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Abstract

Over the past two decades considerable effort has been devoted to problems of stochastic
stability, stabilisation, filtering and control for linear and nonlinear systems with Markovian
jump parameters, and a number of results have been achieved. However, due to the
exponential distribution of the Markovian chain, there are many restrictions on existing
results for practical applications. In the present paper, we study systems whose jump
parameters are semi-Markovian rather than fully Markovian. We consider only linear
systems with semi-Markovian jump parameters, and also study systems with phase-type
semi-Markovian jump parameters, because the family of phase-type distributions is dense
in the families of all probability distributions on [0, +00). Some stochastic stability results
are obtained. An example is given to show the potential of the proposed techniques.

1. Introduction

In engineering applications, frequently occurring dynamical systems which can be
represented by different forms depending on the value of an associated Markov chain
process are termed Markovian jump systems. Research into this class of systems and
their applications has spanned several decades. For some representative work on this
general topic, we refer the reader to [3,7-9, 12-15, 26] and the references therein.
Some recent results can be found in [1, 2,4-6, 10, 16-18, 21-25].

However, because the distribution of the Markov chain is exponential, Markovian
jump systems have many limitations/restrictions in applications, and the results ob-
tained for these systems are conservative in some senses. In this paper, our focus is
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on semi-Markovian jump systems. We attempt to achieve similar results for semi-
Markovian jump systems to those for Markovian jump systems. To the best of the
authors’ knowledge, the problems of stability, stabilisation, filtering and control for
semi-Markovian jump systems have not yet been investigated.

Due to the density of phase-type distributions in the families of all probability
distributions on [0, 4-00), we first define the phase-type semi-Markovian process, then,
for simplicity, we study the simplest linear systems with phase-type semi-Markovian
jump parameters. Our results are built on the work of [8], but are more meaningful.
Some stochastic stability results are obtained. The techniques employed in this paper
can be applied to general control and filtering problems including nonlinear systems
with semi-Markovian jump parameters.

2. Phase-type semi-Markov processes and Markovisation

Consider a Markov process r(t) on the state space {1, 2, ..., m + 1}, where the
states 1, 2, ..., m are transient and the state m + 1 is absorbing. The infinitesimal

generator is
T T°

where the m x m matrix T = (T;) satisfies 7, < 0, T, > 0, i # j, while T° =
(T2, T2, ..., TOT is a non-negative column vector, and Te + T° = 0. The initial
distribution vector is (@, an41), where @ = (aj, a3, ...,ay,), @€ + anyy = 1, and e
denotes an m-dimensional column vector having 1’s as its components.

PROPOSITION 2.1 ([19]). The distribution of the time at which r(t) is absorbed in
m+1lis

F@)=1—aexp(Tthe, t=>0. 2D
We recall the following definitions.

DEFINITION 1 ([19]). The state that r(r) reaches at time ¢ is called the phase of the
distribution F(-) at time . The distribution F(-) defined in (2.1) on [0, +-00) is called
a continuous phase-type (PH) distribution and (a, T) is called its representation of
order m.

There are many PH distributions, for example, a negative exponential distribution is
a continuous PH distribution, and a k order Erlang distribution E| is also a continuous
PH distribution.
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Similar to the study of continuous-time Markov chains, we consider the discrete-
time Markov chain on the state space {1, 2, ..., m+1}, let the state m + 1 be absorbing,
and denote the transition matrix by

T T°
P= (0 1)’
where T = (Tj;) is a quasi-stochastic matrix, T; > 0, Te < e, T°=({ —Teisa

column vector, and I — T is non-singular. Definea = (a;, a3, ..., an) = 0, @y =0
andae + an = 1.

DEFINITION 2 ([19]). The discrete distribution taking values on the non-negative
integer space P, is called a discrete PH distribution if and only if it is a distribution
of the transition steps when the Markov chain, with transition matrix P and initial
distribution (a, a,,41), reaches the absorbing state m + 1. Again (a, T) is called its
representation of order m.

A geometry distribution can be seen as a discrete PH distribution. In general, a
continuous PH distribution and a discrete PH distribution are both called PH distribu-
tions.

PROPOSITION 2.2 ([19]). The family of PH distributions is dense in all the families
of distributions on [0, +00).

From Proposition 2.2, for every probability distribution on [0, 4+-0c), we may choose
a PH distribution to simulate the original distribution to any accuracy.

REMARK. A PH distribution is the distribution of a hitting time in a finite-state, time-
homogeneous Markov chain. In 1954, Jensen [11] first introduced this distribution
in an economic model, but no feasible solution was provided. The key that makes
a PH distribution a powerful tool is the matrix-analysis method developed by Neuts
[20] in 1975. Since the 1960s, PH distributions have been a very effective method for
analysing stochastic models in queueing theory, storage theory, reliability theory, efc.
They also replace the special status of the negative exponential distribution. But many
scientists and engineers are still unfamiliar with PH distributions. Very recently, it was
discovered that by virtue of phase-type semi-Markov processes (defined below), the
PH distribution has important applications in control theory, Markov decision theory,
Markov games and stochastic differential equations. It is believed that more and more
applications of the PH distribution will be discovered in many areas in the near future.
This paper will show the application of the PH distribution to control theory.
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DEFINITION 3. Let E be a finite or countable set. A stochastic process 7(f) on
the state space E is called a phase semi-Markov process or a denumerable phase
semi-Markov process (when E is finite, 7(¢) is also called a finite phase semi-Markov
process), if the following conditions hold:

(1) The sample paths of (7(¢),¢ < +00) are right-continuous step functions and
have left-hand limits with probability one.

(2) Denote the nth jump point of the process 7(t) by 7, (n = 0, 1,2, ...), where
Hh=0<n<n<- <1, <-,7T, 1400, thent, (n =0,1,2,...) are
Markovian with respect to the process 7(t).

B Fi =P — G <t|r@@) =ir@a)=j)=F@) (,j € E,t 20)
do not depend on j and n.

(4) F,(¢) (i € E) is a phase-type distribution.

Obviously, in the case when F;(t) (i € E) is a negative exponential distribution, the
denumerable phase semi-Markov process is a Markov chain. A denumerable phase
semi-Markov process is able to overcome the restriction of the negative exponential
distribution of the time that a Markov chain spends in any state. However, in much
research the key problem of whether a denumerable phase semi-Markov process can
replace a Markov chain or not, is equivalent to whether the denumerable phase semi-
Markov process can be transformed into a Markov chain or not. And if it is a finite
phase semi-Markov process, it can be transformed to a finite Markov chain. The rest
of this section will show that the above claim is true.

Let E be a finite or countable nonempty set, 7() be a denumerable phase semi-
Markov process on the state space E. Denote the nth jump point of the process 7(¢)
byt,(n=0,1,2,...),where o =0 <1, <13 <--- <1, < ---. Let (a¥, TW)
(i € E) denote the m order representation of F,(t), where

Fi(t) = P(Tp1 =T, St | F(1)) = i) (i € E),

a® =@, a,...,d%), TO=(TP,j.keE).
Let
Py = P(H(tr)) =j |H(w) =) (i,j € E),
P =(p,.i,j €E), 2.2)
(@, T)=(@" T, ieckE) (2.3)

Obviously, the probability distribution of 7(¢) can be determined only by {P, (a, T)}.

DEFINITION 4. {P, (a, T)} is called the pair of a denumerable phase semi-Markov
process r(t). Foreveryn (n =0,1,...), T, <t < T,4, define J(r) = the phase
of F;,(-) attime ¢ — t,.
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DEFINITION 5. The term J(¢) defined above is called the phase of F(¢) at time z.
For any i € E, we define

m(i)
7}(1’.0) = I_ZT;(I:) (] = 1’2’“.’m(i))’
k=

G={(,k")|i€eE k9=12,...,m?").
From the above analysis, we can easily get the following result.
THEOREM 2.3. Z(r) = (r(2), J(1)) is a Markov chain with state space G (G

is finite if and only if E is finite). The infinitesimal generator of Z(t) given by
QO = (quv, 4, v € G) is determined only by the pair of F(t) given by {P, (a, T)} as

Sollows:
GG k)i k) = 7;(5)),‘(.), (i,k") € G,
duinain = Tz kD £ k9, (i,kV) € Gand (i, k") € G, (24)

Qixoygaey = Py To aly, i #j, (k") € Gand (j, k9) € G.

Assume that G has s = ) ,., m" elements, so the state space of Z(¢) has s
elements. We number the s elements according to the following method: denote the
number of (i, k) by Z’,:l m® +k (1 <k <m™). Also denote this transformation
by ¢. Hence one has

i—1
o((i, k) = Zm(') +k (eE 1<k<m?). (2.5)

r=1

Moreover, we define

Do (i, (k) = Gk k) 2.6)
r(t) = 9(Z(1)).

Therefore r(r) is a Markov chain with state space § = (1, 2, ..., s} and infinitesimal
generator Q = (a;m, 1 < i,m < s5). We end this section by giving the following
definition.

DEFINITION 6. The Markov chain r(¢) is called the associated Markov chain of 7(z).

3. Problem statement and main results

Let {r(¢), t > 0} be a finite phase semi-Markovian chain with state space £ and
probability distribution 7(z) which can be determined by {P, (a, T)} as defined in
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(2.2) and (2.3). Consider a class of stochastic linear systems with semi-Markovian
jump parameters in a fixed probability space (2, &, P):

[x(z) =AF@)x (), t=0, (3.1)

x(0) = xo,

where the initial state x, is a fixed nonrandom constant vector, r(0) = r and A (i)
(i € E) are some known matrices.
Foranyie€ E,k=1,2,...,m", we define matrices A as follows:

Alp(i,k) 2 AG),

where g is defined in (2.5).
It is easy to show that for any (w, 1), A(r(w, 1)) = A(F(w, t)). Subsequently, we
have the following theorem.

THEOREM 3.1. System (3.1) is equivalent to the following system:

[x(r) =A@r(®)x(®), 120, (32

x(0) = xo,
where r(t) is the associated Markov chain of 7(¢).

System (3.2) has been extensively studied in [8]. By use of Theorem 3.1 and the
results of [8], we have the following main result of this paper.

THEOREM 3.2. For system (3.1),

(a) the asymptotic mean square stabilities, the exponential mean square stability
and the stochastic stability are equivalent;

(b) all second moment stability imply almost sure stability,

(c) a necessary and sufficient condition for stochastic stability is that there exist

positive definite matrices M; for j = 1,2, ..., s such that
—oMi+ ) oM+ AM, + MA; = —1, (3.3)
J#E
where a; is defined in (2.6), a; = —a,, = e Qi A; = A(i) and A’ is the transpose

of A, I,j =1,2,...,5.

REMARK. It is worth mentioning that the advantages of Theorem 3.2 are that when
studying stochastic stability problems, we can replace Markovian jump systems with
semi-Markovian jump systems, and get the same results, while semi-Markovian jump
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systems operate under fewer restrictions and can be widely found and used in many
real system applications. Also, more importantly, almost all the nice results obtained
so far for Markovian jump systems, for example, Ji and Chizeck ({12, 13]), Ji, et al.
({[14]), Shi and Boukas ([21]), Shi, et al. ([22-24]), de Souza and Fragoso ([25]), and
the references therein, are valid for semi-Markovian jump systems.

4. Example

We consider the one-dimensional case, that is, x (¢) takes values in R=(—00, +00).
Furthermore, we assume that the phase semi-Markovian process 7(¢) has two states
denoted by 1 and 2. The sojourn time in the first state is a random variable with
negative exponential distribution with parameter A,. The sojourn in the second state
is divided into two parts; the sojourn times in the two parts are two random variables
which are negative exponentially distributed with parameters A, and A3, respectively.
In particular, if the process 7(z) enters state 2, it must first stay in the first part of
state 2 for some time and then stay in the second part, before finally entering state 1.
We assume that A, #* ffz and p;, = pa = 1.

Obviously,

P = (Pn Plz) _ (0 1) T® = (T{lz; TIEZZ - —A A
pn pn 1 0/’ Ly Ty 0 -2’
a® =@ =0, =T =(r) ¢®=@? ") =(0).

The state space of Z(t) = (7(¢), J(#)) is clearly G = ((1, 1), (2, 1), (2,2)). We
number all the elements of G as follows:

p((1, 1) =1, @2, 1))=2, ¢(2,2)=3.

Hence the infinitesimal generator of ¢(Z (1)) is

- A 0
O=(@;)=1{ 0 - X
A 0 <Ay

Asx(f) € R,s0A;, M; (i = 1, 2, 3) arereal constant numbers, and A} = A;, A, = A.,
A, = Ay = A,. Hence (3.3) reduces to

—)\|M| +A.|M2+2M|/i| = —l,
—XaMy + AMs + 2MyA, = —1, 4.1y
A3M| - )»3M3 + 2M3AA2 = —1.
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Define A = (A, — 24,)(A2 — 24)(A3 — 24,) — AjAzhs. From (4.1), if A # 0, then
(A2 — 24,) (A3 — 2A2) + Mdy + A (A3 — 245)

M, = A , 4.2)
A — 240 (A3 — 245) + AAy + Aa(A, — 24 :
M2=( 1 (A3 2);' 243 2(M 1)’ “3)
M — 2400 — 242) + MAs + As(h, — 24
M3=(l (A2 2) + AiAs + As(hy 2). @.4)
A
If A =0, then A, — 2/§1 #0, X, — 24, #0,A — 2A\2 # 0. Hence from (4.1) we
have
1+A,M 14+ A, M 14+ AM
M=—-"2 M _ M My = — 231 (4.5)

M =240 T (m-28)" T (a—24)
Therefore we have the following result.

(1) If A, <0, A, <0, A, # A, then M, > 0, M, > 0, M5 > 0. Then, by
Theorem 3.1, system (3.1) is stable. In other words, if the original two systems are
stable, then the new system, which is generated by the original two systems switched
by a phase-type serm -Markovian process, is still stable

(2) IfAl > 0, Az >0, A > 2A,,A2> 2A2, l;éAz,thean <0, M, <0,
M; < 0. By Theorem 3.2, system (3.1) is not stable. In other words, if the original
two systems are unstable, the new system, which is generated by the original two
systems switched by a phase-type semi-Markovian process, is likely to be unstable as

well.

(3) IfA, = ~10, A, = 3, A; = 10, A, = 20, then M, = 0.2851, M, = 0.7553,
M; = 0.4787. By Theorem 3.2, system (3.1) is stable. On the other hand, if
A = —10, A, = 6, A, = 10, A, = 20, then M, = —0.1654, M, = —0.5962,

My = —0.2885. By Theorem 3.2, the new system (3.1) is unstable. Hence, if one of
the two original systems is stable and the other is unstable, then the new switching
system, which is generated by the original two systems switched by a phase-type
semi-Markovian process, is stable or unstable depending on the parameters.

For the general situation, by Theorem 3.2 and (4.2)—(4.5), we present our last result
in this paper.
COROLLARY 4.1. Consider system (3.1) under the conditions given above.

(i) Assume that A # O, then system (3.1) is stable if and only if the following
three inequalities hold:

A x [(A2 — 2A;) (A3 — 2A3) + MAy + A (A3 — 24,)] > 0,
A x [(\ —2A1) (A3 — 24,5) + Aohs + Aa(Ay — 24))] > 0,
A X [(A — 24)(A2 — 24,5) + Ahs + As(ha — 245)] > O.
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(ii) Assume that A = 0, then system (3.1) is stable if and only if the following
three inequalities hold:

(M—24)>0, (M—245)>0, (& —24,)>0.

5. Conclusions

In this paper, a new method has been proposed to study the problem of stochastic
stability for systems with semi-Markovian jump parameters. Itis a first attempt on this
topic. It is shown that the existing results for stochastic stability for Markovian jump
systems also hold for semi-Markovian jump systems. However semi-Markovian
Jjump systems are less conservative and more applicable. A numerical example is
given to illustrate the feasibility and effectiveness of the theoretic results obtained.
The approach developed in this paper can also be applied to general nonlinear systems
with semi-Markovian jump parameters.
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