are geographically close and (4) inhabit similar
environments. Finally, we asked whether the results of the above-
mentioned tests differ between (1) fleas and mites and (2) within
fleas and mites between biogeographic realms.

Materials and methods

Data on fleas and gamasid mites recorded on small
mammalian hosts

We used various literature sources (including many ‘grey’ pub-
lications) to obtain data on the species composition of fleas
and parasitic gamasid mite harboured by small mammalian
hosts (Dasyuromorphia, Paramelemorphia, Diprotodontia,
Macropodiformes, Didelphimorphia, Paucituberculata,
Microbiotheria, Macroscelidea, Afrosoricida, Scandentia,
Notoryctemorphia, Eulipotyphla, Rodentia and the ochotonid
Lagomorpha) from 6 biogeographic realms (the Afrotropics, the
Australasia, the Indomalaya, the Nearctic, the Neotropics and
the Palearctic) (see references for data on fleas in Krasnov et al.,
2022a and on mites in Supplementary material, Appendix 1). We
focused on studies that aimed to compile the most complete lists
of fleas or mites on a given host species in a region or an entire
continent. In total, we used data on 1090 host species infested by
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Table 1. Summary of the best generalized linear models with negative binomial
distributions of the effects of host body mass (BM), geographic range size (GR),
diversity field (DF; see the text for explanation) and habitat breadth (HB) on the
species richness of a host’s flea fauna (FSR)

Realm Equation FSR = ED R2

Afrotropics −1.15 − 0.22 * BM + 0.23 * GR + 0.39 * DF 23.82 0.27

Australasia −4.78 + 0.22 * GR + 0.91 * DF + 0.29 * HB 29.75 0.13

Indomalaya −2.70 − 0.23 * BM + 0.26 * GR + 0.65 * DF 26.85 0.30

Nearctic −1.99 + 0.21 * GR + 0.42 * DF 11.79 0.13

Neotropics 0.18 * GR + 0.15 * HB 15.47 0.17

Palearctic −2.58 − 0.1 * BM + 0.24 *
GR + 0.66 * DF + 0.13 * HB

31.68 0.38

Note: All coefficients are significant (P < 0.05).
ED, percentage of explained deviance; R2, pseudo Nagelkerke’s R2.

Table 2. Summary of the best generalized linear models with negative binomial
distributions of the effects of host body mass (BM), geographic range size (GR),
diversity field (DF; see the text for explanation) and habitat breadth (HB) on the
species richness of a host’s mite fauna (MSR)

Realm Equation MSR = ED R2

Afrotropics −2.17 + 0.12*GR + 0.45*DF + 0.23*HB 21.50 0.23

Australasia −2.06 + 1.33*GR + 0.71*DF + 0.22*HB 32.74 0.35

Indomalaya −1.88−0.23*BM + 0.34*GR 21.92 0.24

Nearctic −4.37 + 0.28*GR + 0.55*DF + 0.12*HB 36.30 0.44

Neotropics −2.58−0.15*BM + 0.34*GR 23.54 0.25

Palearctic −4.98−013*BM + 0.35*GR
+ 0.89*DF + 0.11*HB

54.68 0.72

Note: All coefficients are significant (P < 0.05).
ED, percentage of explained deviance; R2, pseudo Nagelkerke’s R2.

1174 flea species and 884 host species infested by 643 mite species
(Supplementary material, Appendix 2). Ubiquitous host species
(Mus musculus, Rattus rattus and Rattus norvegicus) were not
considered in the analyses.

Host-associated determinants of ectoparasite species richness

Data on host body mass and habitat breadth (number of distinct
suitable level 1 IUCN habitats) were obtained from the COMBINE
database (Soria et al., 2021). Geographic host ranges were taken
from Digital Distribution Maps downloaded from the IUCN
database (IUCN, 2024), and a 1° × 1° cell grid was overlaid
onto these maps. Then, geographic range sizes were calculated
using the ‘lets.range’ function (with the ‘meters’ option) of the
R package ‘letsR’ (Vilela and Villalobos, 2015). Values of geo-
graphic range size were ln-transformed prior to further analy-
ses. To estimate the tendency of a host species to co-occur with
many or a few other species (Villalobos et al., 2013), we followed
Dáttilo et al. (2020) and calculated the diversity field of each host
(Arita et al., 2008; Villalobos and Arita, 2010; Villalobos et al.,
2013) within a respective realm. The diversity field of a species
is defined as the mean number of other species that co-occur
within its range. To calculate the diversity field of a focal host,
we took into consideration all small mammal species that co-
occurred with this host within its range, independent of whether
any flea or gamasid mite was recorded on these species. Diversity

fields were calculated using the function ‘lets.field’ of the ‘letsR’
package.

Distance matrices

We constructed pairwise between-host phylogenetic, trait-based,
geographic and environmental distance matrices, separately for
flea and mite faunas and for each realm. Host phylogenetic trees
(topology and branch lengths) were taken as 1000 random sub-
sets from the 10°000 species-level birth-death tip-dated completed
trees for 5911 mammal species of Upham et al. (2019). Consensus
trees for each realm were built with the ‘consensus.edge’ function
of the ‘phytools’ package (Revell, 2012), implemented in the R
Statistical Environment (R Core Team, 2024). Each resulting tree
was then ultrametrized using the ‘force.ultrametric’ function (with
the method = ‘extend’ option) of the ‘phytools’ package, and poly-
tomies were resolved using the ‘fix.poly’ function of the R package
‘RRphylo’ (Castiglione et al., 2018). Phylogenetic distance matri-
ces were constructed using the ‘cophenetic.phylo’ function of the R
package ‘ape’ (Paradis and Schliep, 2019).

Trait-based between-host distance matrices were based on 18
species-specific trait values, including adult body mass, relative
brain mass, maximal longevity, age at first reproduction, gesta-
tion time, litter size, number of litters per year, interbirth inter-
val (time between reproduction events), weaning age, generation
length (average age of parents of the current cohort), dispersal dis-
tance (the distance an animal travels between its place of birth to
the place of reproduction), hibernation or torpor (yes or no), fosso-
riality (ground/fossorial or above-ground dwelling), trophic level
(omnivore, herbivore or insectivore), foraging stratum (ground
level, scansorial or arboreal), activity cycle (nocturnal, diurnal or
cathemeral), habitat breadth (number of distinct suitable level 1
IUCN habitats) and geographic range size. Values for the for-
mer 17 traits were taken from the COMBINE database (Soria
et al., 2021), whereas geographic range sizes were calculated as
described earlier. The values of 12 continuous traits were normal-
ized to range from zero to unity. We constructed the trait-based
distance matrices from these data using the Gower distance coef-
ficient with the ‘gowdis’ function of the R package ‘FD’ (Laliberté
and Legendre, 2010).

To build the geographic between-host distancematrices, we first
overlaid a grid of 1° × 1° cells onto the distributional maps of
hosts (see above), separately for each realm, and then assembled
host × cell presence–absence matrices using the ‘lets.presab’ func-
tion of the ‘letsR’ package. We then determined the centroids of
each species’ geographic range, using the ‘lets.midpoint’ function
implemented in the ‘letsR’ package, and calculated pairwise haver-
sine distances using the ‘geodist’ function of the R package ‘geodist’
(Padgham and Sumner, 2024).

To calculate environmental dissimilarity between the geo-
graphic ranges of host species separately for each realm, 12
environmental variables (isothermality, temperature seasonality,
mean daily air temperatures of the warmest and coldest quar-
ters, annual precipitation amount, precipitation seasonality, mean
monthly precipitation amount of the warmest and coldest quarters,
mean monthly climate moisture index, mean near-surface relative
humidity, mean potential evapotranspiration and net primary pro-
ductivity) were averaged across 1 km × 1 km grids around the
centroid of a given host’s geographic range, with a 100-km buffer.
These variables presumably affect ectoparasite distribution because
fleas and mites are sensitive to ambient temperature and relative
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Figure 1. Relationships between flea species richness and (A) host body mass in the Indomalaya, (B) mean number of small mammals cohabitating with a focal host (diversity
field) in the Australasia, (C) host habitat breadth in the Palearctic and (D) host geographic range in the Nearctic.

humidity. Environmental data were obtained from the CHELSA
2.1 datasets (Karger et al., 2017, 2021). Because of the high cor-
relation between many of the environmental variables, we first
extracted from them 2 (for the Australasia and the Palearctic) or
3 (for the remaining realms) principal components that explained
from 78.84% (in the Palearctic) to 89.70% (in the Indomalaya)
of the environmental variation. Then, we used the scores of these
principal components to compute the classical Euclidean distance
between each pair of hosts as a measure of environmental distance.
For all distance matrices, the distances were normalized to range
from zero to unity.

Data analysis: determinants of ectoparasite species richness

To understand the relationships between flea or mite species
richness and host body mass, diversity field (reflecting the species
richness of assemblages containing a focal host), geographic range
size and habitat breadth (reflecting the degree of a host’s ecological
specialization), we ran generalized linear models with a negative
binomial distribution and a log-link function because ectoparasite
species richness is a count variable. Values of host bodymass, diver-
sity field and geographic range size were ln-transformed. Prior to
running the models, we tested for phylogenetic signals in flea or
mite species richness within each realm, using the K*-statistic of
Blomberg et al. (2003), calculated with the ‘phyloSignal’ function
of the R package ‘phylosignal’ (Keck et al., 2016). No significant
phylogenetic signal was detected in any realm (Blomberg et al.’s

K* = 0.08–0.14, P > 0.10 for all), and we ran models without
correction for the potential confounding effect of phylogeny. The
models were fitted using the ‘glm.nb’ function of the R package
‘MASS’ (Venables and Ripley, 2002). Initially, we fitted models
with all possible combinations of the explanatory variables and
then selected the best model based on the Akaike information
criterion using the ‘model.sel’ function of the R package ‘MuMIn’
(Bartoń, 2024). The pseudo-R2 for each best model was calculated
as Nagelkerke’s (1991) R2 using the ‘pR2’ function of the R package
‘modEvA’ (Barbosa et al., 2013).

Data analysis: probability of ectoparasite species sharing

We calculated the probability of sharing ectoparasite species
between hosts in dependence on their phylogenetic, trait-based,
geographic and environmental distances, following Gilbert et al.
(2012), Ál and Lira-Noriega (2017) and Dáttilo et al. (2020). This
was done for ectoparasite species recorded on at least 6 host species.
In brief, an incidence matrix with ectoparasites in rows and hosts
in columns was constructed for each realm. Each host species
was considered as the source of the parasite species that inter-
acted with it and the source for a random sample of the other
hosts [see details in Ál and Lira-Noriega (2017) and Dáttilo et al.
(2020)]. Then, we calculated the coefficients of logistic regres-
sions (intercept and slope) relating ectoparasite–host incidences to
phylogenetic, trait-based, geographic or environmental distances
between hosts as explanatory variables. This was done both for
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Figure 2. Relationships between mite species richness and (A) host body mass in the Indomalaya, (B) mean number of small mammals cohabitating with a focal host (diversity
field) in the Nearctic, (C) host habitat breadth in the Australasia and (D) host geographic range in the Neotropics.

each ectoparasite species and for the entire set of ectoparasites. In
the latter case, coefficients were calculated 1000 times with a ran-
dom set of ectoparasite species, producing the general tendency
of each coefficient distribution. Finally, the probability (P) of host
species sharing flea ormite species in dependence on between-host
phylogenetic, trait-based or geographic distances was calculated
as P = 1/(1 + e−a+b*D), where a is the mean intercept, b is the
mean slope and D is the respective between-host distance (Ál and
Lira-Noriega, 2017). These analyses were carried out using the R
package ‘geotax’ (Ál and Lira-Noriega, 2017) and the R functions
and code compiled by ALRF.

Results

Determinants of ectoparasite species richness

Generalized linear models demonstrated that the host-associated
determinants of flea and mite species richness differed between
realms (Tables 1–2). In 3 of the 6 realms, the species richness
of flea and mite faunas varied between hosts depending on their
body mass. Whenever the effect of host body mass on ectopar-
asite species richness was significant, it was negative, reflecting a
lower number of flea or mite species on larger hosts (see illustra-
tive examples for flea and mite faunas in the Indomalaya in Figure
1A and 2A, respectively). Flea and mite species richness corre-
lated positively with host diversity field in 5 (for fleas) and 4
(for mites) realms, increasing with the number of small mammal
species cohabitating with a focal host (see illustrative examples for

flea faunas in the Australasia in Figure 1B and for mite faunas
in the Nearctic in Figure 2B). Positive relationships between flea
and mite faunas and host habitat breadth were detected in 3 and
4 realms, respectively (Tables 1–2; see illustrative examples for
flea faunas in the Palearctic in Figure 1C and mite faunas in the
Nearctic in Figure 2C). Host geographic range affected its flea
and mite species richness in all realms, with greater numbers of
flea or mite species harboured by broadly, as compared with nar-
rowly, distributed hosts (see illustrative examples for flea faunas
in the Nearctic in Figure 1D and mite faunas in the Neotropics in
Figure 2D).

Probability of ectoparasite species sharing

Thecoefficients of the logistic regressions of ectoparasite–host inci-
dences, in relation to the phylogenetic, trait-based, geographic
and environmental distances between hosts, were negative in the
majority of ectoparasite species, although not in all (Tables 3–4).
In other words, the probability of sharing the majority of ectopara-
sites between hosts increasedwith a decrease in hosts’ phylogenetic
relatedness, trait similarity, geographic distance between ranges
and environmental similarity (Figures 3–4).Themean values of the
intercepts and slopes of the effects of phylogenetic, trait, geographic
and environmental distances differed between realms, with mean
slopes being consistently negative (Tables 3–4). This resulted in
somewhat different shapes of the relationships between the proba-
bility of ectoparasite sharing and its determinants in some realms,
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Table 3. Mean values of the intercept and slope coefficient of the logistic regressions relating flea species incidences on hosts to phylogenetic (PD), trait-based
(TD), geographic (GD) and environmental (ED) distances between host species and the proportion of flea species recorded on at least 6 host species with negative
slope coefficients (PNS)

Realm Number of flea species Distance Intercept Slope PNS

Afrotropics 94 PD −0.93 −4.65 0.99

TD 1.50 −5.64 0.94

GD −1.11 −7.28 1.00

ED −1.57 −5.14 0.97

Australasia 37 PD −0.60 −27.50 0.47

TD 1.25 −5.11 0.89

GD −1.19 −7.95 0.94

ED −1.12 −5.37 0.94

Indomalaya 47 PD −1.99 −1.84 0.87

TD 7.21 −13.11 1.00

GD −1.24 −15.60 1.00

ED −1.74 −3.63 0.87

Nearctic 93 PD −0.73 −8.25 0.79

TD 1.62 −5.44 0.74

GD −1.07 −11.43 0.97

ED −2.38 −0.33 0.58

Neotropics 81 PD −1.76 −13.61 0.77

TD −1.04 −2.51 0.78

GD −0.89 −12.52 1.00

ED −2.00 −3.24 0.92

Palearctic 137 PD −2.79 −1.09 0.63

TD 0.15 −4.17 0.77

GD −1.24 −8.85 1.00

ED −2.78 −1.10 0.62

except for the effects of geographic distance, which were similar
(Figures 3–4). In general, the highest probability of a flea and amite
species to be shared between hosts was related to hosts’ trait sim-
ilarity (Figures 3–4), except in the Neotropics where geographic
proximity played a stronger role (Figure 3). The effect of environ-
mental similarity on the probability of ectoparasite sharing was
lower than the effects of phylogenetic relatedness, trait similarity
and geographic distance, except in the Palearctic where this effect
was relatively strong (Figure 4).

Discussion

We found consistent patterns of ectoparasite species richness vari-
ation along the gradients of host body size, geographic range,
diversity field and habitat specialization. The species richness of
both fleas and mites was higher in smaller hosts that were broadly
distributed, occurred in species-rich assemblages and occupied
several habitat types. As mentioned earlier, richer parasite faunas
in larger hosts are expected because of parasite accumulation due
to these hosts’ longer lifespans and the greater space they pro-
vide for parasites, which may result in higher numbers of niches
available for parasites (Poulin, 1995; Poulin and Morand, 2004).

Positive relationships between parasite species richness and host
body mass have been found in some parasite–mammal associa-
tions (Vitone et al., 2004; Ezenwa et al., 2006; Lindenfors et al.,
2007), whereas in other associations, the relationship between host
body mass and parasite richness was either absent (Morand and
Poulin, 1998; Nunn et al., 2003; Krasnov et al., 2004a) or nega-
tive (Dáttilo et al., 2020; Villalobos-Segura et al., 2020). Studies
that reported a negative association between parasite richness and
host body mass noted that this pattern was mainly characteris-
tic of small-bodied hosts, such as rodents and chiropterans; this
was explained by differences in sampling efforts, with smaller hosts
being more exhaustedly sampled so that the chances to record
rare parasite species are higher for smaller than for larger hosts
(Villalobos-Segura et al., 2020). Another explanation was that
smaller mammals are usually characterized by higher population
densities, causing a kind of parasite species ‘dilution’ among host
species (Dáttilo et al., 2020). Here, we propose an additional expla-
nation for the negative association between host body mass and
parasite richness found in our study. As mentioned earlier, the
parasite taxa under consideration (fleas and gamasid mites) are
predominantly nidicolous, and most of their lives are spent in
their hosts’ burrows and nests (Radovsky, 1985; Krasnov, 2008).
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Table 4. Mean values of the intercept and slope coefficient of the logistic regressions relating mite species incidences on hosts to phylogenetic (PD), trait-based
(TD), geographic (GD) and environmental (ED) distances between host species and the proportion of mite species recorded on at least 6 host species with negative
slope coefficients (PNS)

Realm Number of mite species Distance Intercept Slope PNS

Afrotropics 30 PD −1.20 −3.39 0.92

TD 0.34 −3.68 0.71

GD −1.51 −6.22 0.97

ED −2.16 −0.45 0.67

Australasia 24 PD −2.18 −2.05 0.62

TD 0.77 −4.32 0.71

GD −1.35 −3.43 1.00

ED −1.90 −1.84 0.82

Indomalaya 39 PD −2.56 −0.84 0.71

TD 1.11 −4.54 0.85

GD −1.17 −10.20 0.89

ED −1.51 −4.17 0.92

Nearctic 41 PD −1.00 −6.84 1.00

TD 2.45 −6.46 0.80

GD −1.11 −10.43 0.98

ED −1.46 −5.02 0.93

Neotropics 41 PD −2.14 −12.95 0.76

TD 0.79 −4.81 0.73

GD −1.64 −6.20 0.90

ED −1.79 −5.01 0.90

Palearctic 73 PD −0.87 −8.50 0.97

TD 0.76 −3.81 0.76

GD −0.82 −7.31 0.99

ED −0.87 −8.86 0.97

Furthermore, the pre-imaginal development of the absolutemajor-
ity of flea species takes place in hosts’ burrows/nests (Krasnov,
2008). Smaller mammals usually construct deep burrows, with
more complex architecture than those of larger mammals (even
within a 2.5–5000-g mass range, which is the definition for a ‘small
mammal’; Degen, 1997) (Kucheruk, 1983). These burrows repre-
sent hotspots of flea and mite diversity (Holland, 1964), leading
to an increase in flea and/or mite species richness in the burrows’
owners (Krasnov et al., 2004b).

Positive relationships between flea and mite species richness
and host geographic range size and/or the number of occupied
habitats are not especially surprising. The effect of host geographic
range size and habitat generalism has been repeatedly shown for
various parasites and host taxa (e.g., Morand, 2000, 2015; Torres
et al., 2006; Costello, 2016). The most likely mechanism behind
this pattern is that hosts that have large geographical ranges or
persist in many habitats accumulate large numbers of parasite
species because of their higher probabilities to encounter many
parasite species (Combes, 2001; Morand, 2015). In addition, a
larger geographic range and/or habitat generalism likely results in
higher probabilities to encounter many other host species, which
might facilitate the between-host exchange of parasites. In the

case of nidicolous ectoparasites, this exchange may be realized
via visiting each other’s burrows (Krasnov, 2008) or via direct
contact between individual hosts belonging to different species
(Krasnov and Khokhlova, 2002). As a result, parasite species
richness increases in broadly distributed, habitat-generalist hosts
occurring in species-rich host assemblages (measured via themean
number of cohabitating hosts, i.e., diversity field), as was found in
our study [see also Krasnov et al. (2004a) for fleas in a subset of
92 Holarctic hosts]. However, Dáttilo et al. (2020) found a posi-
tive effect of host geographic range on ectoparasite species richness
in mammals in Mexico, but no relationship between ectoparasite
richness and host diversity field. This contradiction between our
results and those of Dáttilo et al. (2020)may be associated with dif-
ferences in the scale of the analyses (a biogeographic realm versus a
single country), as well as with the fact that we considered 2 distinct
taxa of ectoparasites feeding either obligatorily or facultatively on
host blood, while Dáttilo et al. (2020) considered data pooled on all
ectoparasite taxa, using data fromWhitaker andMorales-Malacara
(2005). The latter included lice (Phthiraptera), which are strictly
host-specific (e.g., Light et al., 2010) and usually do not switch host
species, aswell as a variety of phoretic, predatory and saprophagous
arthropods that are not parasitic.
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Figure 3. Relationships between the phylogenetic distance, trait dissimilarity, geographic distance and environmental dissimilarity between hosts and their probability to
share a flea species. Lines represent mean coefficients from the logistic regressions carried out for all flea species recorded on at least 6 hosts.

Furthermore, we found that ectoparasite species richness was
driven by host-associated variables differently (1) in different bio-
geographic realms and (2) between fleas andmites within the same
realm. For example, the host diversity field did not explain either
flea or mite species richness in the Neotropics, but it did so in
other realms (for at least 1 of the 2 ectoparasite taxa) (Tables 1–2).
Host body mass predicted flea species richness in the Afrotropical,
Indomalayan and Palearctic, but not in the Australasian, Nearctic
andNeotropical hosts.The effect of host bodymass onmite species
richness was detected in theAustralasia, Neotropics and Palearctic,
but not in the Afrotropics, Indomalaya or theNearctic. Flea vsmite
differences can be exemplified by the effect of host body mass on
flea, but not mite, species richness in the Afrotropics or the effect
of host habitat breadth on mite, but not flea, species richness in
the Nearctic. One of the most likely reasons for these differences
is between-realm differences in the species compositions of hosts,
fleas and mites that resulted from the differential histories of hosts,
parasites and their interactions (e.g., Medvedev, 2005; Zhu et al.,

2015 for fleas).The responses of host-associated variablesmay vary
between different flea ormite species, leading to the between-realm
variation in the host drivers of parasite species richness. Moreover,
the between-realm variation in the average degree of flea or mite
host specificity might also cause differences in the relationships
between their species richness and host-associated predictors. For
example, flea–host interactions in the Palaearctic appeared to be
relatively more specialized than those in the Nearctic, resulting in
each flea species interacting with fewer host species in the for-
mer than in the latter (Krasnov et al., 2007). This might be one
of the reasons behind the effect of host body mass on flea species
richness in the Palearctic but not in the Nearctic. The difference
between the predictors of flea and mite richness in the same realm
could be somehow associated with the differential life histories of
these taxa. In particular, fleas are obligate haematophages, but their
pre-imagoes (except for a few species) are not parasitic, whereas
in many mites, the pre-imagoes are also blood-feeding, but some
species only feed on a host’s blood facultatively. The level of mite
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Figure 4. Relationships between the phylogenetic distance, trait dissimilarity, geographic distance and environmental dissimilarity between hosts and their probability to
share a gamasid mite species. Lines represent mean coefficients from the logistic regressions carried out for all mite species recorded on at least 6 hosts.

host specificity is much lower than that of fleas (Vinarski et al.,
2007). These life history differences have been proposed as factors
that may cause differences between the 2 taxa in a number of eco-
logical and biogeographic patterns within the same biogeographic
realm (Krasnov et al., 2004a vs Korallo et al., 2007; Krasnov et al.,
2005 vs Vinarski et al., 2007).

We found that the probability of a flea or a mite species being
shared between hosts decreased with an increase in the between-
host phylogenetic distance, trait dissimilarity, geographic distance
and environmental dissimilarity. The most likely reasons behind
the effect of phylogenetic relatedness and trait similarity are that (1)
ectoparasites select hosts with traits that allow parasites to success-
fully extract resources from these hosts (Krasnov et al., 2016) and
(2) phylogenetically close relatives are often more similar to each
other than distant relatives are (phylogenetic trait conservatism;
Blomberg and Garland, 2002; Losos, 2008). In addition, a parasite
may originate on a given host and then does not speciate following
its host’s speciation, resulting in the same parasite being present
on multiple daughter lineages of the original host (a so-called

‘inertia event’) (Paterson and Banks, 2001). Nevertheless, trait
resemblance appeared to be the most important factor facilitating
ectoparasite sharing, with the negative effect of host trait dis-
similarity on ectoparasite sharing being much stronger than that
of host phylogenetic distance (except for the Neotropical fleas).
This is counterintuitive given the above-mentioned phylogenetic
trait conservatism. However, phylogenetic trait conservatism may
not always be the case, especially for cohabitating close relatives.
Limiting similarity theory (MacArthur and Levins, 1967) states
that interspecific competition increases with an increase in niche
similarity, ultimately leading to co-occurring species possessing
dissimilar niches, which in turn, represents an outcome of trait
differences. Assuming trait similarity between close relatives,
one of the predictions of this theory is that competition exclu-
sion results in the unlikelihood of the co-occurrence of closely
related species (e.g., Webb et al., 2002). However, Mayfield and
Levine (2010) demonstrated that, in some cases, competition
can lead to the exclusion of less related species. This can be due
to either trait similarity in distant relatives or no association
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between trait similarity and phylogenetic relatedness (e.g.,
Uriarte et al., 2010).

The higher probability of ectoparasite sharing being more
strongly determined by trait similarity than by phylogenetic relat-
edness may be the result of the process known as ‘ecological fitting’
(Janzen, 1985). Ecological fitting represents a situation in which
an organism (e.g., a parasite) interacts with its environment (e.g.,
a host) in a way that might suggest a shared evolutionary history,
whereas in reality, the traits relevant to the interaction evolved else-
where and in response to a different set of conditions. When para-
sites depend on the resource rather than a specific host, and when
phylogenetically distant hosts share this resource, host-switching
becomes likely. A new host may be unrelated to the parasite’s orig-
inal host species (Brooks et al., 2006; D’Bastiani et al., 2023). In
the case of nidicolous ectoparasites, a necessary resource possessed
by many related and unrelated host species is their burrows/nests
where (1) the majority of fleas and mites spend the main part of
their lives and (2) most pre-imaginal development occurs. In the
Neotropical hosts, however, the probability of sharing a flea species,
but not a mite species, was almost equally determined by phyloge-
netic relatedness and trait similarity. This might somehow be asso-
ciated with the fact that theNeotropical flea–host associations have
a longer evolutionary history than those in the remaining realms.
This is because fleas most likely originated in Gondwana (the for-
mer South America and Australia connected via Antarctica until
the late Eocene) became first associated with aboriginal hosts and
then dispersed with their hosts from the Laurasian North America
(periodically connected with South America via a Caribbean land
bridge during the Late Cretaceous) (Zhu et al., 2015).

The effect of geographic distance between host ranges on the
probability of ectoparasite sharing might most likely be associated
with either a higher probability of cohabitating hosts to harbour
the same parasites (e.g., Davies and Pedersen, 2008) or the above-
mentioned ecological fitting or both. Environmental similarity
could result in similar microclimatic conditions in the burrows
of different host species (Degen, 1997). These similar conditions
would allownidicolous arthropods sensitive to air temperature and
relative humidity (Marshall, 1981) to inhabit these burrows and
exploit their owners.

In conclusion, the host-associated determinants of the prob-
ability of sharing ectoparasite species were, in general, similar
between (1) fleas and mites and (2) geographic realms. However,
this was not the case for the determinants of the species rich-
ness of flea and mite faunas. Therefore, our findings indicate
that caution is warranted when generalizing macroecological pat-
terns in parasites – particularly when such patterns are inferred
from studies with limited geographic scope or by pooling data
across diverse parasite taxa. Our results demonstrate that evolu-
tionary contingencies – shaped by regional biogeographic histo-
ries and parasite life-history strategies – can override large-scale
ecological predictions. Consequently, studies extrapolating para-
site macroecological patterns from restricted taxonomic or geo-
graphic sampling risk oversimplifying these complex biological
systems.

Future research should employ comparative frameworks incor-
porating phylogenetic and biogeographic contexts to advance
a more robust, nuanced understanding of parasite biodiversity
patterns.
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