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THE COMPLEXITIES OF THE THREE-DIMENSIONAL
SHAPE OF INDIVIDUAL CRYSTALS IN GLACIER ICE

By GEorGE P. RiGssy

U.S. Army Cold Regions Research and Engineering Laboratory, Hanover,
New Hampshire, 03755, U.S.A.)

AssTRACT. A block of ice from Blue Glacier, Washington. was successively sectioned at close intervals
as a means of determining exact crystal shape in three dimensions. Two crystals occupying over 20 per cent
of the entire sample are used as examples, and their volumes calculated. These erystals were found to be
much larger and more complex in shape than expected from thin-section examination alone. The surface-to-
volume ratio was calculated using a simple relationship between the length of lines in a grid crossing the
crystal and grid-line intercepts with the crystal boundary. From this ratio the surface area of each crystal
was calculated.

A measurement of irregularity or jaggedness is introduced in order to compare crystals of different size
with one another. This is necessary because surface-to-volume ratio of a body of the same shape decreases as
the size increases.

REsUME. Les complexités de la forme tri-dimensionnelle de eristaux individuels de glace de glacier. Un bloc de glace
de Blue Glacier, Washington, a été coupé successivement a petits intervalles comme moyen de déterminer la
forme tri-dimensionnelle exacte des cristaux. Deux cristaux, occupant plus que 20%, de tout I"échantillon,
ont été utilisés comme exemples et leur volume a été calculé. Ces cristaux furent plus grands et leur forme
plus compliquée que la seule investigation des coupes minces le laissait prévoir. Le rapport surface-volume a
été calculé en utilisant une relation simple entre la longueur de lines d'une grille posée sur le cristal et les
intersections de cette grille avec le contour du cristal. La surface de chaque cristal a été calculée a partir de
ce rapport.

Une mesure de l'irrégularité ou de boursoufflure est introduite pour comparer les cristaux de différentes
tailles les uns avec les autres. Cela est nécessaire parce que le rapport surface-volume d’une corps de méme
forme décroit lorque la taille diminue.

ZUSAMMENFASSUNG.  Die Kompliziertheiten der dreidimensionalen Form einzelner Kristalle in Gletschereis. Von
einem Eisblock des Blue Glacier, Washington, wurden dicht benachbarte Schnitte hergestellt, um die
dreidimensionale Kristallgestalt exakt zu bestimmen. Zwei Kristalle, die 209, der Gesamtprobe ausmachten,
werden als Beispiele herangezogen; ihr Volumen wird berechnet. Diese Kristalle erwiesen sich als viel
grésser und komplizierter als man durch Untersuchungen von Diinnschliffen allein erwarten wiirde. Das
Verhiltnis von Oberfliche zu Volumen wurde durch Verwendung einer einfachen Beziehung zwischen der
Linge von Gitterlinien, die den Kristall kreuzen, und den Schnittpunkten von Gitterlinien mit dem Kristall-
rand, bestimmt. Aus diesem Verhiltnis wurde die Oberfliche jedes Kristalls berechnet.

Ein Mass fiir die Unregelmiissigkeit oder Zihnung wurde eingefithrt, um Kristalle unterschiedlicher
Grosse miteinander vergleichen zu kénnen. Dies ist notwendig. weil das Verhiltnis der Oberfliche zum
Volumen eines gleichgestalteten Korpers mit zunehmender Grosse abnimmt.

INTRODUCTION

In many scientific fields, cellular structures or crystal aggregates are observed only in two-
dimensional section. The relationships in three dimensions must be inferred. Examples
include the petrologist’s thin section, the polished section of the opaque minerals and the
biologist’s microtome slice. Henri Bader (personal communication, February 1962) observed
that little is known about shapes of the ice crystals in glacier ice. The objective of the present
study, motivated by this observation, was to trace the crystals in three dimensions and to test
statistically whether three-dimensional shape parameters could be obtained from random
sectioning.

Most cores from glaciers appear the same in thin sections of different orientation. Rarely
is there any observable preferred orientation of elongated crystals, although the orientations
of the optic axes in glacier ice are usually highly anisotropic.

A sample of fairly coarse-grained glacier ice, with crystals from about 3 to 8 cm across was
desired. If the grain-size were too small, determination of crystal boundaries in the third
dimension would be difficult, and if too large, handling too much ice to obtain sufficient data
would be required. The sample chosen proved excellent for the techniques finally used.

The ice sample was collected from Blue Glacier, Olympic Mountains, Washington,
during the summer of 1962. It came from a location only a few hundred yards above the part
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of the terminus where the slope increases drastically, and slightly east of the center on the
transverse line. The foliation dipped about 40° up-glacier. Only a few inches of the surface ice
were removed before chopping out the block. Although the location was in the ablation zone,
this part of the glacier is free of debris and undoubtedly the ice was active. The laboratory
work was done at the Cold Regions Research and Engineering Laboratory, Hanover, New
Hampshire, which provided excellent facilities and an assistant.

DEscrIPTION OF SAMPLE AND LABORATORY METHOD OF STUDY

The trimmed block of glacier ice measured about 32 <21 x23cm. To the writer’s
knowledge, thin sections from such large samples had not previously been made, especially as
thin as required for the accurate orientation of the optic axes. It was initially felt that the
crystals might be traced by etching the boundaries and making successive pencil rubbings on
faces spaced every g or 4 mm through the block. This method gives no crystal-orientation
data and experiments with artificial ice showed that the boundaries of the individual crystals
could not be followed from one rubbing to another. Etching and photographing also proved
unsuccessful. Bright spots from the lights obscured some of the boundaries and, of course, no
crystal-orientation data were obtained.

Therefore, it appeared that successive thin sectioning with orientation determination of
cach crystal by a universal stage was the only sure way to follow the crystals through the block,
even though handling large thin sections without breaking or shattering was difficult.

A technique was developed in which a plate of window glass was frozen to the smoothed
upper surface of the ice. Thus supported, the ice section could be cut as thin as 1.5 mm with a
large band saw. After sawing, the section was further thinned with coarse sandpaper glued
to a flat board. After thinning to about 1 mm, another glass was frozen to the exposed side
giving a good surface for photographing between crossed polaroid sheets. This was done on
4 % 5 cm polaroid film (P/N type) to produce immediately a negative and a positive. Photo-
graphs of two orientations, rotated about 40-45° were required in order to see most of the
boundaries (Figs. 1-6). When obscure boundaries were encountered, they were traced on the
photographs from the universal stage during the axis-orientation process.

Enlarged photographs, printed with a matte surface, were used to number the grains for
recording the orientation and to trace the boundaries. From these photographs the final
tracings were made on plastic film which could be xeroxed for measuring, and for coloring or
other means of identification of individual crystals. Very few of the photographs were exactly
to scale, but corrections in numbers of intercepts, length of lines and areas were made. For
location reference, the left and bottom margins on all section tracings are in register.

This procedure resulted in a minimum of about 3.5 mm between successive cuts. Irregu-
larities in sawing caused the distances between successive thin sections to vary between 3.2
and 7.1 mm. The thickness for each section given in Tables I and 1I in column ¢ is the
value measuring from half-way between each section, as these values seemed best to use for
volume calculations.

After photographing the large sections, they had to be cut into small units (44 in;
10.2 X 10.2 cm) to be used on the universal stage. The top glass cover plate was removed by
applying just enough heat uniformly over the surface of the glass to loosen it. With the section
still frozen to the bottom glass, 10.2 % 10.2 cm squares were marked and cut to the glass with
a hand saw. After preparing again with sandpaper, a glass cover plate cut to the same size
was frozen to the upper surface of each square before removal from the large bottom plate.
The final preparation of the sections was made on the microtome. The ice thickness was
between 0.10 and o0.15 mm when the final bottom glass (12.7 < 11.4 cm) was frozen to the
section. A bead of ice was then frozen to the edge of the smaller or top glass to prevent
sublimation of the thin section.
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Fig. 4. Section 27 ; polarized light
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Section N L

cm

1 0 o

2 0 o
3 27 8.1
4 26 21.6
5 33 344
6 37 48.4
7 42 58.2
8 44 69.4
9 57 83.6
10 69 99.0
1 73 101.2
12 68 110.8
13 66 105.8
14 81 110.8
15 82 112.8
16 98 118.0
17 110 128.8
18 135 128.6
19 110 102.8
20 125 107.2
21 135 119.2
22 120 141.8
23 140 165.0
24 150 137.4
25 149 138.2
26 145 121.0
27 120 112.8
28 110 112.4
29 111 116.8
30 120 107.6
31 123 102.8
32 88 65.6
33 67 53-1
34 49 50-4
35 53 45.6
36 61 52.0
g 68 46.0
38 63 58.4
39 58 42.0
40 47 20.8
41 36 25.4
42 19 0.2
43 14 7-4
44 16 8.2
45 11 7.8
46 10 8.0
47 5 3.0
48 3 0.6

(49) o 0

3374 3437.0

2 651.8

bl

1 718.5

From total N and L:
p_ N _ 7(3374)

4 2L 2(3437)

LISEE . L

V. 77653
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60.5
56.4
56.2
58.4
53.8
5k
22.8
26.6
25.2
22.8
26.0
23.0
29.2
21.0
14.9
12.7
4.6
3-7
4.1
39
4.0
1.5
9.3
0

1 718.5

= 1.542

TaBLE I. CrysTAL A

rld

527
.93
1.51
1.20
.13
1.00
1.07
1.09
1.13
0.96
0.98
.15
1.14
1.30
1.34

1.68
1.33
1.78
1.33
1.33
1.70
1.70
1.88
1.67
1.54
1.49

1.79
1.88

2.10

1.99

1.54
1.82

1.84
2.32
1.70
2.16
2.48
2.23
3.24
2.98
3.36
2.20
1.98
2.60
8.00

106.0

106.3

94-3
110.0
117.8
117.0
114.0
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S|V

6.67
2.41
1.92
1.5%
1.44
1.27
1.36
1.39
1.44
1.23
1.25
1.46
L )
1.66
1.71
2.10
2.14

2.33
2.26

1.69
1.70
2.18
2.16
2.40
2.13
1.6
1.90
2.23
2.39
2.68
2.52
1.04
2.32
2.34
2.87
2.16
2.76
3.15
2.83
4.13
3.78
3.90
2.82
2.50
9.95
10.00

= = 1.543 (for the sections which contain part of the crystal)

t

cm

0.490
0.410
0.390
0.425
0.400
0.400
0.375
.375
0.360
0-335
0.375
0.410
0.440
0455
0.445
0.410
0.395
0.430
0.450
0.455
0.550
0.675
0.560
0.430
0.445
0.460
0.460
0.430
0,410
0.405
0.480
0.475
0.505
0.500
0.375
0.450
0.525
0.510
0.460
0.440
0.480
0.530
0.555
0.530
0.490
0.515
0.550
0.555
0.290

22.265

s
cm?
o
0
10.5%
11.05
13.20
14.80
15-75
16.50
20.52
23.12
27.37
27.88
20.04
36.85
36.49
40.18
43-45
58.05
49.50
56.87
74-25
81.00
78.40
64.50
66.30
66.70
55.20
47-30
45.51
48.60
59-04
41.80
33.84
24.50
19.88
27.45
35:70
32.13
26.68
20.68
17.28
10.07
7-17
8.48
5.39
5-15
2.75
1.66
o]

1 539.16
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TarrLe II. CrystaL B

Section N L A plA b2 S|V t v Ay
cm cm? cm cm cm3 cm?

1 0 o 0 - o - 0.490 o 0

2 0 0 o — - — 0.410 0 0

3 0 o 0 — - — 0.390 o o
4 12 2.6 1.3 7.27 9.4 9.23 0.425 0.55 5.10
5 12 5.6 2.6 3.38 9.4 4.29 0.400 1.12 4.80
6 25 11.6 5.8 3.39 19.6 4.35 0.400 2:32 10.00
) 89 16.2 8.1 3.59 20.0 4.56 0.375 3.04 13.88
8 59 27.6 13.8 3.36 46.3 4.28 0.375 5.17 22.12
9 46 35.8 17.9 2.02 36.1 2.57 0.360 6.44 16.56
10 55 46.6 23.3 1.86 43.2 2.36 0.335 7.81 18.42
11 81 63.4 31.7 2.01 63.6 2.55 0.375 11.89 30.38
12 8o 76.0 38.0 1.64 62.8 2.08 0.410 15.58 32.80
13 112 86.6 43-3 2.04 87.9 2.59 0.440 10.52 49.28
14 162 114.8 57-4 2.22 127.1 2.82 0.455 26,12 7%.71
15 170 165.8 2.9 1.61 133.4 2.05 0.445 36.89 75.65
16 164 171.8 85.9 1.50 128.7 1.91 0.410 35.22 67.24
17 163 187.4 93.7 1.37 128.0 1.74 0.395 37.01 64.39
18 206 207.8 103.9 1.56 161.8 1.98 0.430 44.68 88.58
19 193 200.4 104.7 1.45 151.5 1.84 0.450 47.12 86.85
20 190 297.0 118.5 1.26 149.9 1.60 0.455 53.92 86.45
21 267 230.1 115.1 1.82 200.7 2.92 0.550 635.28 146.85
22 296 270.8 135.4 1:72 2908 2.18 0.675 91.39 199.80
23 288 267.4 133.7 1.69 226.1 2.15 0.560 74.87 161.28
24 319 286.2 143.1 1.75 250.6 2.23 0.430 61.53 137.17
25 337 306.4 153.1 1.74 264.9 2.20 0.445 68.17 149.96
26 336 204.8 147.4 1.79 264.0 2.28 0.460 67.80 154.56
27 335 372.8 186.4 1.41 263.4 1.80 0.460 85.74 154.10
28 362 395.6 197.8 1.44 284.0 1.83 0.430 85.05 155.66
29 373 408.0 204.0 1.44 292.8 1.8 0.410 83.64 152.93
30 305 400.8 200.4 1.55 310.3 1.97 0.405 81.16 159.78
31 369 371.2 185.6 1.56 289.0 1.99 0.480 89.09 177.12
32 356 357.6 168.8 1.66 279.4 2,11 0.475 80.18 169.10
33 335 318.3 150.1 1.65 263.4 2.10 0.505 80.37 169.17
34 205 276.2 138.1 1.68 231.6 2.14 0.500 69.05 147.50
35 279 259.0 129.5 1.69 219.0 2.15 0.375 48.56 104.63
36 285 248.0 124.0 1.80 233.7 2.30 0.450 55.80 128.25
37 321 267.2 133.6 1.89 251.9 2.40 0.525 70.14 168.52
38 348 204.6 147.3 1.86 273.1 2.36 0.510 75.12 177.48
39 353 319.0 150.5 1.74 277.0 2.21 0.460 L 162.38
40 361 326.6 163.3 1.74 283.6 2.21 0.440 71.85 158.84
41 326 287.0 143.5 1.78 256.1 2.27 0.480 68.88 156.48
42 j22 265.6 132.8 1.94 252.9 2.42 0.530 70.38 170.66
43 324 204.6 102.3 2.49 254.6 3.17 0.555 56.78 179.82
44 292 208.2 104.1 2.20 229.5 2.81 0.530 55.17 154.76
45 26g 197.0 98.5 2.15 211.1 2.75 0.490 48.26 131.81
46 247 2250 111.6 1.74 194.0 221 0.515 57.47 127.20
47 243 258.0 120.0 1.48 190.8 1.88 0.550 70.95 133.65
48 197 254.8 127.4 1.22 154.8 1.55 0.555 70.71 109.34
(49) F122.5 *1.55 0.200 35.52 54.81
10 597 g 815.0 4 907.5 8 330.6 22.265 2 364.792 5 100.02

* Assumed.
+ From Chart I; not included in total.

-‘-il = 48%(7)2 = 1.697 (for the 45 sections which contain part of the crystal)
p =N _ =(10579) :

A4 2L 2(9 815) 1000

£_5mo.0279 .

V'~ 236472 7
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OBSERVATIONS

Using the above procedure, it became evident that many grains seemingly separate in one
thin section were actually part of the same crystal. Therefore, two complex crystals were
selected for complete determination of size and shape. These are identified by patterns, and
the letters “A” and “B”, in the eight section tracings reproduced (Figs. 7-14) as representative
of the total 48 sections made. Tracings of all 48 sections are reproduced elsewhere (Rigsby.
in press).

It was hoped that at least one of these crystals would be complete within the sample block.
Although the smaller crystal A appears to be nearly complete, it touched the edge of the block
in two places. Even though it cannot be demonstrated that these lateral extensions did not
expand to larger size outside the sample block, this crystal is believed to be representative of a
complete crystal. It had a volume of nearly 8oo cm’.

The larger crystal composed over 16 per cent of the total sample, and it was certainly not
complete as it was cut by four sides of the block. Tts volume within the sample block was
nearly 2 400 cm’. In the bottom section (No. 48), this crystal still covered 127 cm?®. It was so
complex in section 45 that it was cut 33 times in the one 32 X 21 cm thin section. Sections 33,
39 and 47 each cut it 20 or more times. The crystals intertwine so extensively that the assem-
blage resembles a bowl of spaghetti, frozen and then sliced. They are, in fact, even more
complicated, because they branch many times and exhibit great changes in thickness.

Crystals illustrated in other patterns and identified by letters on the drawings (Figs. 7-14)
had essentially the same orientation of their optic axes as crystals A and B, but they could not
be found actually to join anywhere in the sample block. It is possible that some of these may
have joined outside the block as many of the crystals were not complete.

The orientation of the grains identified as C was only 2-5° from the very large crystal B.
This was well within the spread of the axis orientations of B, but wherever the two grains were
seen in juxtaposition, a definite boundary was present. The grains labeled D have the same
orientation as crystal B, and even though no connection or juxtaposition was seen in any of the
sections, these crystals may also have joined outside the sample.

Crystal A
Crystal B

Group C

(=]

Croup

Croup E

Group G \\\\\\\

Legend for Figures 7-14
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Fig. 9

sity Press

https://doi.org/10.3189/50022143000031026 Published online by Cambridge Univer


https://doi.org/10.3189/S0022143000031026

243

GLACIER ICE

SHAPE OF CRYSTALS IN

THREE-DIMENSIONAL

T \\\\\. .LQW\\ \'ﬂ: Q@%\‘\Mﬂ\\\\ .
R T i, d &) \) ..

o L &W\\\\\\\M\\ h\\\ 13488

(]
/4
D, :
/ % = 1000 Y S :

ota et
.......

.....
-----

-------

Fig, 11

..

.....
e

-----

-----
-----

.
........
........
.......
.......
........
........
.......
------
s .
.....

mntum_ cm.

sity Press

https://doi.org/10.3189/50022143000031026 Published online by Cambridge Univer


https://doi.org/10.3189/S0022143000031026

IOLOGY

JOURNAL OF GLAGC

244



https://doi.org/10.3189/S0022143000031026

THREE-DIMENSIONAL SHAPE OF CRYSTALS IN GLACIER ICE 245

The axes of grains identified as E on the drawings all seemed to range within about
ro—12° of crystal B, some having greater and some lesser azimuths, while others had about
the same azimuth but had about 10° less inclination to the horizontal or section surface. The
orientation of the axes of this group seemed too different from that of crystal B to be considered
part of it.

The axes of the F group of grains had azimuths almost the same as or smaller than those of
crystal A, while those of the G group had somewhat larger azimuths. The various measure-
ments on crystal A throughout all sections gave the axes as nearly horizontal. Crystal A and
groups F and G might comprise another system of related crystals with nearly parallel axes
similar to crystal B and groups C and D.

The drawings can be compared with the photographs for better understanding of the text.
Figures 1 and 2 show the two different orientations between the crossed polaroid sheets of
section 4. Compare these with the drawing of section 4 in Figure 7. The interference colors
(shades of gray in the photographs) of the various grains which are shown as part of the same
crystal vary slightly due to some variation in thickness from one side to another and also due to
the conoscopic effect when photographing a large section with a relatively wide-angle lens.

It is known that crystal axes in strongly stressed ice become aligned such that movement
can take place along basal glide planes (Rigsby, 1955, 1960). However, very little is yet known
about such orientation control during recrystallization near the surface of the glacier. Rigsby
(1951, 1960) has already published information concerning the preferred orientation of the
optic axes in temperate glaciers, where it is almost certain that considerable recrystallization
had occurred after deformation, and in polar glaciers where the evidence is strong that little
or no recrystallization occurred after deformation.

Study of all crystal orientations reveals only a few major orientations in this sample. This
indicates that nearly all grains as seen in each cut may be parts of only a few large crystals.
Approximately all but 4 per cent of the crystals by area were within five major orientations.
In most instances, the spread in orientation of the optic axes in each of these major divisions
was somewhat greater than that found throughout the span of single crystals; however,
the fact that all were so closely aligned indicates some relatedness. One might speculate that
there are relatively few crystals in the entire coarse-grained part of a temperate glacier.

In a single crystal extending over distances of 30 cm or more, the orientation of the optic
axis ranges at least 10°. In many instances the bifurcated parts of crystals rejoin but with a
discernible boundary (Fig. 15). As illustrated in the drawing, there is sufficient difference in
orientation between « and b, and ¢ and d, to permit a crystal boundary, but a continuous path

Fig. 15. A representation of a erystal in thin section: a composite of several features not necessarily shown in any one section
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can be traced from a to b around another crystal (usually a longer distance than shown in the
two-dimensional drawing. In laboratory deformation studies (Rigsby, 1960), single crystals of
ice were bent with a large change in the orientation of the optic axis. It has been generally
assumed that recrystallization usually relieves this change in orientation, but with such
complicated shapes it is not surprising that a gradual orientation change of 10° may occur.

In many instances a slight change in orientation of the parts of a single crystal could be
related to a perceptible line in the next section (either above or below). Conversely, in at least
two instances, a faint boundary near the margin disappeared in the interior of the crystal in
the observed section as illustrated in Figure 15 at e.

With so few single crystals in the sample, it was obvious that the original plan to obtain the
distribution function according to grain-size could not be made, but showing the actual shape
and volume of a few single crystals made it worth while to complete the study.

ParaMmeETERS UsEp 1N THis STUDY

Rosiwal analyses have been used by petrographers for many years to make quantitative
measurements of volume percentages of various phases in rocks. The length of a line or grid of
lines crossing one phase, divided by the total length of line traversing a two-dimensional
section, is in direct proportion to the amount of that phase present in the total sample (by
volume). This is provided that the shape of the cells in the phase has no preferred orientation
and that the sample is representative of the whole. This ratio is proportional not only to
volume (usually given in per cent) but also to the area of the phase divided by the total area
of the thin section.

A large single crystal can be treated as a phase or as a separate mineral and its total
volume calculated, except that a random section is not likely to cut a single crystal in a
representative manner. Therefore, the area of a crystal exposed in a thin section can be calcu-
lated by the line method, and where consecutive thin sections are close together, the arca
multiplied by the thickness gives a very close approximation of the volume. This is true even
with sloping boundaries, if the area is taken in the center of the segment. In this case, the grid
was chosen with a spacing of 0.5 cm and therefore the area in square centimeters is one-half
the length of line in centimeters. The volumes of each individual segment are added for the
total volume of the crystal.

The thickness (¢ column in Tables I and I1) for any section was found by taking half the
distance between the section chosen and the section above, and then adding that value to half
the distance to the section below. Column V in Tables I and II presents the results of these
calculations; column L is the total length of line in the various parts of the two crystals,
A and B.

For a three-dimensional grid, the ratio of the length of line in the crystal to the total length
of line in the sample block also gives the volume of the crystal. The ratio of the area of the
crystal in each section to the total area of the crystal segment is proportional to the total
volume of the segment of ¢ thickness. Therefore, if the segment thicknesses were constant, all
areas could be added to give the percentage of the crystal to the whole. Because they were not
of constant thickness, the volume of each segment had to be calculated separately.

Smith and Guttman (1953) have shown by a study of geometric probabilities that in a
two-dimensional structure the ratio of the length of perimeter to the area enclosed is a simple
direct function of the average number of intercepts per unit length of an intersecting straight
line (or grid) randomly applied to the structure. This ratio is p/4 = =wN/2L, where p is the
perimeter of the cells (in the case illustrated here), 4 is the area of the cells, N is the total
number of intercepts with p, and L is the total length of the straight line in the cells being
measured.

They have also shown that the average number of intercepts per unit length of a random
line (or grid) drawn through a three-dimensional structure is exactly half the true ratio of
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surface to volume: §/V = 2/N/L, § is surface area and FV is the volume of the cell or cells, and
N and L are as defined above. Therefore, with this ratio and the volume, the surface area
can be calculated.

The use of these two relationships makes it possible to obtain the volume and surface area
of both crystals A and B (Tables I and II). The grid with a spacing of 0.5 cm simplified
calculations. To assure that this spacing was not too large, the areas of the grains on many
sections were also measured by planimeter which checked within 2 per cent in most cases. The
surface areas, S, given in Tables I and IT do not include the top and bottom surfaces of the
segment which are not part of the crystal surface.

TaBLe 1II. PERIMETERS OF GRAINS BY INTERCEPT

Caleulated p Average
Mea- by
sured Grid at o Grid at 30° Grid at 6o Grid at 9o inter-
Section  p N L plA p N L plA p N L pl4 p N L pl4 p cepl
cm <m cm cm cm
Crystal A
21 108.6 129 119.1 1.70 101.4 125 120.9 1.62 9B8.3 141 118.1 1.87 110.8 146 118.9 1.93 114.8 106.3
27 97.7 123 111.8 1.73 96.7 123 113.5 1.70 96.7 117 112.8 1.65 92.0 118 113.0 1.64 928 94.6
33 50.2 58 548 1.66 456 68 518 2.06 53.4 70 528208 550 72 52.8 216 56.6 52.7

Crystal B
21 210.4 244 240.1 1.60 191.8 256 226.0 1.78 201.2 277 228.9 1.90 217.6 290 226.6 2.01 228.0 209.7
27 263.0 326 370.6 1.38 256.1 326 375.6 1.37 256.1 341 371.9 1.44 268.0 348 373.3 1.46 273.5 263.4
33 264.2 332 318.2 1.64 261.1 321 317.6 1.59 252.1 337 319.8 1.65 265.0 351 317.8 1.73 275.5 263.4

Table I1I gives the measured value of p by map measurer and the calculated value of p,
using intercepts, in four orientations of the grid on three sections. The fact that the number of
intercepts was somewhat higher for some orientations of the grid shows that the grains were
not completely at random in their shape (the long dimension of the grains tended to have a
preferred directionality). The lines of the grid were first parallel to the bottom edge (called
0°), then the measurements and counts on the same grains were made at 30°, 60° and go°
rotation. It will be noted that the values of L (and therefore the area) remain nearly constant
regardless of the orientation of the grid, but that the values of N change.

The value of p/4 and S/V obtained by averaging the L and N values in these different
directions are quite close to the measured value and therefore are considered more accurate,
Because the length, L, did not change appreciably with grid orientation, this was usually
measured only once, but most of the values for N are averages of two or more grid orientations.

The photographs of section 4 (Figs. 1 and 2) and section 17 (Fig. 3) visually show some
elongation of the grains along parallel lines dipping to the right and making about a 25° angle
to the bottom edge. These lines are parallel to the foliation in the ice and the number of
intercepts was greater, generally, when the grid was placed perpendicular to this foliation
direction than when parallel to it.

Where the crystal is not complete along the sample edge due to the saw cut, the length of
line, L, was measured to this straight line which is obviously not the crystal boundary, but the
intercepts on this edge were not counted because the errors would have been compounded.
For the same reason, only the exposed part of the actual boundary was measured with the map
measurer. A discussion concerning the counting of intercepts on incomplete grains will be
given in the appendix to the more complete report (Rigsby, in press).

Smith and Guttman (1953) have stated that in using the relationships, p/4 — =N/2l
and S/V = 2/N/L, “It is not necessary to utilize a well-ruled grid of parallel lines, but any
array of lines repeatedly applied to the structure in a random fashion is satisfactory provided

https://doi.org/10.3189/50022143000031026 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031026

248 JOURNAL OF GLACIOLOGY

that a sufficient number of intersections is counted. If the structure itself is random, a single
line (not necessarily straight) of sufficient length is adequate.”

It must be remembered, however, that these relationships presented by Smith and Guttman
are generally applied to various phases in a representative sample and certain considerations
must be made which cannot be called random when applied to measuring parameters of a
single crystal. For example, the grid can be applied in a random fashion on a two-dimensional
surface if the grain shape can be considered isotropic, but the grid must cover all the parts of
the crystal in the sample in order to obtain the volume and area-to-volume ratio for only one
particular crystal. Also, a well-ruled grid of parallel lines with a constant spacing must be
used for calculations of the area cut by the thin section. The distance between sections
becomes important as this affects the volume found in the segment. Therefore, special
applications of these formulae are used in this paper and the intercepts of the ruled grid are
used as a method to find the surface area of the crystals which would be difficult to measure
in any other way.

The use of a grid of 0.5 cm spacing allows some simplification of the calculations. The
following relations hold:

4 =Lf2,
plA = nN|2L,
p = wNA[2L = aNL[4L = w.N/4,
V=i
S|V = aN/L,

S =aNV|L = oNAYL = o NLif2L = Ni,
where L is the total length of the grid lines within the crystal boundaries, N is the total number
of intercepts of the grid lines with crystal boundaries (if a line is only tangent to the boundary
there is only one intercept), A is the area of the surface cut by the thin section, § is the area of
the crystal surface, p is the perimeter of surface 4 in the thin section and Vis the volume of the
crystal. Of course, these simplified formulae for 4, p and § apply only for the special case
where the spacing of the grid lines is one-half the units being used.

The volume (V' column) is calculated by taking the area represented in each thin section
and multiplying by the thickness of the increment. Volume differences due to any sloping
boundary surfaces above and below the center are expected to be averaged by taking the area
in the center of the increment. The total volume of crystal A, adding all segments together, is
776.5 cm?, and the volume of crystal B in the sample obtained by adding segments is
2 364.7 cmi.

S|V for crystals A and B, as found for each section, is given in Tables I and II. The surface
area of each increment was calculated and is given in the § column. The total area of the
natural surface of the crystal in the sample is simply the sum of the increments in the § column.
This value is the most accurate way of finding the surface area because each increment is
weighted correctly by the volume which is a function of the increment thickness.

It might be argued that the § to V ratio for only a part of a crystal has little meaning as it
represents the crystal as a whole, and that the true value of this sample ratio is affected by size,
assuming some sort of constant shape. An attempt to show that the ratio on only a part of the
crystal is approximately the same as that on the whole crystal is made in Table IV. §/V is
calculated for various parts of each crystal and comparisons can be made. It will be noted
that the ratios for crystal B are quite close regardless of which part of the crystal they are
calculated for, except in the first ten sections the ratio is higher where the crystal is rapidly
expanding in size. Perhaps there is not enough of the crystal in these first sections to give a
good value. The same thing is noted for crystal A except that the value of the ratio is low for
the first ten sections and high for the last ten sections, and the value approaches the one for the
whole crystal as more sections are included. Apparently the top part of this crystal is simpler
in its shape, giving lower values for §/V. In general, one would not expect this much change
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in the value of the ratio between two sides of a crystal. Note also that the value of the ratio is
quite close to the total figure for only the center ten sections of each crystal (1.982 for crystal A
as a whole and 2.020 for the center ten sections; 2.157 for the total sample of crystal B and
2.061 for sections 21-30).

TasrLe IV. SV anp S$32/V RATios FOR VARIOUS PARTS OF THE CRYSTALS

Sections N L V A S|V S|V
Crystal A
1-10 335 422.7 78.25 125.47 1.603 17.961
1-15 705 g64.1 193.52 283.10 1.463 24.614
1-20 1 283 1 549.5 318.32 531.15 1.669 38.46
1-25 1977 2 251.1 505.45 895.60 1.772 53.03
1-30 2 583 2 8a21.7 629.12 1 158.91 1.842 62.71
T35 2 993 8 139-2 703-93 1 337.97 1.907 69.53
1—40 3 290 3 367.4 758.81 1 480.61 1.954 75.08
1-48 3374 34370 776.53 1 539.16 1.982 77-76
3948 219 414 33-93 10551 3.131 32.123
3448 513 393.8 93.75 24557 2619 41.048
29-48 1022 839.7 19314 47436 2.456 53-492
2448 1616 1 461.5 331.47 77436 2.336 65.009
19-48 2 326 2 097.5 505.83 1 114.38 2.203 73-544
21-30 1 300 1272.2 310.80 627.76 2.020 50.607
Crystal B
1-10 246 146.0 26.45 90.88 3.436 32.755
1-15 851 652.6 136.45 352.70 2.585 48.544
1-20 1 767 1 669.0 354-40 746.21 2.106 57.517
1-25 g 3 029.9 713.64 1 541.27 2.160 84.786
1-30 5074 4901.9 1117.03 2 318.30 2.075 99.929
1-35 6 708 6 464.2 1 484.28 3 085.82 2.079 115.489
1—40 8 376 7 919.6 1 830.56 3881.29 2 120 132.082

1-48 10 597 9 815.0 2 364.72 5 100.02 2.157 153.670
44—48 1247 1 141.2 338.08 711.57 2.105 56.144
3948 2933 2 544.0 679.3¢ 1539.75  2.267 88.938
34—48 4 461 3 889.0 goB.01 2 266.13 2.271 108.093
29—48 6 289 5 724.9 1 412.45 3 093.23 2,190 121.800
2448 7978 73807 178074 384468  2.159 133.872
1948 9212 85954 2111.32 451591 2.139 143.735
21-30 3 308 3214.9 762.63 1 572.09 2.061 81.734

CRyYSTAL [RREGULARITY

Introduced here is another parameter for solids not previously seen in the literature, a
dimensionless ratio called an irregularity factor or jaggedness ratio. A similar ratio has been
used in two dimensions by Pounder and Little (1959) in trying to distinguish between glacier
ice and sea ice. They used the ratio of the perimeter squared to the area on photographs as a
numerical value for their “jaggedness ratio™, because this removes the size factor of the grain
from the value. For example, the most regular or least jagged would be a circle, and the value
of p*/A for a circle of any size is 47 or 12.566- - - ; any other shape will give a larger number
than 4m. This led to the reasoning that if one raised the surface area of a solid to the power of
3/2 and divided by the volume that again a dimensionless ratio is obtained and a numerical
figure could then indicate an irregularity or jaggedness ratio. Using a sphere as the least
jagged, the numerical value of $3*/V of any sphere is six times the square root of = or
10.6347- -+, and any other shape will give a larger number. For example, the value of §37/7
for any size cube is 14.697- - - and for a tetrahedron the value is 19.342- - -.
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To illustrate the irregularity of crystal A in the section drawings (Figs. 7-14), the jagged-
ness value is 77.76, and for crystal B the value is 153.67 for the part of the crystal in the
sample. The calculations are given below:

(1539.16)3

100.02)3/*
T Rk

Crystal B does appear to be more irregular because of the many branches, some of which have
a small size, and therefore it appears that the numerical value is at least this large. The true
value is probably somewhat larger than 153.67, if the trend indicated in the last column of
Table IV is correct as larger and larger parts of the crystals are taken.

Table 1V gives the various values of this irregularity or jaggedness ratio for the same parts
of crystals A and B which were used for the simple S/V ratio. It is obvious that the ratio does
become larger as more and more of the crystal is included. This indicates that the complete
crystal is necessary for the numerical value to have much meaning. Although this ratio is
dimensionless and does not change with crystal size, the shape obviously is not expressed
completely by only a part of the crystal. Therefore, §3/?/¥ for crystal B, as with any incomplete
crystal, is not absolutely correct, but the appearance is certainly that it is much more irregular
than crystal A. This subject is discussed at greater length in the appendix to the paper by
Rigsby (in press).

As has already been shown, the S/ ratio tends to remain constant for any proportion of the
crystal. If this is true in general, then it is impossible for §3/2/F to remain constant for varying
parts of the crystal.

The over-all uscfulness of this irregularity ratio may be limited to complete crystals, but it
appears to the writer that the concept may be a useful one.

CONCLUSIONS

The most striking result of this study is the ability to demonstrate complexities in shapes of
ice crystals in a block of glacier ice. It is probable that most ice near the surface in the active
terminus arca of temperate glaciers will have similar complex crystal shapes, interlocking in
complicated ways and of much more extended dimensions than usually thought. Although
Bader (1951) showed that the stagnant ice in Malaspina Glacier, Alaska, had large inter-
locking crystals, the idea has persisted that in more active ice the crystals would be geometri-
cally more simple and not so extensive. This may be partly because it was reasoned that
movement would not allow such extensive crystals to develop, and partly because the crystals
appear in two dimensions to be relatively simple and roughly equidimensional. Bader’s work
on Malaspina Glacier did not show as much complexity as demonstrated here.

This study also throws some doubt on many of the fabric diagrams obtained in active
temperate glacier ice, including those of this writer, because of the likelihood that many of
the axes plotted in one maximum really represent a single crystal. When one considers that
there can be at least a 10° spread of the orientation direction of the axis as measured in
different parts of a crystal plus the errors in measuring on the universal stage, it is easy to
understand why each separate cell in a thin section would usually be considered a separate
crystal. In fabric work, the writer, along with many others, considered each cell in a thin
section as a separate crystal, unless two or more cells had the same extinction angle and were
near each other. It did not scem possible at that time that cells 30 cm or more apart in ice of
this so-called “‘grain-size” could still be part of the same crystal. It is not known at this time if

the finer-grained ice from polar glaciers or from the highly stressed zones in temperate glaciers
have this same complexity in shape.

https://doi.org/10.3189/50022143000031026 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031026

THREE-DIMENSIONAL SHAPE OF CRYSTALS IN GLACIER ICE 251
ACKNOWLEDGEMENTS

Appreciation is hereby expressed for the support (both financial and in equipment and
laboratory space) given by the Cold Regions Research and Engineering Laboratory, Hanover,
New Hampshire, and to the Arctic Institute of North America, which obtained and admini-
stered this support. The author wishes also to thank Gerald R. McEnroe, who was assigned by
CRREL to help with much of the routine work of measuring the orientation of the optic axes
on the universal stage in many of the sections, which was necessary for identification of indivi-
dual crystals from section to section. Appreciation is also expressed to E. R. LaChapelle,
University of Washington, for help during sample collection.

MS. received 6 June 1967

REFERENCES

Bader, H. 1951. Introduction to ice petrofabrics. Fournal of Geology. Vol. 59, No. 6, p. 519-36.

Pounder, E. R., and Little, E. M. 1959. Some physical properties of sea ice. 1. Canadian Journal of Physics, Vol. 37,
No. 4, p. 443-73-

Rigsby, G. P. 1951. Crystal fabric studies on Emmons Glacier, Mount Rainier, Washington. Journal of Geology,
Vol. 59, No. 6, p. 590-98.

Rigsby, G. P. 1955. Study of ice fabrics, Thule area, Greenland. U.S. Snow, Ice and Permafrost Research Establish-
ment, Report 26,

Rigsby, G. P. 1960. Crystal orientation in glacier and in experimentally deformed ice. Journal of Glaciology.
Vol. 3, No. 27, p. 589-606.

Rigsby, G. P. In press. The shape of crystals in glacier ice. U.S. Cold Regions Research and Engineering Laboratory.
Research Report 224.

Smith, C. 8., and Guttman, L. 1953. Measurement of internal boundaries in three-dimensional structures by
random sectioning. fournal of Metals, Vol. 5, No. 1, p, 81-87.

https://doi.org/10.3189/50022143000031026 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031026

	Vol 7 Issue 50 page 233-251 - The complexities of the three-dimensional shape of individual crystals in glacier ice - George P. Rigsby

