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0. Introduction. Several papers have appeared in the past few years which have
explored the topic of the Riesz decomposition for amarts. Such a decomposition for
amarts enjoys several special properties. See [5, p. 208-209]. While it has been proved in
[6] that not every martingale in the limit has a Riesz decomposition "in the weakest form
assuring uniqueness" it is the major objective of this paper to characterize a class of
martingales in the limit which is strictly larger than the class of amarts but enjoys all the
properties of the decomposition for amarts.

In Section 1, the concept of tempered processes is introduced and explored. Tem-
pered processes are at once a generalization of martingales and a major aspect of a Riesz
decomposition for stochastic processes. A fundamental convergence theorem for tem-
pered processes is presented.

In Section 2, a class of martingales in the limit is introduced which properly contains
the class of amarts and also has a "complete" Riesz decomposition.

The following notation and definitions will be in use throughout the paper,
(ft, 91, P) is a probability space and {?!„}„:» i is an increasing sequence of sub sigma fields

of 91 to which (extended) real-valued processes will be adapted.

DEFINITION. A processes {Xn}na, is
(i) martingale in the limit (MIL) if

l imsup|E(Xn|2lm)-Xm| = 0,

(ii) amart if for each sequence of bounded increasing stopping times {rn}n~.^ with
Tnt°°, {H(XJ},,£1 converges,

(iii) has a {weak) Riesz decomposition if it can be written as

where {Yn}nE1 is martingale and for all A e U"=i ^« w e n a v e JA Zn -* 0.

NOTE. Weak Riesz decompositions are unique.

1. Tempered processes. Conditional expectation is often described as a smoothing
operation. Once a given stochastic process is smoothed in some sense the resulting process
might bear close or little resemblance to the original process. What will be done in this
section is to introduce a smoothing procedure which is martingale-like in character and
examine when the resulting process converges pointwise.
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10 LOUIS H. BLAKE

DEFINITION 1.1. Let {Xn}n2;1 be an adapted process and suppose for each m

lim E(Xn 15Im) = Ym, where Ym is finite or infinite.
n—•«>

Then {Xn}na,1 will be called a temperable process.

DEFINITION 1.2. Let {Ym^^i be a process for which there exists a process {X,,}na;1

where for each m

limE(Xj2Im)=Ym.
n—»°°

Then {Ym}ma:1 will be called a tempered process.
It will often be convenient to say "{Xn}n3:1 is tempered to {Yn}n^l" or "{Yn}nal is

tempered by {Xn}nal."

Tempered processes abound with all sorts of convergence and non-convergence
properties. The question arises: when do tempered processes converge pointwise?

Before an answer to this question is presented in the major theorem of this section,
some examples and discussion of tempered processes is in order.

EXAMPLE 1.1. Every martingale is a tempered process. Inasmuch as not every
martingale converges a.e. not every tempered process converges a.e. See, for example,
Baez-Duarte [1].

EXAMPLE 1.2. Every amart is a temperable process which is tempered to a martin-
gale. Here, too, the martingale to which the amart is tempered need not converge a.e. See
([5], p. 207 and p. 210).

EXAMPLE 1.3. Consider any sequence of independent random variables with same
mean. Here is an example in which the tempered process could differ profoundly from the
original; that is, the sequence of independent random variables is tempered to a constant.
Convergence of the tempered process is assured!

EXAMPLE 1.4. Consider here:

9L l ^cr(A 1 ,A 2 , . . . ,AJ and P(AJ = 1/2".

Let Xn = 7Ai + ZA. Then, for n>m,

(1 on AY

0 on [2,m + l)
P(AJ/P([m +l,oo)) on [m + l,oo).

Ym = JA, f°r each m. Here the process {Xn}nal is tempered to a martingale while it is
neither martingale nor is it sub or super martingale. The process {Xj n a l is martingale in
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TEMPERED PROCESSES FOR SOME MARTINGALES 11

the limit and amart inasmuch as sup \E(Xn\SHm)\eL1 for each m. See [3] and [5],
Proposition 2.2, respectively. n'n>m

EXAMPLE 1.5. Consider the probability space of Example 1.4 and let

Here Yn = Xn on [0, n +1) and Yn = oo on [n +1 , <»). It is clear that {Xn}na:1 is not amart
but is MIL. Moreover, {Yn-X,,},,;,! converges to zero a.e.; however, {Yn}na:1 is not
martingale.

It is natural to ask what relation temperable processes have to martingales.

PROPOSITION 1.6. Let {Xn}n21 be a temperable process tempered to {Y^^. Suppose
sup |E(Xn |9Im)|eLj for each m. Then {Y,}^ is a martingale.

Proof. Immediate.

The next theorem addresses a major question. If a process is tempered, when does it
converge?

THEOREM 1.7. Suppose {Xn}n^x is a process in Lx tempered to {Yn}nS:1 and suppose
{Yn}n^i is Lx bounded. Then {Yn}nai has a pointwise limit.

Proof. The proof will proceed by showing the number of downcrossings of an
arbitrary interval must be finite and this will be sufficient in the context of the usual
considerations in this type of argument. See [4].

Let (a, b) be an arbitrary interval. Let N be an arbitrary but fixed positive integer.

Let Y0=a. Let {Cj}°°=1 be a sequence of positive reals with X cf <°°. Then define a finite
i = l

sequence of stopping times relative to (a, b) and N as follows.
Let To = 0 and let Tx be the first integer m with Nszm>T0 and
0) Ym^b,
(ii) \E(Xn | S I J - Y j < C l for all n > N ;

if none, let Tt = N, and T2 be the first integer m with N>m>T1 and
(i) Ym^a
(ii) \E(Xn | 9 U - Ym|<c2 for all n>N;

if none, let T2 = N, and so on up to TN = N.
Consider

YN~Y0= YTi-YTo+ YT2- YTi+ . . . + YN-YTN^.

Let <i>(N; a, b) be the number of downcrossings relative to the above stopping times and
observe that

YN-Y0>(b-a)<t>(N;a,b)+'L Y^-Yr^, where 2n<JV.
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Consider

f N f N f

ov*.-*!•„_,)= Z n - Z n
J k = l J{T2 n=k} k = l J{T2n_, = k>

So,

[ YN-\Y0>(b-a) \cf>(N;a,b)- £ ck.
J J J k = l

Note that <̂ >(JV; a, b) increases in JV and so, let 4>(a, b)= lim <j>(N; a, b). It is clear that

f cfc+sup f |Yj-a>(b-a) U(a,b)>0.
k = l 11 = 1 J J

Thus, <}>(a, b)<oo a.e. Let

n {lim E(XjWm)=Ym}.
m = 1 n—•=»

Let D(a, b) be the number of downcrossings of the interval by the process {Yn}na:1.
Suppose for some to e no(a, b) we have D(a, b)(a)) = °°. Then for a sufficiently large JV and
a subsequence of these downcrossings it can be observed that <£(JV: a, b)(w)>(f>(a, fc)(w)
and this is a contradiction. Thus D{a, 6)<°o on the set Clo(a, b) and where P(no(a, b)) = 1.
The proof is complete.

2. Riesz decomposition considerations for martingales in the limit. The topic of
Riesz decomposition for amarts has been the subject of several articles. The most
noteworthy of these for the purposes of this paper are [5], [6] and [10].

The major purpose of this section is to observe what properties of the Riesz
decomposition for amarts are due to the fact that the process is amart and then
characterize a strictly larger class of MIL which has all these important properties.

In [6, p. 317], a Riesz decomposition in "the weakest form assuring uniqueness" is a
process {Xn}n^l decomposed as Xn = Yn + Z^, where {Yn}nS:1 is a martingale and all that is

asked of {Zn}n^1 is that J A Z n -*0 as n —*°° for any A e U 3ln. (This is a natural
n = l

extension of the decomposition of a supermartingale into a martingale and a Doob
potential. See [7, p. 89].)

The first theorem states some sufficient conditions for an arbitrary process to have a
Riesz decomposition in the weakest form assuring uniqueness.

THEOREM 2.1. Let {Xn}x^! be a temperable process with sup|E(Xn |?lm)|eL1 for

each m. Then, {Xn}n2:1 has a Riesz decomposition in the weakest form assuring uniqueness
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and further
(i) \\mn^oE{Zn |2lm) = 0 a.e. for each m,
(ii) limn_w» E(Z,, |?Im) = 0 in L, for each m and

(iii) J sup \E(Zn 19lm)|<°° for each m.

Proof. Immediate.

The following examples will illustrate among other things that there are readily
available non-amarts which satisfy the hypothesis of Theorem 2.1.

EXAMPLE 2.1. A process which is not amart but is MIL is the following. Let
Xn = nIAn, where {An}nS:l is a sequence of pairwise independent sets and 9ln =
t r (Aj , . . . , An). Let P(An)=l/n2 for n>\ and P(At) = 0. This example presented in
[6, p. 318] is not amart (inasmuch as it does not satisfy the optional stopping theorem).

EXAMPLE 2.2. A process which is not MIL is the following. Let {Xn}nal be i.i.d. with
mean zero and finite first moment. It is well-known that P(Xn converges) = 0. If 9ln =
a(Xu ..., Xn), then the hypothesis of Theorem 2.1. is easily satisfied. (Note that the
process is not MIL in as much as an Lx bounded MIL would have a pointwise limit. See
[9].)

Hence, what aspects of the Riesz decomposition for amarts are due to the fact that
the process is amart? In [5], Theorem 3.2 it follows that if the process is amart it satisfies
the hypothesis of Theorem 2.1; but, moreover, the {Zn}n^l process is amart and has
the additional convergence properties that Zn —* 0 a.e. and in Lx and {Zn}n2:1 is uniformly
integrable.

The next theorem displays the fact that if a process satisfies the hypothesis of Theorem
2.1 and is MIL, then some additional properties of the decomposition are obtained just
because the process is MIL.

THEOREM 2.2. Let {Xn}nS,1 be MIL and satisfy the hypothesis of Theorem 2.1. Then
i is MIL and Zn ^ 0 a.e.

Proof. That {2n}n^i is MIL follows immediately from the equality

That Z,, —* 0 a.e. follows from the fact that for each m,

sup |E(Z; 12U-Z m \ > lim |E(^, | 2LJ -Z m | = | Z j .

Merely let m —» °o in the previous inequality and the result follows.

It should be observed that Example 2.2 shows that there are processes for which the
hypothesis of Theorem 2.1 are satisfied and {Z^n^ does not approach zero a.e.

This suggests the following definition.
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DEFINITION 2.1. An MIL process {Xn}n3ll will have a complete Riesz decomposition if it
not only has a weak Riesz decomposition but moreover it satisfies:

(i) {Zh}BB!l is MIL,
(ii) Zn ^ 0 a.e.,
(iii) {Zn}n3,l is uniformly integrable and
(iv) lim E(Z» |2lm) = 0 a.e. for each m.

n—»-oo

The next few theorems will establish a class of MIL which possesses a complete Riesz
decomposition and contains all amarts.

DEFINITION 2.2. Let {Xn}nal be an MIL process with
(i) sup |E(Xn 12lm)| € Lj for each m and

(ii) for any e >0 there exist an increasing sequence {Nme}m=1 with Nme 2:m for each
m and

Hm jj;up|E(Xj2Im)-Xm|<e.

Then, call {Xn}nS:1 an MIL process of class B.

REMARK. Even though by definition of an MIL it cannot be said that
lim J sup |E(Xn | 2lm)-Xm| = 0, in as much as interchange of limit and integral is not

m—wo n^m

always possible, the purpose of Definition 2.2 is to consider MIL's where a (weak) form of
the "interchange" is possible. If the process {Xn}nal is martingale to begin with, parts (i)
and'(ii) of Definition 2.2 follow immediately.

THEOREM 2.3. Every MIL of class B has a complete Riesz decomposition.

Proof. The major effort in proving this theorem is to show that {Xn}n2:1 (the MIL
process of class B) is temperable. The other parts will follow from this and also Theorem
2.1 and Theorem 2.2. In addition, it must be proved that {Zn}ns.-i is uniformly integrable.

To show {Xn}nSll is temperable, consider an arbitrary but fixed integer i. Let n>n>i
and write

\E{Xn\%)-E{X-n |%) |<E[( |E(Xj? l m ) -X m | + |E(Xfi \%m)-Xm\)l%]

for any m > i and n>m.
Define

Then,

/ m > 0 each m,
fm e Lj each m,
fm is % measurable for each m, and
fm is decreasing in m.a.e.
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To show fm —* 0 a.e. it will be sufficient to show that a subsequence goes to zero a.e. From
the first inequality of this proof it follows that

fN_ <E[ sup (|E(Xn 1 2 U - X j + |E(Xn I S U - X J ) / * , ] .

Thus

ImT f/Nm.<2iinT f sup |E(Xj2lm)-Xm|<2e.

Since J /m is a decreasing sequence, the previous inequality gives that for e > 0 there exists
a sufficiently large M(e) such that for m>M(e), Sfm<e. Thus J / m -»0 as m-»<» and
there exists a subsequence converging to zero a.e. and so {Xn}nS=1 is temperable.

Next it will be proved that { Z ^ ^ is uniformly integrable. Choose e >0; then

lim [ sup |E(ZJ2U-ZJ<£;

that is, for m>M(e), J sup \E(Zn\'&m)-Zm\<e. For m<M(e), there exists a 8 > 0 so

that for any set with P(A)<8, JA \Zm\<e. For m>M(e), the same 8 will suffice in as
much as for

J |E(ZJ2U-ZJ<J sup

Merely let n -»• o° in the previous inequality and get JA I Z j < e for m>M(e). It is also
clear that sup JlZnJ'^oo and so {Znln^j is uniformly integrable.

The next theorem presents a converse to Theorem 2.3.

THEOREM 2.4. Let {Xn}n^1 be an MIL with sup |E(Xn |9lm)|eL1 for each m and

with a complete Riesz decomposition. Then {Xn}nal is an MIL of class B.

Proof. Since {Xn}n2=1 has a complete Riesz decomposition, it is immediate that
sup |E(Zn |?lm)|GL1 for each m, lim E(Zn 19lm) = 0 a.e. for each m and Z^ —»0 in

Lj. Choose £>0. Then there exists a sufficiently large M so that for m^M, $\Zm\<e.
For each m, select JVme so that for all n ̂ N m e we have lECZ,, 19lm)|<e on a set Am with
P(A^,) so small that JAc sup |E(Zn | Slm)|< e. Thus, for m>M,

| sup |E(Zn |? lm)-Zm|< | sup |E(Zn|?lJ + J c sup|E(Zn|2lm)| + ||Zm|<3e.

Thus,

iim | sup | E ( Z j 2 U - Z J < 3 e ,

where e was arbitrary, the proof is complete.
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THEOREM 2.5. Every amart is MIL of class B.

Proof. Every amart is MIL; see [3] and [6]. Every amart satisfies the hypothesis of
Theorem 2.4; see [5], p. 209].

REMARK 2.1. The family of MIL of class B strictly contains amarts. See Example 2.1.
For some particulars, see [6, p. 318].

REMARK 2.2. In [10] it is proved that {Xn}n£1 is amart if and only if Xn = Yn+Zn,
where { Y j ^ i is a martingale and | Z j < S n a.e., where {Sn}n2:1 is a positive supermarting-
ale which converges to zero in Lx. This result shows that

lim [sup|E(Xnlim sup |E(Xj2l m ) -X m | = 0

and so condition (ii) of Definition 2.2 is easily satisfied. This, in a qualitative sense
suggests how much larger MIL's of class B are than the class of amarts.

REMARK 2.3. Recall that a process {Xn}nS:1 is semi amart if and only if sup |E(X,.)| <
TST

oo where T is the set of all bounded stopping times. Example 2.1 displays a process which
is not semi amart but is MIL of class B; see [6, p. 318] for details. Hence, MIL's of class B
contain processes which are not semi amart. It is obvious from [10], Theorem 1 that there
are semi amarts which are not MIL of class B.

This section will conclude with a lemma which will give direct access to the fact that
every quasi martingale is a martingale in the limit of class B.

PROPOSITION 2.6. Every positive supermartingale is a martingale in the limit of class B.

Proof. Let {Xn}nal be a positive super martingale with X as its a.e. limit. Observe
that for any m, {E(Xn |2lm)}n£m has E(X|?tm) as an a.e. limit and for each m is an a.e.
decreasing sequence in n. Hence,

sup |E(XJ 2 I J - Xm| < Xm - E(X 12tm)

for each m. With this inequality at hand it is at once clear that the process is martingale in
the limit and moreover that it satisfies the conditions of Definition 2.2; in particular
property (ii) of Definition 2.2 is satisfied with Nm e = m for each m and e.

THEOREM 2.7. Every quasi martingale is a martingale in the limit of class B.

Proof. Every quasi martingale can be expressed as the difference of two positive
supermartingales. This in conjuction with Proposition 2.6 proves the result.
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