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Summary

In general, information concerning the distribution of the time to
absorption, T, of a simple branching (Galton-Watson) process for which
extinction in finite mean time is certain, is difficult to obtain. The process
of greatest biological interest is that for which the offspring distribution is
Poisson, having p.g.f. F(s) = em{'~x), m < 1.

In the present paper, a method which consists of bounding the off-
spring distribution by two simpler distributions, in this case gives reasonable
bounds for ET and for the mean of the asymptotic conditional distribution.
The bounds are sufficiently good to permit asymptotic expressions as
m -*• 1 — of the above means, and also for the corresponding variances.
Some comparison with the relevent diffusion approximation is then pos-
sible. The main results occur in § 5.

1. Introduction

Suppose a single ancestor, at the zeroth generation produces / offspring
with probability given by the coefficient pj of s' in the probability gener-
ating function ^

*"(*) = 2 As*. 0 < F ( 0 ) < l
3=0

where 0 <I s 5S 1, and all succeeding offspring reproduce independently in
the same way. Then if we denote by Zn the number of individuals in the
n^ generation, we have

i=0

(Harris [3], Chapter 1) i.e. Fn(s) is the n01 functional iterate of F(s). The
process {Zn} is then known as the simple branching process.

It is well known that if -F'(l) = m < 1, extinction is certain to occur
in finite mean time. If m = 1, then extinction is bound to occur although
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the mean time to extinction is infinite, whereas if m > 1, there is a positive
probability of survival.

Two particular results which we shall need, due to Kolmogorov and
Yaglom (Harris [3], Chapter 1) state that if m < 1, F"(l) < oo

(L1) i ™ l-Fn(O) =P^1

and

(1.2) lim Gn{s) = G(s), s e [0, 1]
n-»oo

exists, where

Gn(s) = 2/P[zn = i\zn > o] = Ff^~F
{y

0)>

and G(s) is a proper probability generating function with G'(l) = fi. It
is therefore clear, under these conditions — since

v2mn(mn—1)
Var Zn = 1 , m < 1

m2—m

where v2 = Var Zx — that the variance of the distribution defined by Gn(s),
is

v2mn(mn—l) m2n m2n

which is bounded uniformly in n from (1.1). It can easily be shown (Harris
[3], § 9) that in fact taking limits

(1.4) o* = ^
m{\—m)

is the variance of the distribution defined by G(s). Moreover, if we denote
by T the time to absorption, then under the above conditions, since
P[T >n] = l—Fn(0), we have from (1.1), as n -> oo

(1.5) P[T >n]~ fjr1mn.

Generally speaking, it appears difficult to obtain information about
either the distribution of T, or that defined by G(s). Some investigation
of the general problem has been carried out by Heathcote and Seneta
[5] who have obtained bounds for the means of both distributions, in terms
of the first two derivatives of the offspring distribution F(s). Although the
bounds appear to be quite good for moderately small m in cases of interest,
they become progressively worse as m approaches unity (see tables I and
II of that paper). The bounds are best possible in the sense that they are
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attained for the case when F(s) = p+qs. However, one unfortunate defect
which makes them of limited practical use, is that e.g. for the Poisson case,
the lower bound for ET approaches a finite limit as m ->- 1—, whereas in
view of the fact that ^

ET == 2 P[T > n]
n=0

and (1.5), we may expect in general (if fi~x behaves sufficiently well as
m -> 1) £ r - > o o a s w - > l — . In biological application however, the cases
of relevence occur with m «* 1, and thus one of our aims is to obtain a
more adequate bound to the behaviour in this vicinity.

Let us turn for the moment to the genetic aspects of the problem.
In this context, the process {Zn} has been used by Fisher [2], Chapter IV,
to describe the history of the descendants of a single mutant gene. The
particular offspring distribution used by him is that of greatest biological
significance, the Poisson, with F[s) = g"1*'-1'. More recently, Moran [6]
Chapter V, has given an account of the theory confining himself also
almost completely to this offspring distribution. Moreover, it is interesting
to note that both Fisher and Moran have been almost entirely concerned
with the cases m > 1, m — 1, these cases representing the situations when
the mutant gene has a selective advantage and no selective advantage (or
disadvantage) respectively. The case m < 1, although possibly less im-
portant, is the object of study in the present paper. In particular, since
little interest attaches to transient behaviour unless « w l (for extinction
occurs rapidly otherwise), we focus our attention on the asymptotic be-
haviour in this Poisson case, of ET, (i and the corresponding variances as
m ->• 1.

The reason for restricting oneself just to the Poisson distribution, is a
consequence of the method used, which is not a general one, and must
be applied separately to any specific distribution. The technique may,
however, be useful more generally, and in the next section at least, the
approach is not confined to a particular function F(s).

2. Theoretical basis

The following lemma1 forms the crux of our approach. We suppose
that Fa)(s), F{2)(s) are two probability generating functions, defined for
s E [0, 1].

LEMMA A. If F™{s) > F™{s) for s e [0, 1], then F^{s) ^ F™{s) for
all positive integral n, for s e [0, 1].

1 Which arose out of a remark by Professor P. A. P. Moran.
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PROOF. &&{$) = F™(F™{S))

^ F™(F<v(s)) by induction;

It is in the sense of inequalities between generating functions that we shall
carry out our bounding procedure, with the aid of this lemma (whose
validity is also obvious diagrammatically).

Before proceeding, it is useful to obtain some insight, into the in-
tuitive probabilistic meaning of the statement Fa)(s) ^ F(2)(s) by giving
a sufficient condition for it to hold. Suppose X{1) and Xl2) are two random
variables, and we define a relation >-, so that

iff P[X™ ^ x] ^ P[X<2> ^ x]
for all x.

LEMMA B. Let {Z^} and {Z<f>} be two discrete branching processes
such that

Then
F<v(s)^FW(s) se[0, 1].

PROOF.

i=o 1—s
oo I 77(2) / s

^IP[Z? >?>'• = — (-
,=o 1—s

for s e [0, 1]. Hence
, se[0, 1].

We do not pursue the development of this topic further, and return
to the practical problem with which we are at the moment concerned.

Suppose we can find offspring distribution p.g.f.'s FiL)(s) and FiU)(s)
whose characteristics are simple to determine, such that

(2.1)

Then if m < 1, and mL, mv < 1,

f w * ( l - )
n=0 n=0 n=0

for k ^ 0 by Lemma A, so that

(2.2) n=0 n=0
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(N.B. If m< 1, 1 — Fn(0) ^ mn whether F"(l) is finite or not.) Thus we
may use (2.2) to get bounds for

(2.3) ET = 2 P[T > n]

(2.4) £{Var T + (ET)*- (ET)} = | nP[T > »]

etc. if the bounding sums can be found. This is obviously the drawback of
the method. There are only a few offspring generating functions whose
iteration characteristics are manipulable, for example the two point off-
spring distribution

(2.5) F(s) = p+qs 0 < p < 1

for which 1—Fn(0) = qn; and the bilinear fractional form

(2.6) Fia>{s)=sl_±. + JL_;
 b>C>°>

V ' W 1 - c l-cs b+c < 1

which arises out of the modified geometric distribution

1—b—c
Po = - : . P* = 6c*"1 * = 1, 2, • • •

I—c
(Harris [3], page 9), although even the latter requires considerable manipula-
tion as regards its extinction time distribution when mG < 1.

The two-point distribution is unfortunately of little use, although it
does provide bounds for any F(s) for which m < 1. Clearly for s e [0, 1]

F(0) + (l—F(0))s ^ F(s) ^ l—m+ms
so that

[l-F(0)]» ^ l-Fn(0) ^ m\
Hence

2 »*[l-F(0)]" ^ 2

oo

^ 2
n=0

In particular

(2-7) ^

Both these bounds are obvious for intuitive reasons also. Since the
ower bound of (2.7) does not increase indefinitely as m-^-1— in the
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Poisson case, for instance, it is of little use for values close to unity. How-
ever, it does somewhat surprisingly provide a slightly higher bound in
this case for values of m 5; .8 than that of Heathcote and Seneta [5], whose
lower bound also approaches a finite limit as m -> 1, although not mono-
tonically. Moreover, the two-point offspring distribution may be used to
give shghtly better bounds than (2.7) and (2.8) by fairly obvious refine-
ments.

The modified geometric distribution bounds give much more satis-
factory results for the Poisson distribution. This is in part due to the fact
that the geometric and Poisson distributions somewhat resemble each other.

To obtain bounds for the asymptotic conditional mean and variance

m{\—m)

we require in addition to the condition (2.1) with mL, mv, m < 1, the
existence of all second derivatives of the bounding functions at unity2, and
mL = mv = tn, for then

mn mn mn

l -F . (O) - l -

We can in fact achieve this for the Poisson distribution with a suitable
choice of parameters a, b, c in (2.6), consistent with all other requirements.

3. The bilinear fractional generating function

Before we may proceed with our investigation of the Poissonian off-
spring distribution, we need to establish certain results for the offspring
distribution defined by (2.6). In this case

and we shall be concerned only with the case mG < 1. We shall also need
to utilize the constant

l-b-c 1 r
{ 1 ( 1 ) }

which clearly exceeds unity when mG < 1. Moreover we have

2 This condition can be weakened to S j i i 1Q°i i)Pi< °°- See Heathcote, Seneta and
Vere-Jones (1967).
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so that, denoting by TG the time to absorption in this case

(3.!) J v u '£> (l-mn
Gls0)

The series on the right hand side is not tractable, even for k = 0. We
can however obtain sufficient information for our ultimate needs by use
of the so called "integral test" technique.

For the series (Heathcote and Seneta [5])
00 xs}

y -—. M > o, o < T, s < i,

since the terms are monotone decreasing with respect to /,

TSX . °° xs' xsM
I

J
i.e.

(̂ '̂ ) i = 2, ^ I~( ^ ^ ~M "I"logs J=M l—xs1 1—TS^ logs

This can clearly be applied to the tail of (3.1) with k = 0. On the other
hand the terms of

~ jrs*

ih 1—rs}

only become monotone decreasing for j exceeding some value N*, depending
on T and s, and are monotone increasing up to this point. The number N*
can be approximately located by equating to zero the derivative of the
function of a continuous variable x

the resulting equation finally being

l+zlogs—rS" = 0.

As it happens we shall need to know N* only for the case when, as s -> 1—,

(3.3) 1—T~K{1—s), (0 < K = const.)

in which case it is easy to see that the unique solution of the equation is
asymptotically:

(3.4) N* ;> V2Z/V-log s and N* ̂  -
logs

We can now apply the integral test twice, up to the point (N*—l) and from
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the point (iV*+l) onwards to obtain, by adding the results, and compen-
sating

f u(z)dx+aL(N*)- f a(x)dx < f x(j)
Jo Jw-i >=o

^ oL(x)dx+x(N*-l)+<x{N*)+x(N*+l)- «.(x)dx.
Jo J N*-l

Now

J o 1 - r s * * ( l o g * ) " J i 1 2 / 1

as s ->• 1, which can be seen by considering the integral in two parts, and
neglecting the component of lower order. Moreover

N*rsN* x
(#*) TT

lQgs)*/
as s ->• 1 if (1—T) ~K(l—s), so that under this condition, finally from (3.5)

(3.6) y 1

Applying the expressions (3.2) and (3.6) to (3.1) we have

(3.7) 1 O g W G

^ j , (SO-1)*WQ , , . . lQg(l-mo/s0)
s0—wG log mG

and if, as w G -> l—, (l — ljso)'^K(l—mG), then also

(3.8) ^ [ V r + ( £ : r ) 2 ( £ r ) ] V o ;

The expressions (3.7) and (3.8) are of great importance in the following,
apart from some independent interest.

4. Bounding the Poisson generating function

Our next step is to bound the Poisson generating function, which we
shall henceforth denote by FiP)(s), by two generating functions of the
bilinear fractional form, which we shall denote by F{V) (s) (the upper bound)
and F<L>(s) (the lower).

https://doi.org/10.1017/S1446788700004407 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004407


[9] On the transient behaviour of a Poisson branching process 473

By the mean value theorem

where s* e (s, 1). It follows that,

b
m e

m{s-l)
0

{l-cs)2 -
^ 0

for all s e (0, 1) imply respectively that

Thus if the parameters can be chosen to respectively fulfil these two condi-
tions, we shall be in a position to apply the consequences of lemma A.
In addition we shall need to fulfil the following restrictions on the parameters

!

b, c ^ 0, b+c ^

We proceed by investigating the function

<£(s) = em8(l-cs)2-bm-1em,
so that

implies

{l—cs}{m(l—cs)—2c} = 0

so that the two roots are

(4.2) sa = 1/c, s2 = (1—2c/w)/c.

The smaller root corresponds to a maximum of <j>(s) and the larger to
a minimum. Consideration reveals that if we choose

s2 = 0 i.e. c = m\1
then

^(1) = em(l—c)2—bm-1em ^ 0
(and so

<f>(s) ^ 0, s e [0, 1])
implies

m > .
~ ( l ) »
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Hence a suitable choice of b and c which in fact equates the means of the
Poisson and geometric distributions and for which

F<p>(s) ^ F<G>(s) == FM{s), s e [0, 1]

is

(4.3)
m

° ~~2~' ~
where

s0 =
m (1—cy

NOTE: b+c < 1, so that all the conditions (4.1) are satisfied.

To obtain the reverse inequality

F^pHs) > FiLHs) for s e fO, 1]

we proceed as follows. Choose c so that

1 / 2c\
, = — |1 1 = 11 c \ m

i.e. c = m
m+2

Then, since sx = 1/c > 1, we shall get the required (i.e. <f>(s) ^ 0 , s e [0, 1])
if

i.e. > m.

Hence to make this an equality we have the choices

c =
m

m+2'
= m (-

\m+2]
< 1).

To summarize

(4.4) c =
m+2'
2—m

= F(i)(s), se[0,

/ 2 \ 2

= m I-b = m
\m+2J

Sn =
m ' (1-c)2 — m.

NOTE. There is, clearly, a certain arbitrariness in the choice of the
parameters b, c. The above choices of (4.3) and (4.4) are justified in that
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they not only equate the means of the two bounding offspring distributions
with that of the one under investigation, but (possibly as a result) give
good bounds, and asymptotes (as«->- 1 —).

5. Bounds and asymptotes

As a consequence of the results established in all the previous sections
it is a simple matter to proceed to bounds and asymptotes.

5.1. MEANS. From lemma A, and the double inequality (3.7) we have
for the Poisson offspring distribution F(s) = e"""-1', using (4.3) and (4.4):

ralog m

(5.1) ^ ET

2m

2-\-m m log m
Moreover,

2—m—mn+1 mn i-u/i —
=

yields in the limit as n -> oo

2(l-w) ~ ^ =

From (5.1)

(5.3) ET~-d

as w ->• 1—, where 1 2 8m g 2. From (5.2)

(5.4) ^ J

as m -> 1—, where 1 2 Vm 2 2.
Tables I and II compare the true values of ET and fi with the bounds

(5.1), (5.2) (c.f. Heathcote and Seneta [5], tables3 I and II).
Precise computation of the true values of ET and [i is lengthy, even

on a high-speed computer for higher values of m; the bounds however are
simple to calculate.

3 The upper values of these tables are incorrect: see correction to [5].
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TABLE I

ET; F{s) = e»"(«-l)

m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Upper
Bound 1.4983 1.7168 1.9232 2.1359 2.3712 2.6504 3.0153 3.5597 4.5984 5.7627

True
Value 1.1057 1.2257 1.3657 1.5332 1.7405 2.0083 2.3762 2.9368 3.9974 5.1637

Lower
Bound 1.0411 1.1105 1.2053 1.3278 1.4829 1.6708 1.9325 2.2846 2.8786 3.5912

T A B L E II

(i\ F(s) = e"»(»-U

m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Upper
Bound 1.0585 1.1389 1.2521 1.4167 1.6667 2.0714 2.7949 4.3333 9.1818 19.10

True
Value 1.0564 1.1284 1.2327 1.3493 1.5261 1.7932 2.2332 3.1065 5.7148 10.77
Lower
Bound 1.0556 1.1125 1.2143 1.3333 1.5000 1.7500 2.1667 3.0000 5.5000 10.50

Thus for m = .99, 4.97 ^ ET < 7.76; 50.5 ^ p ^ 99.0
m = -999, 7.23 ^ ET ^ 13.3; 500 ^ ju ̂  909.

5.2 VARIANCES. Since for both bounding distributions, a s m ^ - 1 -

it follows from (3.8) that

(where 1 <g pOT 2f 2) as m -> 1, so that utilizing (5.3)

(5.5) Var T
3(logw) r m 3 ( l - m )

The following table gives the true values of Var T for comparison.

TABLE III

Var T; F(s) = «">(«-!)

m

Var T

0.1

0.1179

0.2

0.2859

0.3

0.5353

0.4

0.9218

0.5

1.554

0.6

2.670

0.7

4.883

0.8

10.25

16.45

0.9

30.55

32.90

0.95

79.47

65.80
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For the variance of the asymptotic conditional distribution, we may
readily obtain bounds from (5.2), noting that in the Poisson case v2 = m.
Asymptotically a s m ^ - 1 -

u 1 / 1 \ 1
(5 6) a2 = — M2 (1( ' (1-m) ** Vm\ VJ (\-m)*

where 1 2 y» 2 2. It is therefore interesting to note that in this case,
as m -*• 1

a2 1
(5.7) — ~

with Table II indicating that this is in fact close to unity.
To conclude this section, several remarks seem appropriate.
Firstly, from (5.3) and (5.5) we notice that the mean of the distribution

of T increases much more slowly than the variance asm-> 1 —: This is also
evident from Tables I and III, from which we see that at m = .95 the mean
is only «w 5 whereas the variance is in the vicinity of 80. A consequence of
this fact is that in the vicinity of m = 1, ET is a poor indication of the time
to extinction, a fact which is occasionally overlooked in applications, and
emphasized by the virtual uselessness of the Tchebycheff inequalities, e.g.

P[\T-ET\ >y}< Var T/y2

in the present situation, as can easily be checked. In contrast, the situation
for the asymptotic conditional distribution, as summarized by (5.4), (5.6)
and (5.7) is more "stable".

Secondly, it appears likely that the quantities dm, y>m and pm may be
replaced by constants 0, y> and p as m ->• 1, although it is a weakness of
the present method that this may not be deduced from it. In fact one may
not unreasonably conjecture that 8 = xp = p. Some light is cast on these
problems by the following section.

Lastly, one is led to wonder from (5.7) whether a relation of the form
^2/cr2 ~ l a s m - > l - does not hold under fairly general conditions on the
offspring distribution. For instance, as will be seen, it is supported by the
diffusion approximation theory of the next section with xpm replaced by 2,
which only requires that m f£ 1, m ~ 1, F"(l —) < oo, F'"(l —) < oo. For
the bilinear fractional case defined in § 3, the asymptotic conditional p.g.f. is

Is
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Hence

<r2

<X2

E.

=

—

Seneta

1

1

So

(i--V

so-> 1 if s0 -+ 1 as m -> 1.

This point however, needs deeper analysis, because of the general difficulty
of what is meant for an offspring distribution not as simply defined as the
Poisson by the statement "m -> 1". For instance, it is not difficult to see
that by choosing

c = 1 - | , b = I3 (0 < £< 1)
so that

in the bilinear fractional case, all the necessary restrictions are satisfied,
and yet

s0 = — {1— m(l~ c)} = \-\-m
c

-> 2 as w - > l - .

Thus it appears that care is necessary in how the parameters of an off-
spring distribution behave as m -> 1. We shall not, however, pursue this
topic further in the present paper, leaving it to a further note.

6. The diffusion approximation

It has been shown by Feller [1] that if new units are introduced for
measuring time and population in a discrete branching process, a diffusion
approximation, with a known estimate of error is possible. When m = 1—6
where 6 is small and positive (which is precisely the case of interest in the
present paper) and an individual in the old counting and the time of one
generation are both 6, the density function (f>(x, t) of the modified popula-
tion variate x at modified time t satisfies a Fokker-Planck equation, where
the error in the equation is 0(<5). (For more detail on the present section
see § 5 of Seneta [7].)
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The asymptotic conditional distribution is then approximated by the
density

/(*) = ^ e-l2/v')x, x e (0, oo)

where v2 is the variance of the original offspring distribution (assumed
finite). The mean and variance of the above distribution are well known
to be

so that

which agrees with our conjecture at the conclusion of the previous section,
since the diffusion approximation used above may only be considered to
hold "exactly" in the limit as d -»• 0. Notice also, that in the above ratio,
scale factors are irrelevant.

Further, we note that by reintroducing the scaling factor <5 = 1—tn,
we obtain for the unsealed asymptotic conditional distribution, that

r 2(l-m) 2(1—m)

a s m - > l - in the Poisson case.
This agrees with (5.4) and suggests that y>m may be replaced by 2.
We may also obtain some information about T, by noticing that if

T* is the time to extinction of the modified process with initial point x0,
then

!

%X 6~*

so that, in theory, the moments of T* are obtainable, e.g.

By putting s = 1/e*—1

(6.2) ET* = f -
Jo s

where
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Unfortunately, the integral of form (6.2) does not appear to be known.
It is not worthwhile evaluating it by numerical methods, since the amount
of labour is no less than to calculate 2S=o (1~&«(")). and even so, only
approximate values of ET can be obtained on account of the diffusion ap-
proximation involved.

In conclusion, and in view of our purpose of considering transient
behaviour when m an 1, we may obtain the following information from the
diffusion approximation, which may be compared with the other asymptotic
results of the paper. Denoting by M the maximum number of individuals
which the population attains before extinction, starting from a single in-
dividual, it can be shown that in the Poisson case

EM on — log(l— m)

Var M
6(1—m)

It is thus interesting to note that as m -> 1—, EM and ET are — apart
from a bounded factor — of the same order of variation (a result that is
intuitively satisfying). Similarly, as m -> 1 —

q

Var T ~ Pm — ** 2Pm Var M.
6(1—m)
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