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ON THE ISOMETRY OF SURFACES
PRESERVING THE LINES OF CURVATURE

WENMAO YANG

In this paper we study the isometric deformations of surfaces in Ea, which preserve
the lines of curvature. We call a surface M and LC- surface if it admits a non-
trivial deformation of this type. We distinguish three types of LC-surfaces, and
obtain some new results about these three types of surfaces.

0. INTRODUCTION

Bryant, Chern and Griffiths [1] studied the isometric deformations of surfaces in 3-
dimensional Euclidean space E3 , which preserve the lines of curvature. They obtained
a main result as follows:

THEOREM A. In t i e three-dimensional Euclidean space E3 consider two pieces
of surfaces M, M*, such that (a) their Gaussian curvature is not zero and they have
no umbilics; and (b) they are connected by an isometry f:M—* M* preserving the
lines of curvature. Then M and M* are in general congruent or symmetric. There are
surfaces M, for which the corresponding M* is distinct relative to rigid motions. The
Molding surfaces, and only these, are such surfaces belonging to a continuous family of
distinct surfaces, which are connected by isometries preserving the lines of curvature
(see [1], p.283).

In the present paper we shall study deeply the deformations. First of all, we have

the following definition.

DEFINITION. Let M and M* be two surfaces in E3 and I and J* be the first fun-

damental forms of M and M*. Suppose a map F: M —» M* is a diffeormorphism,

and

(a) F is an 7-isometry

F*{P) = I,

where F* represents .F's cotangent map.
(b) F preserves the lines of curvature.
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232 W. Yang [2]

In this case, we call F an isometry preserving the lines of curvature, or an iLC-
isometry'. If a surface M admits a non-trivial XC-isometry, we call M an XC-surface.

Relative to the integrability conditions of a differential equation (see (1.26) and
(1.27)), we can distinguish three types of XC-surfaces. We obtain some new results
about the three types of XC-surfaces.

(1) Theorem A supposes that the Gaussian curvatures of the surfaces M
and M* are not zero. We shall prove that any developable surface (with
Gaussian curvature zero) is an XC-surface of the first type (see Section
2, Theorem 1).

(2) An LC-suTfa.ee of the second type is just a Molding surface which was
studied in Theorem A. We shall get some new properties of the surface
(see Section 3, Theorem 2, and Theorem 3 and its Corollary).

(3) We shall get a necessary and sufficient condition for a surface to be an
XC-surface of the third type (see Section 4, Theorem 4).

1. ISOMETRY PRESERVES THE LINES OF CURVATURE

We study a piece of an oriented surface M in 3-dimensional Euclidean space E3,
and suppose it to be sufficiently differentiable and with no umbilic points. On M there
is a field of orthononnal frames m e ^ e j , such that m G M, where t\ and e-i are unit
vectors along the principal directions of M at m, and ej is the unit normal vector to
M a t m. We have

(1.1) dm = o>iei+W2C2,

(1.2) det-=wt;e,-,

(1.3) w,j + u>ji = 0, i,j = 1, 2, 3,

( 1 . 4 ) U>is = OUi, U>2J = CU2-

We assume a > c, where a and c are the two principal curvatures of M at m. The
mean curvature and the Gaussian curvature of M are

(1.5) 2H = a + c, K = ac.

The structural equations of M are

(1.6) du»i = — «2 A W12, du)2 = u»i AW12,

(1.7) <Lj\2 = —Ku>i A w j = — wis A W23,

(1.8)
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[3] Isometry of surfaces 233

The connection form of M is

(1.9) u>i2 = hu\ + ku2-

The differentials of the two principal curvatures a and c are

de = CiW\ + C2to2.

Define two functions

(1.11) f = a-c>0, g=a + c.

Using (1.4), (1.9), (1.10) and (1.11), the structural equations (1.7) imply

(1.12) o2 = fh, Cl = fk.

Suppose M* is another surface in the space E*. We shall denote the quantities per-

taining to M* by the same symbols with star B*"} for example w*;-, a*, c*,

Let the mapping F: M —> M* be an isometry from M to M*, and m.eie2e$ and

m*ejejej be the fields of principal frames over M and M* , respectively.

Since F is an isometry, we have

«,* = Wi cos T — too sin T

wj = to! sin T + to2 cos r

where T is an angle of rotation of the principal directions during the isometric defor-
mation. Now we suppose that F preserves the lines of curvature, so it preserves the
principal directions; so the angle T — 0, and from (1.13), we get

(1.14) W*=toi , to*=to2, W*2 = Wi2.

Since Gaussian curvature is preserved under isometry, ac = a*c*, and we can let

(1.15) a* = ta, c* = t~lc, t £ 0.

The geometric interpretations of t and t~x are as change-coefficients of the two principal

curvatures a and c, respectively. From (1.9), (1.11) and (1.14), we have

h* =h, k* = Jfe,

/ ' =a*-c* =ta-t-lc, g* = a* + c* ^ta + t^c.

From equation (1.12) when applied to M*, we get

(1.17) (*<»),=/•&, (<-1c)1 = / * * .

Using (1.12) and (1.17) gives

We consider two cases depending on whether M is a developable surface or not.
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I. M is a developable surface. In this case, K = ac — 0. We suppose a ^ 0, c = 0.
From (1.18) we get

(1.19) k = 0, t2 = 0

and

(1.20) u u = au>\, u>2s = 0.

Using (1.8) and (1.20), we have dwu = 0, so set u>u as the total differential of the
function u i , a first parameter of M,

(1.21) u>is = diti, wi = a~1dui.

On the surface M the set of Uj-curves (the curves along which o>2 = 0) is a family of
lines of curvature which are not straight lines (because a / 0). But the other family
of lines of curvature (the curves along wj = 0) are straight lines. We can choose the
arclength of the straight lines as a second parameter u^, so

(1.22) u>2 = du2.

Hence the differential equation of t (1.18) or (1.19) becomes

its solution is

(1.23) t

C o n s e q u e n t l y , a n y deve lopab le surface M is an ZC-su r face .

I I . M is n o t a deve lopab le sur face . In t h i s case , K = ac ̂  0 , o ^ 0 , c ^ 0 . W e
r e w r i t e (1-18) as

U =t(l-t2)ac~1k,
( 1 1 8 ' >

From now on we assume t2 ^ 1, discarding the trivial case that M* is congruent or

symmetric to M. Now we let

(1.24) Bi=ac-yu
02 — ca hu>2,
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[5] Isometry of surfaces 235

and

(1.25) T = t2^ 0 , 1

so that (1.18') can be written

(1.26) dT = 2{l-T)(Te1-82).

Taking exterior derivatives of (1.26) gives

(1.27) T(d01-201A02) = d02-201A02.

Equation (1.26) is the total differential equation satisfied by the square T of the
change-coefficient t of the principal curvature o. Equation (1.27) is an integrability
condition of (1.26). When solving (1.27) for T, on substituting into (1.26), we get the
condition on the surface M, to be an ZC-surface but not a developable surface.

Now let us distinguish three cases of LC-surfaces.

FIRST TYPE. M is a developable surface, K = 0, or 0X - 02 = 0.

SECOND TYPE. M is not a developable surface, K ^ 0, and

(1.28) d0x - 20j A 02 = d02 - 20X A 02 = 0.

Then (1.27) holds identically for all T, and (1.26) has a continuum of solutions, each
depending on an arbitrary constant. Thus we have a one-parameter family of surfaces
LC-isometric to M. This is just the case in Theorem A (see [1]).

THIRD TYPE. M is not a developable surface, K £ 0, and (1.28) does not hold.

(1.29) d0i - 20! A 92 ^ 0, d02 - 20i A 02 £ 0.

Then from (1.27) we get T, inserting T into (1.26). Thus we can obtain a single surface

which is LC-isometric to M.

2. JDC-SURFACES OF THE FIRST TYPE — DEVELOPABLE SURFACES

Suppose M is a developable surface, and choose the frame field and the parameters
u i , u2, so that (1.21) and (1.22) hold.

(2.1) ui = o~1dui, u2 = du2, a ̂  0,

(2.2) «is=<fui, wM = 0, c = 0,

https://doi.org/10.1017/S0004972700028392 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028392
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where the differential of the first parameter Ui is the normal connection form WJJ , and

the second parameter u2 is the arclength of the straight lines on the surface M. The

change-coefficient t of the principal curvatures as (1.23)

(2.3) i = *(m)

is any function of Ui. From (1.15) and (1.14) we have some quantities of the surface

M*:

a* = t(ui)a, c* = 0

(2.4) wj = u>! = a~1dui, wj = <*>2 = du^

Wi2=w1 2, wj, = <(tti)dui, w J s = 0 .

From the above discussion we obtain the following theorem.

THEOREM 1 . Any developable surface is an LC-surface of the first type. In other

words, any developable surface can deform continuously to another developable surface

by any isometry preserving the lines of curvature.

For the developable surface there exist three cases as follows:

(1). Cylinder M:

m(s, z) = m(s) + zk,

m(s) = x(s)i + y(a)j,

where Oijk is a frame in E3 , m(s) a plane curve parametrised by its arclength s, and

m' = a, a — ttf3.

Choosing a frame field over M, by

ei - a , e2 = A;, es = - /? ,

we have dm = wjei + u>2e2,

u>i = ds, «2 = dz, u>\2 — 0,

uis — awi, a-—K^0, u>2s = 0.

Define the two parameters

Ui — I a(s)ds — - I K.(s)ds, 112 = z.

Suppose M* is another cylinder which is £C-isometric to M. We have

w*3 = -K*(a*)ds* =t{s)uiS = -t(s)K(s)ds.

Hence

(2.5) K*(s')ds* = t(a)K(s)ds.

This is the equation of an ZC-isometry F.
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(2). ConeM:

m(a, v) = vm(a),

m2(s) = 1, v > 0,

where m(«) is a curve on the unit sphere centered at the origin and parametrised by
its arclength a. We have

m! = a, a' = K/3.

Choose a frame field over M, by

ei = a, e2 = m, es = a x m,

and we have
dm = wjej + w2e2,

W12 = v~1wi, Ui3=au\, a = KV*1 , o>2s = 0.

The two parameters of M are

= / awx = / /c(s)ds,

Suppose M* is another cone which is iC-isometric to M. We have the equation (2.5),
too.

(3). Tangent surface M: m(s, v) = m(s) +va(s), v > 0,
where m(a) is a nonplanar curve parametrised by its arclength s. We have

m' — a, a' = K(3, K ̂  0,

ff = - « a + T7, l = -T/3, T £ 0.

Choose a frame field of M, by

ei = fl, e2 = a, e3 = - 7

and we get dm = (nvds)P + (ds + dv)a

or dm — Wiej + w2e2)

Wi = K(V — s)ds, u>2 = dv,

v — v — s, v > a.

w12 = —nda, w13 = auilt u23 = 0,

a = —T/C~1(U — s)~ .
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The two parameters of M are

= -JK(s)d,, 1*2 = v.

Let M* be another tangent surface which is XC-isometric to M. We have the equation
of the LC-isometry F as

r - (o [«•(*•)(»• - OP1 <*** = <(*M*) W-)(» - -)]"1 <**•

3 . Z/C-SURFACES OF THE SECOND TYPE - MOLDING SURFACES

We now consider ZC-surfaces of the second type. As is well known, [1] shows that
these surfaces are Molding surfaces (see Theorem A), but in this section we obtain some
new properties of these surfaces.

Suppose Z is a cylinder and C is a plane curve on some tangent plane TT of Z.
The surface M is the locus described by C in space as the tangent plane n rolls about
Z. Such a surface M is called a Molding surface (or M-surface).

THEOREM 2 . An LC-surfa.ce of the second type is an M-surface.

This theorem is just Theorem A, and its proof is essentially contained in [1].

PROOF I: We first prove a = hk = 0. According to the definition of an LC-
surface of the second type, we have K ^ 0, a ^ 0, c ^ 0 , s o the two forms Uu and
u>2s are independent forms. We can choose them as fundamental forms for computation.
Rewriting (1.24), in view of (1.4),

$! =c~1k(aui) = k'wn

02 = a~ /i(co>2) = h w2S

where

(3.2) h! = a - \ k' = c"1*

so that

(3.3) W12 = A'wu + k'u2s-

Denote

(3.4) a = hk = (ac)(h'k') = Ktr',

where

(3.5) a' = h'k'.
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The structural equations (1.7) and (1.8) of the surface M are

(3.6) dwij = - * l , • l = wi jAt f2 j ,

(3.7) dwls = h'*l, dw2t = k'*l.

Inserting (3.1) into (1.27), in view of (3.2) and (3.5), we have

(dti - o-'wis) A «2 S = 0,
(3.8)

(dk' + <r'w2S) A w l s = 0.

Using Cartan's Lemma from (3.8) implies

dh' — <r'u>u

dk' = p'wu — (r'(t)2Si

where p ' and q' are two functions.

Taking exterior derivatives of (3.3), using (3.9) and (3.7) from (3.6) we obtain

(3.10) p'-q' =

We define a function u by

(3.11) p ' + q' = 2u.

Solving (3.10) and (3.11) for p \ q'

(3.12) ; ;
q' = u+(h'2+k'2+l)/2.

Taking derivatives of (3.5), in view of (3.9), we get

(3.13) da' = {h'p' + fcV)wls + (JfeV - fe'<7

Taking exterior derivatives of (3.9), using (3.13), we have

V a ; 2 3 = 0 ,(d9 + 2fc

{dp' + 2k'a'w2i) A w13 = 0,

so

dp' = p"w13 - 2k'(r'u>23,

dq' = -2h'<r'u13+q"u>23.
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Taking derivatives of (3.10), using (3.9) and (3.15), we get

p" = -2(k'p' + 2h'a'),
(3.16) K '
K ' q" = 2{h'q' - 2fcV).

Taking derivatives of (3.11), from (3.15) and (3.16), we get

(3.17)

Taking exterior derivatives of (3.17), using (3.9), (3.13) and (3.17), we get

a' = 0 or a -0.

We suppose

(3.18) h^O, k = 0.

From (3.9) and (3.10), we have

(3.19) p' = 0, q' = l+h'2.

For this surface, we also have

(3.20) w12 = hwlt u>u = aux, u2s = cu2,

(3.21)

(3.22)

U>i2 = hui, Wis =

dti = (l+/i'2)u;23,

da —

where A and ft are two functions.

PROOF II: Secondly we prove that the surface is an M-surface. For this purpose
we examine its family of lines of curvature, which are defined by the equation

w1 = 0,

and are denoted by {I^}. Along any curve 1^, we have w\2 = ^ l = 0, so that 1^ is
a geodesic. Letting u>2 = ds, we obtain equations for ^ ,

(3.23)

dx
Tds

de2
= ce3,

de3 dei •
— = -ce2, — =0.
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Hence F2 is a plane curve with curvature c, and the plane has normal vector t\. Prom
(3.23),

de = /x«2 = 0(mod w2)

meaning that all the curves {F2} are congruent to each other, because their curvatures

are the same.

Since

dei — wi2e2 + wises = (/ie2 + aes)u>i

= o(/ i 'e2+e3)wi,

the intersection of two neighbouring planes of the curve F2 is a line in the direction

ei x de\ = o(—e2 + h!e%)u\.

By (3.21), we have
d(-e2 + ties) = ch'(-e2 + tiez)u2.

Hence this direction is fixed. It follows that all planes of the lines F2 of curvature are
the tangent planes of a cylinder Z. The generator of Z is parallel to the fixed direction.
So the surface M is a Molding surface. D

We wish to explain geometrical properties of the other family of lines of curvature
{Fi} , which are defined by the equation

w2 = 0 .

It is known that all curves Fi are orthogonal trajectories of the tangent planes of Z.

We have the following lemma concerning this situation.

LEMMA. Let Z be a cylinder and let its normal section be a piane curve C.
Suppose the family of tangent planes of Z is {H,} , a ^ a ^ b, a < 6,a, 6 6 R . If the

orthogonal trajectory is a curve T, then:

(1) F is a plane curve, and t i e plane II which includes the curve F is orthog-
onal to the direction of the generator of Z. In other words, the plane U.
is orthogonal to a fixed direction.

(2) F is a involute of intersection Z H II of Z and the plane H, and the
intersection is congruent to a curve C. So we can say that F is an
involute of the curve C.

PROOF: We can choose a frame Oijk or Oxyz in E3 such that for the cylinder
Z:

(3.24) m(a, z) = m{s) + zk,
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where for the curve C:

(3.25) m(s)=x{s)i + y(s)j,

and m' — a,

(3.26) a' = K0, /?' = -na,

(3.27) afc = 0, /?Jfe = O.

The family of the tangent planes of Z is {II,}, where

II,: p.{u, v) = m(a) + ua(s) + vk,
(3.28)

— OO < « , V < +OO,

where u, v are the parameters of points on the plane II,.

Now we can express the orthogonal trajectory F of the {II,} by

(3.29) F: p(s) = m(s) + u(s)a(s) + v(s)k.

Taking the derivative of (3.29) using (3.26), we get

(3.30) p' = (1+ u')a + KU0 + v'k.

Since F is the orthogonal trajectory, its tangent line is along the normal of the plane
II , , so

(3.31) p'a = 0, p'k = 0.

Inserting (3.30) into (3.31), in view of (3.27), we have

l + u ' = 0, v' = 0.

From the above equations

(3.32) u = s0 — s, v = v0 (= constant).

Inserting (3.32) into (3.29), we get

(3.33) T: p(a) = m(a) + (s0 - s)a(s) + vok.

It follows that the curve F is on the plane U: z = v0, and it is an involute of the
intersection

(3.34) ZnH: p(a) = m(s) + vok.

So we obtain the conclusions (1) and (2) in the lemma. U

Using Theorem 2 and the lemma, we get the following Theorem 3.
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THEOREM 3 . Two families of lines of curvature on tie M-surface are:

(1) Second family {Fa}; every curve T2 is a plane curve such that pairs of
curves are congruent. Its plane is parallel to a fixed direction which is the
generator of Z.

(2) First family {T\}; every curve Fi is a plane curve such that pairs are not
congruent, in general. Its plane is orthogonal to a fixed direction which
is the generator of Z. Every curve Fi is an involute of the curve C.

EXAMPLE. Surfaces of revolution axe special examples of Molding surfaces. In this case,
the cylinder Z becomes a straight line. The first family of lines of curvature {Fi} is
a set of parallels. Fi is a circle, and it is the "involute" of the "point". The second
family of lines of curvature ^ 2 } is a set of meridians. They are congruent to each
other.

COROLLARY. Let a cyhnder Z be given by

(3.35) p(s, v) = m(a) + vk,

(3.36) km = 0, a- m',

and a plane curve C on some tangent plane Ho of Z, and C be given by

(3.37) p(t) = m(s0) + u(*)a(s0) + v(t)k.

Then we have the Molding surface M:

(3.38) p(s, t) = m(s) + (s0 - s)a(s) + u{t)a{s0) + v(t)k.

4. LC7-SURFACES OF THIRD TYPE

Now we study ZC-surfaces of the third type. From (3.1)-(3.3) we are given

(4.1) 0i = k'wli, 02=h'w2S,

(4.2) w12 = h'wij + k'u23-

Let

(4.3) a = h'k1.

We denote the differentials of h' and k' by

dti = auis + /3w23
(4.4)

dk = 7W13 +
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so that

dOi - 20i A 02 = -(6 + <r)*l,

(4.5) dO2 - 20i A 02 = ( a - <r)*l,

*1 = Wu AW2J.

From (1.27), using (4.5), we have

(4.6) a + TS = (1 - T)<r.

From the Gaussian equation (3.6), using (4.4), it follows that

(4.7) / 3 - 7 = 2r

where

(4.8) 2r = h'2 + Jfc'2 + 1.

Taking exterior derivatives of (4), we have

da A wit +d/3A w23 + (h'a + k'/3)*l = 0,

d-y A wis + dS A u>2s + (h'y + k'6)*l = 0,

so there exist functions A, B, ..., F such that

da = Awn + (B + h'a)u23

t v d/3
(4.9)

dS = (E-k'S)uli+Fw23.

Taking derivatives of (4.3) and (4.8) and using (4.4), we obtain

(4.10) da = o-iwi3 + <

o-i = h'f + k'a, a2 = h'S + k'0,

(4.11) dr = Tiw13 + T2W23,

n = h'a + Jb'7) T2 = h'p + k'6.

Taking derivatives of (4.6), we get

(4.12) (<r + S)dT + T{da + dS) = da- da.
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Using (4.6), (4.10) and (4.11) from (4.12) we have

(<r + SfdT + [(«• - a)(E - k'S + ax) + (a + S)(A - ^ W i s

+ [( ) (P + <r2) + (* + 6)(B + k'a - a2)} u>23 = 0.

Inserting (4.6) into (1.26), we have

(4.14) (a + 6)2dT - 2(a - a){a + 6)k'w13 + 2{a + 6){a + S)h'w23 = 0.

Comparing (4.13) and (4.14), we get

(a + 6)A + (a- - a)E - (a - a)(2a + 6)k' - (a + S)<n = 0,

(<r + 6)B + (<r- a)F - (6 + a)(a + 26)ti - (a + 6)<r2 = 0.

Using (4.10), the above equations become

(a + 6)A + (tr - a)E = -y{a + S)h' + [a(3a + 26) - a{2a + S)]k',
(4.15)

{a- + S)B + (a - a)F - [S(2a + 36) + <r{a + 2S)]h' + f3{a + S)k'.

Taking derivatives of (4.7) using (4.9) and (4.11), we have

B-D = 2ah' + {l3 + 2*,)k',
(4.16)

C - E = {2/3 +-y)h' + 26k'.

From the above discussion we obtain the following theorem.

THEOREM 4 . Let M be a surface with non-zero Gaussian curvature. The nec-
essary and sufficient condition for it to be an LC-surta.ee of the third type is that the
first and second derivatives of h' and k', a, f3, f, 6 and A, B, . . . , F satisfy (4.7),
(4.15) and (4.16).
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