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EXTREME POSITIVE CONTRACTIONS ON FINITE 
DIMENSIONAL /^-SPACES 

RYSZARD GRZASLEWICZ 

In this paper we give a characterization of the extreme positive 
contractions on finite dimensional /^-spaces for 1 < p < oo. This is 
related to the characterization of the extreme doubly stochastic operators. 
In Section 2 we present the basic properties of the facial structure of the 
set of doubly stochastic n X m matrices. In Section 3 we use these facts for 
description of the facial structure of the set of positive contractions on 
finite dimensional /^-space. Next is considered stability of the positive 
part of the unit ball of operators (Section 5). In Section 7 we prove that 
extreme positive contractions on lp

n are strongly exposed. 

1. Terminology and notation. Let {X, srf, m) be a a-finite measure space. 
As usual, we denote by LP(m), 1 < p < oo, the Banach lattice of all 
/?-summable real-valued functions on X with standard norm and order. If 
Jf = {1, 2 , . .., n) n < oo, and m is a counting measure we write lp

n in­
stead of LP(m). If X = [0, 1] and m is Lebesgue measure we write briefly 
LP. LP+ (m) denotes the cone of positive functions ( / ^ 0) in LP(m). The 
adjoint space [LP{m)]f is identified with LP(m), where \lp + \lp' = 1. 
F o r / e LP(m) we denote 

f»~]\x) = | / ( x ) | ^ ' s i g n / ( x ) . 

Let 1 < r < oo and let (Y, !%, n) be a a-finite measure space. We denote 
by ££{LP(m), Lr(n)) the Banach space of all linear bounded operators 
from LP(m) into Lr(n). An operator T is said to be positive (T ^ 0) if 
Tf^O whenever/ â 0. The set of all positive operators (contractions) is 
denoted by &+(Lp{m)9 Lr(n) ) (^) . 

To every operator T e Sf\lp
m, lr

n) (m, n ^ oo) there corresponds a 
unique matrix (/..) , / = 1, . . . , n, j = 1, . . . , m with real entries, such 
that 

j=\ 

Clearly the adjoint operator 
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/''-SPACES 683 

with \/p + Mp' = 1 and Mr + Mr' = 1, is determined in the same 
manner by the transposed matrix (/..). 

If an operator T e <£{Lp{m\ Lr{n)) attains its norm on / and 

\\T\\ = 11/11 = 1, then from the strict convexity of //-spaces it follows 
that 

We define the support of a positive operator T, denoted by supp 7, as a 
maximal set A c X such that T\Ac = 0. For a matrix (/..) let 

supp(/..) = {j: there exists z0 such that tt T̂  0}. 

The support of an operator T will be identified with support of a matrix, 
which corresponds to T. 

For T G £e+(U{m\ Lr(n) ) we have 

supp T D supp r*g where g G U(n). 

In particular, if g > 0, then 

supp T = supp 7"*g 

(note that s u p p / = {x e X:f(x) ^ 0 } , / G LP (m), should be read modulo 
ra-null sets). If T attains its norm a t / t h e n s u p p / c supp T. 

Let T e &(LP(m), U{n) ). Let T = 2 7̂  be a decomposition of T into 
the operators Tk (i.e., supp 7̂  disjoint and supp 7 | disjoint). Then 

imi = sup II^II. 

Moreover, T ^ 0 if and only if Tk ^ 0 for all /:. Furthermore T is an 
extreme positive contraction if and only if the 7 '̂s are extreme positive 
contractions. 

Let (f..) = T be a matrix. By 71' we denote transposed matrix. We say 
that Tis an elementary matrix if there are no nonzero matrices Tx, T2 such 
that T = T} + T2 and 

supp TX n supp r2 = supp T\ n supp r2 = 0 

(see [6] ). If T is a finite matrix, then we can represent T as a finite sum of 
some elementary matrices Tk, 

ko 

k=\ 

with supp Tk disjoint and supp T\ disjoint. In such case we will say that 
the matrix T can be decomposed into k0 elementary matrices. 

Let K be a convex set. We say that a subset F of AT is a face if 

x + (1 - <x)y e F with JC, y e # , 0 < a < 1, 
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684 RYSZARD GRZASLEWICZ 

implies x, y G K. Note that ext F c ext K. For x G K we define a face 
generated by x as follows 

Px = {y G # : there exist z <E K and 0 < a ^ 1 

such that x = dy + (I — a)z}. 

We also define the dimension dim Kx of the point x in # , as the affine 
dimension dim Fx of Fx. The point JC G Â  is extreme if and only if 
dim Kx = 0. 

Throughout this paper we assume 1 < p < oo and 1 < r < oo. 

2. Doubly stochastic matrices. Doubly stochastic matrices have been 
extensively studied by a number of authors (see for example [12] and 
reference there). In this section we consider the facial structure of the 
convex set of doubly stochastic matrices. All these properties can be 
obtained by modifying the arguments presented in [2] (see also [4] ). For 
the convenience of the reader we present below proofs of the basic 
properties which we use in the next sections. 

Let ft, v be finite measures on {1, 2 , . . . , n] and {1, 2 , . . . , m}, 

respectively, such that 

/ I ( { 1 , 2 , . . . , / I } ) = K O , 2 , . . . , m}). 

Let (/;..) be a positive measure on {1, 2, . . . , n) X {1, 2, . . . , m) with 
marginal distributions /i, v. The matrix P = (/?..) is called doubly stochastic 
with respect to /* and v. We write P G j^(/x, *>). 

PROPERTY 1. Lef P G ^(JU, v) be an n X m elementary matrix. And let 

supp JU = {1, . . . , n), supp v = {1, . . . , m). 

Then 

dim g^v.P = mn — m — n + 1 — z 

vv/zere z denotes the number of null entries of the matrix P. 

Proof. The set 

Dp = {P + P :P ± P G ^(/x, *>) } 

is included in the face Fp generated by P in Q)(\L, V) and 

dim ®^V)P = dim D^. 

For P = (/•••) we have P ± P G ^(/A, J>) if and only if 

m m 

2 rv> = 0, 2 ',> = 0 and \r£ â p... 
V = 1 V = 1 

Thus 
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m m 
dim 0MP = dim{ (rtj): 2 riv = 2 rVJ 

v = l v = l 

= (1 - s i g n / ^ . = 0, 

/' = 1 , . . . , mj = 1, 2 , . . . , n). 

Let 

n 

7=1 

m 

i = i 

^ ( * ) = (1 - s i g n / 7 ^ . 

be defined on the space of n X m matrices # = ( r ). We have 

dim ^V)P = dim{tf:Vl.(*) = ^ W = •*£(*) = 0, 

/ = 1, 2, . . . , m,j = 1, 2, . . . , w}. 

Therefore d i m ^ ^ P is equal to «m minus the number of linearly 
independent functional in the set 

{<*>!,..., <*v ^,, • . . , ^n, ^ i , . . . , ^ „ } . 

Since 

2 % = 2 &, 
i - l 7 = 1 

the functional <pj depends linearly on <p2,.. . , <pm, \p\,.. . , \pn. We denote 

Z= {(i,j):Pij = 0}. 

Now it is sufficient to show that the functional 

Uz (i = 2,. . ., w), 

(*) H 0"= l , - . . , / i ) , 

[̂ . (ij) e Z 
are linearly independent. Suppose 

m n 

è(R) = 2 2 r^at + jS, + y,(l " s i g n ^ ) ) = 0, 
i=\ 7=1 

(where a, = 0 ) , for some a,, /?., y- in R. Now we choose inductively a 

https://doi.org/10.4153/CJM-1985-036-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-036-4


686 RYSZARD GRZASLEWICZ 

sequence { (ikJk) }"kt"' ' where (ik,jk) <£ Z, satisfying: 

(a) /, = 1 and (/,,./,) € Z (i.e., ft^ > 0 and ytJi = 0) 

ik + l e {/„ ...,ik) andjk + l £ {jt,... ,jk) 
(b) or 

We can construct the sequence { (ik, jk) }, since the matrix P is an 
elementary matrix. Note that 

cardf/p . . . , / * } + card{y1,. . . , ^ } = /c + 1 

(k = 1,. . . , m + n — 1), so 

{^••••'fl + m-l} = { 1 , . - . , ^ } , 

{y , , . . . ,y A 7 + m _ 1 } = { 1 , . . . , ^ } . 

Let SlJ = (skl) be the n X w matrix such that 

skl = Sik8ji-

The conditions £(S'7) = 0 imply 

aik + y3̂  = 0 (it = 1, . . . , /i + m - 1). 

Clearly /? = 0, since ix = 1 and a, = 0. We obtain 

a, = ft = 0 

since a, = )8- = 0 and /, = i2 ory, = j 2 . Continuing in this way, we 
obtain 

11 '/i 4- m - 1 r7l "jn + m-
= 0 

Thus y.. = 0 for all (/,y) G Z, since 

j ^ S * ' ) = 8ik8j, 

Therefore the functional (*) are linearly independent. 

PROPERTY 2. Let P = (/?..) G ^(JU, v) be an n X m matrix which can be 
decomposed into k0 elementary matrices. Then 

d i m ^ ( / i , ^ = nm + k0 - n0 - m0 - z 

where 

z = caTd{Pij:Pij = 0}, 

n0 = card supp JU = card supp P, 

m0 = card supp v = card supp P r. 

Proof. Let 
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ko 

k = \ 

be a decomposition of P into elementary matrices Pk. We have 

Ù supp Pk = supp P and Ù supp P^ = supp Pl. 

The matrices Pk are doubly stochastic with respect to 

(Hsupp/y ^"suppF^)-

By Property 1 we have 

dim $M[Pk ~ nkmk ~ nk - mk\ = z'k 

where 

nk = card supp P ,̂ mk = card supp PJ-. and 

z'k = card{^.y G supp P^ i G supp Pl
k,pXJ = 0}. 

If /* = (r/7) e {£:/> ± S e ^(/x, *>) }, then |r/7l ^ /7/y. We have 

R = 2 Rk, 
k=\ 

where 

/̂c = huppP'k
RhuppPk-

Hence 

dim <p(/i V)P = dim{P: S ^ ± ^ E S ( / I , v) } 

A: — 1 

— 2 dim{P,:P, ± Rk e 0( / i | s u p p l v * 

/co 

= ^2 dim ^(HsuppnJsuppP//c 

/co 

= 2 (V"* - nk - mk + 1 - 4) 
* = i 

= «m — z — n0 — m0 + k0 

because 

k0 k0 k0 

z = nm - ^ (nkmk - z'k), 2 nk = /i0, 2 m^ = m0. 
A: — 1 * = 1 A: — 1 

Birkhoff [1] has shown that in the case 
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M{'}) = K{/'}) = 1 for/ = 1,2, . . . , n 

the set of extreme doubly stochastic matrices coincides with the set of all 
permutation matrices. This result was generalized to the infinite case by 
Kendal [10] (see also [9], [14] ). For arbitrary measure /x, v such that 

n = card supp JU, m = card supp v 

a matrix (/?..) G ^(/x, *>) is extreme if and only if for every k X k submatrix 
P of the matrix /?.. the number of positive entries of 7 is less than 2/r, 
/c = 2, 3,. . ., min (n, m) (see [11], Proposition 2). 

With each matrix P = (/?..) we associate a graph G(P) as follows. 
Corresponding to row / we have a node xt in G(P) and corresponding to 
column j we have a node v in G(P). There is edge joining JCZ- and>> if and 
only if /?.. > 0. Then a matrix P G $(/x, *>) is extreme if and only if the 
connected components of G(P) are trees (see for example [3], Theorem 
2.1). For generalization to the infinite dimensional case see [7]. 

Note that P is an elementary matrix if and only if the graph G(P) is 
connected. A matrix P can be decomposed into k0 elementary matrices if 
and only if the graph G(P) has k0 connected components. 

Suppose that P G 3)(\I, v) can be decomposed into kQ elementary 
matrices. Then, by Property 2, P G ext <®(/i, v) if and only if 

k0 + nm = n0 + m0 + z 

where 

z = card{/?•:/?• = 0}, n0 = card supp P, m0 = card supp P'. 

3. Extreme positive contractions in the finite dimensional case. 

THEOREM 1. Let 1 < r ^ p < oo û/irf to/ G Lf+(m), g G //+(«) te 
functions with \\f\\ = \\g\\r = 1. Ptert /te se/ 

J ^ = {TeX+{U(m\U(n)y.Tf=g,T*gr-x = fp~\ 

supp 7 = supp/} 

is a weak operator closed face in the positive part of the unit ball of 
&(Lp(m)9 Lr(n)). 

Proof By Proposition 1 in [6] we have ||P|| = 1 if P G s/fg. We claim 
that, if 

T = aT} + (1 - a)T2 G jtffg 

for some 0 < a ^ 1 and P,, P2 G 0>, then P, G ja£g. Indeed, since | |7/ | | = 
H/ll, by the strict convexity of //-space we have Txf = 7 / = g. Similarly 
P*gr_1 = fP~l. Since Pj attains its norm o n / we have supp P, D supp/ 
Since P, ^ P/a, we obtain 

supp P, c supp P = supp/ 
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Therefore T] e j£ and sic is a face. 
Now, let T be weak operator limit of a net Ta e j ^ - Obviously I E ^ . 

Since 

( r / , g - 1 ) = i im(r/g-1> = (g,g-1> = i 

we have Tf = g. Similarly T*gr~] = T7*"1, supp T C s u p p / . Thus 
7 e j ^ - so J*£ is closed in the weak operator topology. 

Note that if T e j ^ then supp T* = supp g. Indeed, 

supp T* = U supp Th. 
h^Lp{m) 

s i n c e r i(suPE/y = °> w e h a v e 

supp Th c supp Tf = supp g. 

Hence supp T* = supp g. We can write 

s/u = { r e Se^LHyn), Lr(n)):Tf = g, T*gr~] = / " " • , 

supp r* = supp g}. 
THEOREM 2. Le/ 1 < r ^ /? < oo, and let f e Lp

+(m), g e L+(w) be 
SWC/Î //z^r 11/11 = ||g|| = 1. Thensér is affinely isomorphic to < (̂JU, *>) w/iere 
JjLt = fpdm, dv = grdn. 

Proof. For every T e j ^ we define an operator 

PT:L°°(ii) -> L(.) 

by 

(1) />A = . 
g 

It is easy to see that PT extends to an operator PT e @(H, V). Conversely, if 
Q e ^(/x, *>) then 

™ - 4 ) 
defines an operator T e J?+(If(m), Lr(n) ). Moreover T e j ^ Indeed, 
since P acts on classes of functions modulo ft-null sets, supp T c supp / . 
We have 

/ (T*v)udm = J vTudn 

= f vg'~rQ(u/f)dp 

= jfp~xQ*(ygx-r)udm. 
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Thus 

7 * v = / ' - , 0 ( v g 1 - ' ) . 

Now it is easy to see that T e s/r 
Therefore T —> PT is an affine bijection from ja£ onto 3){\i, v). 

LEMMA 1. Let T e ^+(lp
n, lp

m) be an elementary operator. Then 

d i m ^ = ( " m - n 0 - m 0 - z + \ , / j m i = l 

^ l«m — z // urn < l 
where 

nQ = card supp T, w0 = card supp T*, z = card{/, :r = 0} 

w/Y/i T = (/„). 

PAW/ Let ||r|| = 1. There exists a unique positive vector/ = (/) 
of norm 1 such that T attains its norm on / and supp T = supp / (see 
Theorem 4 in [6] ). The face generated by T'm^is included inŝ fTr. Hence 
the face generated by T in SP coincides with the face generated by T in 
stfjf. Since the face J ^ ^ is affine isomorphic to ^(/x, v), where 

/<{. /})=/?, v({i)) = (TfYl 

we have 

dim &T = dim ®MP, 

where P is defined by formula (1). Operators in ^(JU, v) c £f(l]
n, l]

m) are 
identified with doubly stochastic matrices. Then to the operator T there 
corresponds a matrix (/;..) such that 

Py = W-^jfj-
We have 

dim g?T = dim g^iPy) 

and (/?..) is an elementary matrix, too (i.e., fc0 from Property 2 is equal to 
1), so 

dim &T = nm — n0 — m0 — z + 1. 

Let | |n i < 1. Now 

dim #T = dim lin{S:| |r ± S\\ < 1, T ± S ^ 0} 

= dim lin{S:r ± S ^ 0}. 

The condition T ± S ^ 0 is equivalent to \sJ ^ tt- for all (/', 7). Thus 
s- = 0 if /•• = 0. Therefore 

dim &T = mn — z. 
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As a consequence of Lemma 1 we obtain: 

THEOREM 3. Let 0 ¥* T G JSP+(/£, /£,), w, m G N, te A» elementary 

operator. Then T is an extreme positive contraction if and only if 

\\T\\ = 1 and nm + 1 = n0 + m0 + z, 

«0 = card supp 7, m0 = card supp T*, z = card{/:•:*•• = 0 } . 

Let 71 = S ^ , where Tk are elementary operators. Then the operators 
T G ext @ if and only if every Tk e ext ̂ . Therefore the above theorem is 
a characterization of the extreme positive contractions in the finite 
dimensional case. 

For an operator T G ^(Lp(m), Lr{n)) we define 

J(T) = {supp/: HT/II = | |n | Il/H } 

(see [6] ). Note that if p = r, one of Z/7 spaces is finite dimensional and 
T e ext ^ , then 

supp T e 7(7) and supp 7* G J(7*). 

Remark. Now we give the value of dim g>T. Let T G «2+(/^, lp
m) be a 

contraction, which can be decomposed into k0 elementary operators, 

T= 2 Tk. 
k=\ 

We may assume that \\Tk\\ - 1 for k = 1,. . . , ks and | |^ | | < 1 for 
k = ks + 1,. . . , k0. Let 

^ = card supp Tk, mk = card supp T* 

and let 

iV = 2 /i^, M = 2 ^ . 

The numbers N and M are the cardinalities of the maximal elements of 
J(T) and 7(7*), respectively. Then 

dim 0>T = nm + ks — N — M — z, 

where 

z = c a r d f / ^ = 0}. 

The above equality follows from the following equalities: 
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ko 

dim 0>T = 2 dim #>Tk 
k=\ 

dim g>Tk = nm — nk — mk + 1 — zk for /c = 1, . . . , ks 

dim @Tk = nm — zk for k = ks + 1,. . ., kQ 

ko 

z = nm — 2 mn ~ zk 
k = \ 

where zk denote the number of null entries in the matrix corresponding 
tor,. 

Example. There exists an extreme positive contraction T such that T 
does not attain its norm on some vector. Let T e £+(/2, I1) be defined 
by 

T(X], x2, x 3 , . . . ) = [~j= xx, -(*, + x2), -(x2 + x3),...j. 

We define 

«Kx) = |W|2 - \\Tx\\2 = \ 
4 

(x] - x2)
2 + (x2 - x3)2 + . 

Obviously <p(.x) ^ 0, hence ||r|| â 1. For every nonzero vector x G I2 

there exists an / such that JC-. ^ -x, + i- Then <p(x) =£ 0 i.e., Tdoes not attain 
its norm on any vector in I2. We claim that I G ex @. Let R G O^(/2, /2) be 
such that 

T± R ^ 0 and | | T ± tf|| ^ 1. 

It follows that 

Rx = (/"nXj, r21x, 4- r22x2,
 r32x2 "*" r33x3' • • • )• 

Since 

2 | | ^ | | 2 +2 ||7x||2 = || (T + *)*ll2 + II (T ~ R)x\\2 ^ 2|W|2, 

we obtain 

(a) ||tfx||2 ^ <p(x) 

and analogously 

(b) ||**x||2 ^ <p*(x) 

where 

«>*(*) = |W|2 - ||r*x|l2 
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We put 

" > - ( j J ^ i > i - i . i ^ . . . . . o , o . . . . ) t 

- ) = M i l i ! - 1 i - ? oo ) 

for n e N. If JC = y w ) in (a) then we obtain 

r?, +(r2 1 + r22)
2 + . . . â j [ ( l - l)2 + . . . 

1 

4rt 

Thus 

"„ = 0 and r ^ _ , - r^ for /c = 2, 3, 

Now we use the inequality (b). By a similar calculation for z(n) we 
obtain 

V2 
r21 and rM = 'k + ljc for k = 2, 3, 

It follows that /? = 0. 
An analogous example in L2[0, 1] is obtained by letting 

V2 

(Tf){t) = 

• / ( / ) 
[0, 1/2) 

L - ^ / ( 2 ? - 1) + ! / ( / ) / e [1/2, 1). 

The operator T is an extreme positive contraction on L2[0, 1] which does 
not attain its norm on any unit vector. Some additional information about 
extreme positive contraction on lp can be found in [8]. 

4. Extreme positive contractions in J?(lp
n, lr

m). 

LEMMA 2. Let T e .£?+(/£, lr
m) where 1 < r < p < oo and n, m £ N. 

Then 

dim mT = 
nm 4- k0 — n0 — m0 — z //*||r|| = 1 

k«m - z i / | | m < 1, 

where 

n0 = card supp T, m0 = card supp 7*, z = card {/••:/,.. = 0 } , 

/c0 is the number of elementary operators into which the operator T can be 
decomposed. 
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Proof. Let | | r | | = 1. Then there exists a unique vector/ = (f.) â 0 such 
that 11/11 = 1, T attains its norm at / a n d supp T = s u p p / Let us put 

By an argument analogous to the one in the proof of Lemma 1 we have 

dim #>T = dim ^, , )( /? / /) 

where JU, v are measures such that 

M u) )=/;,K{0) = w 
and we use Property 2. 

If | | r | | < 1 it is easy to see that dim T = nm — z. 

COROLLARY. Let \ < r < p < oo, n, m e N and 0 ¥= T G 

«£?+(/£, lr
m). Then 7 E e x # if and only if 

\\T\\ = 1 flfld wwi + k0 = n0 + mQ + z, 

«o = card supp 7, w0 = card supp 7*, 2 = card{//;/://7 = 0} 

#W fc0 denote the number of elementary operators into which T can be 
decomposed. 

5. Skeletons in the set of positive contractions. The /:-skeleton of a 
convex set Q is the set of all points x e Q such that dim QX = k. A convex 
compact set Q in Euclidean space is called stable if all the /c-skeletons of Q 
are closed (see [13] ). The set of extreme points is the 0-skeleton. 

Example. Let T e Se(lp
v lp

2\ 1 < p < 00, be defined by 

T(xj, JC2) = [ax] + 6JC2, ~ *2/-

For every 0 ^ a ^ 1 there exists b e [0, 1] such that | | r | | = 1. Let 0 < ax 

< a2< . . . < \ with lim an = 1 and 0 ^ Z>„ ^ 1 be such that 117^ = 1, 
where 

an bn 
0 1/2 

Fix A: e N. Let a, ft ^ 0 be such that Tn attains its norm on (a, /?) G 
/^and || (a, 0)11, = 1. We have 

1 = \Tk^\\P^(ak+]a^bk^PV + Ufif 
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= [(aka + bk$) + (ak + ] - ak)a + (bk + ] - bkW + (\>Y 
Hence b. < bu. Since b„ ^ 0, there exists lim h = 6ft. Moreover 60 = 0 
since otherwise we would have 

1 = limllrjl = 1/2 
> 1. 

The operators T are extreme positive contractions (Theorem 3) and 

- - Ï 1 ° l = 1 ( f 1 °] + \l °1) 
Lo i/2J 2VL0 l j Lo o j / 

lim 7 

is not extreme. 
Using the above example it is not hard to see that the set of extreme 

positive contractions in J?(lp
n, l

p
m)(n, m ^ 2, 1 < p < oo) is not a closed 

set. Therefore the set of positive contractions in &(lp
n, lp

m)(n, m i^ 2, 
1 < p < oo) is not stable. 

PROPOSITION. Let 1 < r < p < oo n, m G N. The set of all positive 
contractions in 3?{lp

n, lr
m) is stable. 

Proof. We need to prove that for every positive contraction T there 
exists € > 0 such that for every S e ^ t h e condition \\S — T\\ < e implies 
dim 0>S = dim g>T (see [13], Theorem 2.3). 

Let | |ni < 1 and 

€ = min(l - \\T\\, {tyity * 0}). 

If \\S - 711 < c then 

IISH < 1 and \stj - ttJ\ < e. 

The numbers of the null entries of S = (s--) are less than or equal to the 
(*„)• number of the null entries of T 

By Lemma 2 we obtain dim #>S = dim &T. 
Let | |ni = 1. We put 

€ = m i n { ^ * 0}. 

If \\S — T\\ < € then null entries of matrix (s-) can be only on that place 
on which are null entries of matrix (f..). If ||S|| < 1 then dim #>S ^ dim giT 
(Lemma 2). 

Now suppose that ||S|| = 1. The number d = nm + k0 ~ nQ — mQ — z 
from Property 2 denote dim $> of operators T and S. Consider now the 
value of d, when we change one of the null entries in an n X m matrix to a 
non zero entry. Let A = (at) be fixed n X m matrix. We put 

n0 = card supp A, m0 = card supp A*, z = card{a/-:a/- = 0}. 
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k0 denotes the number of elementary matrices Ak into which matrix A can 
be decomposed, 

*o 
A=2 Ak. 

k=\ 

Let (ij) be the index of a null entry which we change to a non zero entry. 
We consider the following five cases: 

1°. / G supp Ak, j G supp Al
k. Then n0, m0, k0 do not change, z 

decreases by one. Hence d increases. 
2°. / G supp Ak,j G supp A[ , fcj i=- k2. Then «0, m0 do not change. k0 

decreases by one, since in place of two elementary matrices Ak, Ak there 
appears one elementary matrix. Hence d does not change. 

3°. / G supp AkJ G (supp Al)c. Then «0, A:0 do not change. m0 increases 
by one. Hence d does not change. 

4°. /' G (supp A)c\ j G supp i4^. Then m0, /c0 do not change. A?0 

increases by one. Hence d does not change. 
5°. / G (supp 4 )c,y G (supp Al)c. Then m0, w0, k0 increase by one, since 

there appears a new elementary matrix which possesses only this non zero 
entry. Hence d does not change. 

Therefore we obtain dim @S = dim &T. 
Note that the unit ball of S£(lp

n, lp
n\ n ^ 2, is stable if p = 2 and is not 

stable if /? # 2, 1 < /? < oo (see [5] ). 

6. The case of /'- and 1°° -spaces. Assume that 1 < p < oo. For a matrix 
T we put 

<*(T) = 2 sign|//y| = mn - z. 
ij 

It is not hard to see that the following equalities hold: 
if T G seal t)>then 

dim 0>T = a(T) — N, 

where 

TV = card{7: 2 /„ = 1}. 
/ = i 

If T e SC(l\ l»m), then 
m 

dim / = 2 2 sign /• 

where 
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If T e <£(l\ C ) , then 

dim gT= caid{ (ijy.ty e (0 ,1 )} . 

If T e ^ , /J,), then 

dim T - / ^ ^ - " o i f l l r | | = 1 

where #i0 = card supp T. Note that | | r | | = 117*111,,. If T e i?(/?,, / ^ ) , 
then 

dim^s 7 = 2 2 s ign hi 
7 = 1 / e / 2 

where 

- { < = ? , < < • } . 
If T e ^ ( C /J,), then 

o(T) if uni = 2 ^ < i 
ij 

dim ^I 1 = _ 
a(T) - 1 ifliril = 2 ' * = 1-

\\T\\ < 1 
imi = i 

If T e j^(/^°, /£,), then 

A- T ! a ^ i f 

d i m @T = i : . , 

la(y") - w0 if 

where w0 = card supp T'. Note that 

17111, - ( | ( 2 ',)')' lirii " " 

If T G J ^ ( C C ) , then 

dim ^>7 = a(T) — M, 

where 

M = card k?,'«-•}• 
Remark. Using the above equalities and arguments similar to that which 

we use in Section 5 it is not difficult to check that the set of positive 
contractions is stable for all cases which we consider above. 
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7. Strongly exposed points. A point x0 in a convex set K is called 
exposed if there exists a linear functional £ such that i-(xQ) > £(*) for all 
x e A^\{x0}. An exposed point x0 e K is called strongly exposed if for any 
sequence x/7 G Â  the condition £(.x^) ~^ £C%) implies x^ —* x0. 

THEOREM 4. L ^ 1 < r = p < oo. £tfc/z extreme positive contraction in 
y{lp

n, lr
m) is strongly exposed. 

Proof. In a compact convex set each exposed point is strongly exposed. 
Therefore we need to show that each extreme operator is exposed. 

Let 0 =£ T = (/..) G JS?(/̂ , lr
m) be an extreme positive contraction. 

Then there exists a vector / = ( / ) ^ 0 such that | | / | | = 1 ,7 attains its 
norm a t / a n d supp T = s u p p / We define a functional £ by 

m 

&S) = 2 (Tf)\r~x\Sf\ - 2 ^ (1 - sign t.p, 
i = \ ij 

S = (s-) G ££(lp
n, /^). Suppose that 5 is a positive contraction. Then, by 

Holder s inequality, 

&S) S II^-'JIUIS/II, - 2 ^(1 - sign ry) ^ 1, 

and 

«r> = l|77<'-%||r/n,.= 1. 

Now suppose that £(S) = 1 for some positive contraction S. Then $•• = 0 
if téJ = 0, and 

2 ( W 0 (s/)f- = \\Tfr-\\\sf\\r = i. 

Therefore the zero entries of (s-) and (/• ) coincide and Tf = Sf. Because 
the graph of an extreme doubly stochastic matrix determines this matrix 
(see [3], Theorem 2.1), and positive contractions are related to a doubly 
stochastic matrix (cf. proof of Theorem 2). We obtain S = T, i.e, T is 
exposed by £. 
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