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Abstract

We propose using fully Bayesian Gaussian process emulation (GPE) as a surrogate for expensive computer
experiments of transport infrastructure cut slopes in high-plasticity clay soils that are associated with an increased
risk of failure. Our deterioration experiments simulate the dissipation of excess pore water pressure and seasonal pore
water pressure cycles to determine slope failure time. It is impractical to perform the number of computer simulations
that would be sufficient to make slope stability predictions over a meaningful range of geometries and strength
parameters. Therefore, a GPE is used as an interpolator over a set of optimally spaced simulator runs modeling the
time to slope failure as a function of geometry, strength, and permeability. Bayesian inference and Markov chain
Monte Carlo simulation are used to obtain posterior estimates of the GPE parameters. For the experiments that do not
reach failure within model time of 184 years, the time to failure is stochastically imputed by the Bayesian model. The
trained GPE has the potential to inform infrastructure slope design, management, and maintenance. The reduction in
computational cost compared with the original simulator makes it a highly attractive tool which can be applied to the
different spatio-temporal scales of transport networks.

Impact Statement

A significant part of the U.K. rail and highway infrastructure is built on high-plasticity clay soils which have an
increased risk of failure. We have performed computer simulations of slope deterioration to determine the
relationship between their time to failure and slope geometry, soil strength, and permeability. However, the
simulations are very time-consuming. This can be addressed by using statistical surrogate models which are
trained to be similar to computer simulator output. The surrogate can perform time to failure predictions for
hundreds of slope geometry and strength combinations within hours, compared with years of computational time
using the original simulator. The trained surrogate could be used to inform slope design, management, and
maintenance on different spatio-temporal scales of transport networks.
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1. Introduction

The U.K. transport infrastructure is crucial to the efficient functioning of the economy and society. In
particular, rail transportation is crucial to securing efficient and low-carbon logistical services to
individuals and businesses; road transport will also continue to play a significant role in the future. A
significant part of the U.K. rail infrastructure is nearing 200 years in age while being built on/within high-
plasticity soils that are prone to weathering and deterioration. A section of the U.K. Great Western Main
Line route connecting London to Bristol is one of the busiest and oldest (ca. 170 years post-construction)
rail corridors in the United Kingdom (Skempton, 1996) that has undergone significant deterioration over
its life cycle. Earthworks on the highways suffer from similar problems but to a lesser extent because of
their relatively recent construction dates (1950s onwards) and shallower slope angles and heights. A lack
of understanding of the long-term behavior, performance, and deterioration of infrastructure slopes can
lead to uncontrolled deformations and thus reduced service performance (Briggs et al., 2019), negative
impact on the economy (Power and Abbott, 2019), and, in the worst case, fatalities (Smith, 2020). Here,
we aim to reduce the risks posed to infrastructure systems by better understanding the deterioration of
geological assets.

Deterioration processes have been studied through computer experiments (Stirling et al., 2017; Wang
et al., 2018) but these are computationally expensive and time-consuming (Maatouk and Bay, 2017).
Instead, we use surrogate statistical models, which can be used to approximate computationally burden-
some computer code/simulators, based on a small number of simulator runs at well-selected input
locations (O’Hagan, 2006).

A simulator can be represented by a function f evaluated at input variables x to produce outputs y,
f xð Þ¼ y. The term “emulator” (O’Hagan, 2006) was originally coined to refer to statistical approx-
imations of a simulator which provide a probability distribution of its output. Gaussian processes
(GPs) are one of the most frequently used machine learning (e.g., Seeger, 2004; Rasmussen and
Nickisch, 2010; Su et al., 2016) and emulation techniques because of convenient properties such as
uncertainty quantification (Maatouk and Bay, 2017), conditional normality, and a flexibility in
defining the mean and variance structure of the process. GPs are amenable to statistical inference
using Bayesian methods (O’Hagan, 2006). This allows expert opinion to be easily incorporated, which
is especially useful when modeling sparse data or computer simulators with high computational cost.
Gaussian process emulators (GPEs) have been applied to a variety of problems, including models of
microbial communities (Oyebamiji et al., 2017), generic plant functional types (Kennedy et al., 2006),
cardiac cells (Chang et al., 2015), and stochastic economic dispatch (Hu et al., 2020). Gaussian process
emulation was also used to estimate the probability of soil slope failure in a non-Bayesian setting
(Kang et al., 2015).

The following assumptions are made in order for f xð Þ to be represented by a GPE. It is assumed that
f xð Þ is a smooth, continuous function of its input variables (O’Hagan, 2006) and that outputs of f xð Þ for
any sequence of inputs can be modeled as a multivariate normal distribution with mean and covariance
functions depending on the inputs. Although assuming normality is restrictive to some extent, this is offset
by the great flexibility in the choice of mean and covariance functions (Gramacy, 2020).

According to O’Hagan (2006), an emulator should satisfy two criteria. First, the emulator has no
uncertainty in the output yi ¼ f xið Þ, i¼ 1,2,…,n evaluated at a simulator input xi. Second, elsewhere the
emulator gives a distribution of plausible interpolated values. The first condition is often relaxed in
practice (Gramacy, 2020) by adding τ to the diagonal of the covariance matrix, where τ is a small number
known as the nugget. The latter can account for an uncertainty/error in the simulator output (Cressie,
1993) or improve numerical stability when inverting the covariancematrix of theGPE (Neal, 1997) which
may appear numerically ill-conditioned (Gramacy, 2020). Further discussion on the use of the nugget term
and its effect can be seen in, for example, Andrianakis and Challenor (2012).

In this paper, we use a GPE to approximate computer experiments with 76 geotechnical simulator runs
of infrastructure slope deterioration that would otherwise be infeasibly time-consuming to evaluate. The
experimental results presented here are focused on the slopes in high to very high-plasticity soils, such as
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slopes in the London Clay (Hight et al., 2003). While over 40 model inputs can be varied (FLAC, 2016;
Rouainia et al., 2020; Postill et al., 2021), here we only vary slope geometry (angle and height), soil shear
strength (cohesion and friction angle), and permeability. These variables were selected over the remaining
ones as previous work has demonstrated their importance in assessing the stability of geotechnical
infrastructure (Potts et al., 1997; Ellis andO’Brien, 2007; Rouainia et al., 2020). This allows us to limit the
experimental time to weeks while obtaining an informative training data set. To ensure an optimal
coverage of the parameter space, a Latin hypercube experimental design is used. The simulator runs were
stopped after 184 years of model time, corresponding to the average rail cutting slope age in the London–
Bristol corridor (Skempton, 1996). Slopes that have not failed within this time have their time to failure
(TTF) censored. In such cases, our GPE imputes the uncensored TTF.

The structure of this article is as follows. Section 2 describes the computer experiments and
geotechnical model (GM) that simulate deterioration processes in cut slopes. Section 3 outlines the
background related to the emulator, Bayesian inference, and emulating the censored computer output.
Section 4 presents the results of Markov chain Monte Carlo (MCMC) inference of the GPE posterior
distribution and related sensitivity analysis. Section 5 discusses the TTF predictions for a range of cutting
slope geometry and soil strength scenarios as well as for London–Bristol corridor railway and M4
motorway cuttings. Finally, Section 6 concludes the study and outlines future directions for research.

2. Application: Computer Experiments of Cut Slope Deterioration

2.1. Introduction

The Great Western Main Line (GWML) and the M4 motorway corridors are constructed through a
number of geological formations, a significant proportion of which are comprised of over-consolidated
and high-plasticity clays (Charlesworth, 1984; Skempton, 1996). These materials are prone to seasonal
shrink–swell movements as they wet and dry, along with downslope ratcheting (Take and Bolton, 2011),
both of which contribute to strain softening (Rouainia et al., 2020; Postill et al., 2021) reducing their
strength over time. With the GWML and M4 earthworks that are of ca. 175 and 65 years of age,
respectively, the soils from which they are formed will have been subject to a varying number of these
seasonal cycles and undergone an indeterminate magnitude of deterioration from their initial state. Here,
we focus on replicating these deterioration processes in high-plasticity, over-consolidated clays, partic-
ularly London Clay (Hight et al., 2003; Dixon et al., 2019; Rouainia et al., 2020).

The time-dependent stability of cut slopes has been the subject of previous numerical modeling work
(Potts et al., 1997; Tsiampousi et al., 2017; Summersgill et al., 2018). Capturing the influence of weather
and seasonal cycles, as well as the strain-softening behavior is crucial to the accurate modeling of over-
consolidated high-plasticity clays.

2.2. The GM

This subsection is a summary of the key mechanisms and properties that influence the slope deterioration
behavior in the GM used in our simulator. For more detail, see Rouainia et al. (2020) and Postill et al.
(2021).

The GM is implemented using the Fast Lagrangian Analysis of Continua with Two-Phase Flow
software (FLAC-TP; FLAC, 2016), making use of a strain-softening Mohr–Coulomb constitutive model
(FLAC, 2016). The parameters adopted in the modeling have been informed by the strain-softening
behavior from previous modeling studies in over-consolidated clays (Potts et al., 1997; Ellis and O’Brien,
2007; Summersgill et al., 2018) as well as laboratory and field data (Bromhead and Dixon, 1986). The
impact of weather and climate on cut slopes is modeled through a coupled fluid-mechanical approach
(Rouainia et al., 2020) utilizing a nonlocal strain-softening model (Summersgill et al., 2018; Postill et al.,
2021). This allows a detailed assessment of weather-driven deterioration.

The soil is modeled as a porous medium with variable saturation and depth-dependent saturated
permeability (Postill et al., 2021). A two-phase flow approach is adopted where the pore phases are
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assumed to be air and water and are treated as immiscible fluids with differing density and viscosity. Fluid
flow isDarcian, wherebywater and air flow velocity is a function of the respective pore fluid pressures and
the relative permeability of the soil. The latter, in turn, is a function of the degree of water and air
saturation, derived using the van Genuchten–Maulem relation (van Genuchten, 1980).

The constitutive model is nonlinear elastic where the bulk and shear moduli behave as a function of the
mean effective stress. These parameters were adopted from prior modeling studies (Potts et al., 1997;
Jurečič et al., 2013) and the stiffness behavior is validated in Postill et al. (2021). The shear strength of
high-plasticity clays undergoes a reduction as shear strain increases during yielding. This post-failure
strength decrease is replicated in the model based on a reduction in the Mohr–Coulomb shear strength
parameters (effective peak cohesion c0 and friction angle ϕ0) as a function of increasing plastic shear
strains. More details about the GM can be found in Rouainia et al. (2020) and Postill et al. (2021).

2.2.1. Input variables
The five input variables in this study are the slope angle cotangent cotθs and height hs (converted to a
single geometry variable—see Supplementary Figure S1) derived from light detection and ranging
(LiDAR) survey data provided by project stakeholders (Mott MacDonald and Network Rail), the peak
shear strength parameters (c0p and ϕ0p) before the material has undergone any strength reduction derived
from previous laboratory data and modeling studies (Apted, 1977; Ellis and O’Brien, 2007), and the
reference coefficient of permeability of the soil at 1 m depth with respect to water (kw1 ) derived from
field measurements (Dixon et al., 2019). For more information on the adopted GM and the values
adopted for the remaining input parameters, see FLAC (2016), Rouainia et al. (2020), and Postill et al.
(2021).

Table 1 summarizes ranges of the parameters used in computer simulations which were selected based
on previous studies (Rouainia et al., 2020; Postill et al., 2021) and expert opinion from partners in the
ACHILLES project. During emulation, permeability was scaled by 108 to bring the explanatory variables
to a common scale. Supplementary Figure S1 illustrates that we have chosen geometries that are
concentrated within the 4–12 m height and 1–4 angle cotangent ranges. This corresponds to the most
common geometries in the London–Bristol corridor (Network Rail, 2017).

2.2.2. Model run time
The duration of the geotechnical modeling runs varied from approximately 75 min to 10 days. The latter
depends on a number of factors, including the total number of elements in the model, model geometry,
permeability, and the adopted strength parameters. For example, a model with the longest run time would
correspond to a slope that is shallow enough to be stable for the full potential duration of the boundary time
series and which includes a high near surface permeability yielding small flow time step. Conversely, the
highest/steepest slope models tended to fail very quickly after modeled excavation.

3. Background

Here we review the methods which will be used for our GPE. Section 3.1 reviews GPEs, based on Bastos
andO’Hagan (2009), Section 3.2 introduces the censored emulatormodel, Section 3.3 describes Bayesian
inference and prediction for GPEs, Section 3.4 outlines our sensitivity analysis methods and Section 3.5
reviews Latin hypercube experimental design that we adopted for this study.

Table 1. Material and geometry input variables used in the computer experiments.

Property hs (m) cotθs ϕ0p (
∘) c0p (kPa) kw1 (m/s)

Range 4,20½ � 0:5,7:5½ � 18:5,25½ � 3,10½ � 1:45�10�9,2:5�10�8
� �
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3.1. Gaussian process emulator

A GP can be understood as an infinite-dimensional multivariate normal distribution for functions
(Bastos and O’Hagan, 2009). A GPE η �ð Þ is a GP conditioned on experimental simulations that can be
used to predict simulator output under other conditions, and quantify its uncertainty. Assume η �ð Þ
takes a generic input x¼ x1,x2,…,xp

� �
where xi ∈ χi⊂ℝ. A scalar-valued GP is fully defined by its

mean and covariance functions m and V , η �ð Þ∣β,σ2,θ,τ�GP m �ð Þ,V �, �ð Þð Þ (Bastos and O’Hagan,
2009).

Given no prior knowledge about the structure of m :ℝp !ℝ, it is often assumed to be a linear
transformation of the input variables, that is,m xð Þ¼ h xð ÞTβ, where h �ð Þ :ℝp !ℝq is a function mapping
x to a vector of linear regressors and β¼ β1,β2,…,βq

� �
. To include a constant term in m xð Þ, the first

element of h xð Þ can be set to 1. We assume the covariance function V :ℝp�ℝp !ℝ has the form
V x,x0ð Þ ¼ σ2 C x,x0,θð Þþ τI x,x0ð Þ½ �, where σ is a scale parameter, C x,x0,θð Þ is a correlation function, τ is
the nugget (Andrianakis and Challenor, 2012), and I x,x0ð Þ is an indicator function for the event x¼ x0.

In principle, C can be any function that is smooth, continuous, and positive semidefinite. We consider

two popular correlation functions. The first is theGaussian functionCG x,x0,θð Þ¼ exp �Pp
i¼1

xi�x0ið Þ2
θ2i

� �
,

where θ¼ θ1,θ2,…,θp
� �

is a vector of correlation lengths. The correlation lengths represent the “radius of
association” and larger θ values typically lead to smoother/flatter GPs. Second, we consider the Matérn
correlation family (Rasmussen and Williams, 2006):

CM x,x0,θ,νð Þ¼
Yp
i¼1

1

Γ νð Þ2ν�1

ffiffiffiffiffi
2ν

p
∣xi� x0i∣
θi

	 
ν

Kν

ffiffiffiffiffi
2ν

p
∣xi� x0i∣
θi

	 

, (1)

where Kν is the modified Bessel function of second kind of order ν.
As GPs are closed under conditioning, it is possible to derive an analytical expression for the GPE

conditioned on a set of simulator runs. Assume a (finite) collection of n observed experimental outputs
y¼ η x1ð Þ,η x2ð Þ,…,η xnð Þð Þ performed on the inputs x1,x2,…,xn, which comprise the training data. We
assume no repeated inputs, so xi ¼ x j if and only if i¼ j. The n-vector y follows a multivariate normal
distribution, y∣β,σ2,θ,τ�N Hxβ,σ2Σxð Þ, where Hx is a matrix of regressors whose ith row is h xið Þ and
Σx i,jð Þ ¼C xi,x j,θ

� �þ τI i, jð Þ. Using standard rules for conditioning on a subset of observations (Gramacy,
2020),

η �ð Þ∣y,β,σ2,θ,τ�GP m∗ �ð Þ,V∗ �, �ð Þð Þ,where
m∗ xð Þ¼ h xð ÞTβþ t xð ÞTΣ�1

x y�Hxβð Þ, V∗ x,x0ð Þ ¼ σ2 C x,x0,θð Þ� t xð ÞTΣ�1
x t x0ð Þ� �

,
(2)

where t xð Þ¼ C x,x1,θð Þ,C x,x2,θð Þ,…,C x,xn,θð Þð ÞT is a column vector of correlations between the
(generic) emulator input x and training inputs x1,x2,…,xn.

3.2. Censored computer output

Censoring is a common phenomenon where only partial information is available on some observations,
that is, it is only known that they are outside a specified range. AGPE can be conditioned on both censored
and uncensored observations. Previous applications of censored GPs include hydrologic system response
(Wani et al., 2017) and pyroclastic volcano flow (Kyzyurova, 2017).

Censored values can be estimated together with β,σ2,θ and τ using data augmentation during MCMC
sampling. For our application, suppose n experiments at the set of inputs xo ¼ xo,1,xo,2,…,xo,nð Þ produced
uncensored observations yo. Also, suppose nc experiments evaluated at the set of inputs xc ¼
xc,1,…,xc,ncð Þ produced censored observations. Here, this means that the experiment reached the end
of model time of 184 years without reaching the ultimate failure state. Let yc be the corresponding vector
of (hypothetical) uncensored times to failure. We then aim to infer yc together with the parameters β,σ2,θ
and τ. Define a new process ηc �ð Þ where (Kyzyurova, 2017):
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ηc xð Þ¼ η xð Þ, if η xð Þ< c,

c otherwise

�
(3)

where η �ð Þ has been defined earlier. The distribution of ηc xð Þ at design points x¼ xc,xoð Þ is then
(Kyzyurova, 2017):

η xoð Þ∣β,σ2,θ,τ�N Hoβ,σ2Σo
� �

, ηc xcð Þ∣η xoð Þ,β,σ2,θ,τ�TN c,∞ð Þ mc,Vcð Þ,
mc ¼HcβþΣc,oΣ

�1
o η xoð Þ�Hoβð Þ andVc ¼ σ2 Σc�Σc,oΣ

�1
o Σo,c

� �
,

(4)

where TN c,∞ð Þ denotes a normal distribution truncated below c. In (4),Ho and Σo are equivalent toHx and
Σx as defined as in Section 3.1, here using the inputs xo. Similarly,Hc is a matrix of regressors associated
with xc, that is, its ith row is h xc,ið Þ, and Σc i,jð Þ ¼C xc,i,xc,j,θ

� �þ τI i, jð Þ. Also, Σc,x i,jð Þ ¼C xc,i,xo,j,θ
� �

and
Σo,c ¼ΣT

c,o. To obtain truncated multivariate normal samples from Equation (4) (used later in a Gibbs
sampler), we used the “TruncatedNormal” package in R (Botev and Belzile, 2020). The package uses a
minimax tiltingmethod for exact i.i.d. data simulation from the truncatedmultivariate normal distribution.
More details can be found in Botev (2017).

3.3. Bayesian inference and prediction

Inference for the GPE η �ð Þ and its parameters β,σ2,θ and τ above could be obtained by maximum
likelihood using numerical optimization. While this easily produces point estimates, it is hard to take into
account all sources of uncertainty (O’Hagan, 2006). Instead, we follow a Bayesian approach which can
naturally incorporate parameter uncertainty, using MCMC (Brooks et al., 2010) for inference. We used a
Metropolis-within-Gibbs sampler whereby β,σ2,θ and τ were updated using Metropolis–Hastings steps
and yc was updated using a Gibbs step using Equation (4). Section 4.3 has more details regarding our
application.

Parameters inferred usingMCMC can then be used for predicting the simulator output over a grid of
inputs. Using a Bayesian predictive distribution (BPD) accounts for parameter uncertainty. One can
sample from the marginal BPD for input v¼ v1,v2,…,vp

� �
as follows. First, randomly select an

iteration of the MCMC output and use the corresponding parameters. Second, use Equation (2) to
sample from the GPE for input v given the selected parameters (taking x¼ xo,xcð Þ and y¼ yo,ycð Þ
where yc is part of the MCMC output). Repeated sampling produces a Monte Carlo approximation to
the marginal BPD at this location. This was used to produce Figure 3 and Supplementary Figures S2,
S3, and S7.

3.4. Sensitivity analysis

It is often important to quantify the effect of different input variables on the response of a GPE. This can be
obtained through sensitivity analysis (SA) (O’Hagan, 2006; Farah and Kottas, 2014). Sensitivity indices
explain the proportion of variation in the mean response of the emulator because of an individual or a
combination of input variable(s) (Gramacy, 2020).

Assume that U represents the input density. For independent input variables xi, U xð Þ¼Qp
i¼1ui xið Þ,

where ui are the xi marginal densities. The simplest form of sensitivity indices are the main effects
(ME) (Gramacy, 2020) of an explanatory variable xi, i¼ 1,2,…,p:

me xið Þ�EU�i ηjxif g¼
Z Z

�χ�i

ηp ηjx1,x2,…,xp
� � �u�i x�ið Þdx�idη: (5)

Here, u�j ¼
Q

i6¼jui xið Þ, and χ�i and x�i are defined similarly (Gramacy, 2020). The formalism (5) deter-
ministically varies xi while averaging over the input densities U�i, assuming that all inputs are uncorre-
lated. In other words, me xið Þ is the expected value of the response given xi while averaging over x�i. The
distributions of the main effects are calculated by calculating the expectation in Equation (5) at every
MCMC sample of the η �ð Þ posterior distributions.

e12-6 Aleksandra Svalova et al.

https://doi.org/10.1017/dce.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.14


In our application, we also perform a fully Bayesian SA using first-order and total sensitivity
indices following the method in Farah and Kottas (2014) and Gramacy (2020): the derivation of the
following formalisms can be found therein. The first-order sensitivity index S1,i, i¼ 1,2,…,p evaluates
the fractional contribution of the xi input variable to the variance of the output (Farah and Kottas,
2014):

S1,i ¼
E E2 ηjxi½ �� ��E2 η½ �

Var ηð Þ : (6)

In other words, S1:i is the response sensitivity to main variable effects (Gramacy, 2020). The total
sensitivity index (Homma and Saltelli, 1996; Farah and Kottas, 2014) ST ,i is a measure of the entire
influence attributable to a given variable (Gramacy, 2020):

ST ,i ¼ 1�E E2 ηjx�i½ ��E2 η½ �� �
Var ηð Þ : (7)

A large difference between the distributions of S1,i and ST ,i would indicate that the interactions between
the xi and the remaining input variables are important to explaining the output variation (Farah andKottas,
2014). The posterior distributions of the sensitivity indices can be sampled by computing the expectations
in Equations (6) and (7) at every MCMC sample of the emulator parameters (Farah and Kottas, 2014).

3.5. Experimental design

The reliability of the emulator very strongly depends on the experimental design (Busby, 2009), that is, the
choice of input variables. Space-filling designs aim to spread out the input variables and produce a
diversity of data once responses have been observed (Gramacy, 2020). We focus on a particular space-
filling approach: Latin hypercube designs (LHD). Here each of the p input variables are divided into N
equally sized intervals and one point is selected randomly per interval in each dimension (Santner, 2018;
Gramacy, 2020).

Although LHDs are space-filling in each of the input coordinates, however, they are not necessarily
space filling in the p-dimensional hypercube space (Dette and Pepelyshev, 2021). An alternative approach
is to search for a design optimizing the maximin criterion: maximizing the minimum distance between
pairs of points (Santner, 2018; Gramacy, 2020). We used a hybrid maximin LHD approach in which five
LHDs are generated, and the optimal maximin choice is selected. This was implemented using the
package “pyDOE” (Baudin et al., 2012) in Python.

4. Application Methods

4.1. Model, priors, and design

We deployed a GP emulator for GM experiments of rail cut slope stability. We emulated the output
variable of time to failure (TTF), that is, the time to reaching the slope’s ultimate failure state. As input
variables, we used slope height, angle cotangent, (effective) peak cohesion, (effective) peak friction angle,
and permeability (hydraulic conductivity). In our earlier notation, these variables are, respectively,
hs, cotθs,c0p,ϕ

0
p,k

w
1 . However, for ease of reference, we refer to these as x1,x2,…,x5 below.

We used LHD to create 76 vectors of input variables to use as the training suite of the GM
experiments. This was based on a four-dimensional design, with the first dimension corresponding
to a combination of height and angle cotangent which we refer to as geometry; see Supplementary
Figure S1 for details. Based on exploratory analysis, detailed in Section 4.2, we used the full linear form
of the regressor function h xð Þ, including an intercept, h xð Þ¼ 1,x1,x2,…,x5ð Þ. Thus, our mean function
was m xð Þ¼ β0þ

P5
i¼1βixi.

The prior distributions for β,θ and σ2 were chosen to reflect beliefs of our geotechnical and statistical
experts about η �ð Þ:
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β0 �N 0,102
� �

, βi �N 0,42
� �

, σ2 � IGa 10,100ð Þ,
θi �Exp 0:2ð Þ, τ� IGa 3,1ð Þ, i¼ 1,2,…,5:

Also note that it is important to select informative priors for the covariance function parameters, otherwise
identifiability issues are common (see, e.g., Zhang, 2004).

4.2. Modeling and tuning choices

4.2.1. Alternative regressor choices
Wecompared our full linear choice of h xð Þ to other choices, in particular, h xð Þ¼ 0 (zeromean) and h xð Þ¼ 1
(constant mean). Note that in the geostatistical literature, the full linear and constant mean forms of h xð Þ
correspond to universal and simple forms of kriging (Oliver andWebster, 2015). Supplementary Figure S2
shows results comparing choices of h xð Þ. It illustrates that the full linear form of h xð Þ appears most
appropriate, as the resulting TTF contours are near-linear and are consistent with the literature (Ellis and
O’Brien, 2007;Gao et al., 2015).Using only a constantmean term for h xð Þ led to nonmonotonic dependence
of TTF on slope angle, which was deemed to be unrealistic. The full linear form also allows both the mean
and the covariance functions to contribute to explaining variation in the relationship between the input and
response, as opposed to the covariance function only when using a constant or zero mean.

4.2.2. Transformation of response and choice of kernel
Various transformations of the TTF were considered to avoid predicting negative values and to minimize
prediction errors. The discussion and illustration of their predictive properties for a set of validation runs
are shown in section “Output transformation validation” and Supplementary Figure S3. Supplementary
Figure S3 illustrates the goodness of predictions for the different transformations by plotting them against
the observed times to failure. Square root transformation appears to give the highest agreement with the
observed TTFs, illustrated by the lowest mean square error. Additionally, the CM x,x0,θ,5=2ð Þ (abbrevi-
ated as CM,5=2) correlation function gave the optimal R2 and MSE. The cube root transformation also
appears plausible. However, it over-predicts the TTF in its upper distribution tail. Therefore, the square
root transformation of TTF and CM,5=2 was used for this study.

4.3. MCMC details

The regressor coefficients β0 and β4 were updated jointly using a multivariate normal proposal distribution
centered at the current chain value. The variance matrix of the proposal distribution was set to approximate
the posterior correlation that was observed in a pilot run. Component-wise updates were used for β1,β2,β3,
and β5, using an adaptive proposal variance following the procedure by Xiang and Neal (2014). The
parameters σ2,τ and θi, i¼ 1,2,…,5 were updated using a log-normal proposal distribution centered at the
natural logarithm of the current chain value. The proposal variances of σ2,θi and τ were also tuned using the
above method. The censored observations η xcð Þ were updated using a Gibbs step following Equation (4).

The chain burn-in and variance adaptive period was 105 iterations which were discarded and the
scheme was then run for a further 2�105 iterations. Supplementary Figure S4 illustrates the trace plots of
theMCMCdraws. Goodmixing can be observed for all parameters, especially the censored observations.
Supplementary Figure S5 illustrates effective sample sizes (ESSs) for the three correlation functions,
which is a diagnostic for posterior autocorrelation (Brooks et al., 2010). All of the ESSs are above 3,000
with censored observations having the highest values.

5. Application Results

5.1. Parameter inference

Figure 1 illustrates the posterior densities of the GPE parameters, all of which appear unimodal. Posterior
density plots for all of the censored values can be found in Supplementary Figure S6. Formost parameters,
the posterior variance is significantly reduced compared with the prior distribution. This is especially the
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case for most β coefficients and the censored values. Most of the posterior densities of the censored
observations (Supplementary Figure S6) also show a decrease in variance compared with that of their
prior distributions. The larger posterior variances can be observed for the observations with larger
posterior means, for example, yc,1 and yc,3, as those estimates have the largest distance to the training
data. Conversely, the uncertainty around the posterior estimations of, for example, yc,53 and yc,68 is very
small. There is relatively little info about θ in the data; however, their posterior distributions are relatively
close to their priors compared with those of β.

Supplementary Figure S7 illustrates the posterior marginal distributions of the TTF versus each of the
input variables. Themajority of the data is captured in the 95% confidence interval bands.While all of the
relations have a trend, slope angle cotangent appears to have the strongest relation with the TTF.

5.2. Sensitivity analysis

Figure 2a illustrates a main effects sensitivity analysis of the input variables, which are equivalent to the
mean trends in Supplementary Figure S7. All of the main effects are monotonic, and the most influential
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Figure 1. Density plots of the posterior draws of the GPE model. Density plots of the yc posterior
distributions are in Supplementary Figure S6.
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variable appears to be slope angle cotangent, in this case because of the steepest gradient. Cohesion and
friction angle have very similar main effects as they soften at the same rate as a function of plastic strain
(e.g., Labuz and Zang, 2012).

Figure 2b illustrates the first-order and total sensitivity index distributions. Again, angle cotangent has
the greatest contribution to the variability in TTF, followed by height. Cohesion, friction angle, and
permeability explain a similar proportion of the TTF variability. All of the input variables have similar
distributions of the first-order and total sensitivity indices, indicating an absence of strong interaction
effects (Farah and Kottas, 2014).

5.3. TTF posterior predictive maps

Plots of TTF versus slope geometry can be very informative in illustrating deterioration given fixed soil
strength and permeability. Plots of TTF versus slope geometry allow infrastructure owners and designers
to estimate likely design life of geotechnical infrastructure where previously this was not possible.
Figure 3 illustrates the distribution of TTF for slope height and angle in four soil strength scenarios
(cohesion, friction angle, and permeability values are shown in the legend). All of the negative predicted
values were set to zero. Supplementary Figure S8 illustrates equivalent maps of posterior predictive
variance. Low- and high-strength soils reflect the range of shear strengths for over-consolidated high-
plasticity clays based on laboratory and filed data for London Clay strength and permeability (Bromhead
and Dixon, 1986; Potts et al., 1997).

The change in TTF is approximately linear with respect to geometry, and appears most sensitive to
changes in the slope angle. This is consistent with our sensitivity analysis and failure profiles reported
earlier in the literature (Ellis and O’Brien, 2007; Gao et al., 2015). For the low-strength soil example, a
significant proportion of slope geometries fail in less than 10 years. Fortunately, the scenario is unlikely be
representative of average in situ peak strength conditions for the whole soil mass (e.g., Kovacevic et al.,
2007), especially where vegetation roots can influence soil strength at the near surface (Woodman et al.,
2020). For London Clay examples, the TTF contours are consistent with the literature (Ellis and O’Brien,
2007; Gao et al., 2015). The plots in the lower panel of Figure 3 illustrating TTF for the cuttings in the
London–Bristol corridor assumes strength and permeability in agreement with published results (Hight
et al., 2003; Dixon et al., 2019). Note that the training data do not cover the upper ranges of slope height
and angle (i.e., upper triangle of the plots), thus the TTF predictions made in that region are an
extrapolation.

Supplementary Figure S8 illustrates that the posterior variance is minimized for London Clay-type
soils which are away from the boundaries of our Latin Hypercube design. Therefore, extrapolating further
away from the experimental data leads to a rapid increase in posterior variance which is undesirable. In
conditions of low data availability, it would be advisable to avoid construction of slopes which are too
steep or too shallow. Also, it would be advisable to perform another numerical experiment and emulation
for materials which are toward or outside the boundary of our design, for example, medium-plasticity
clays.

5.3.1. Comparison to previous work
Our results in Figure 3 are consistent with those of the Global Stability and Resilience Appraisal (GSRA)
performed by Mott Macdonald and Network Rail (Network Rail, 2017; Abbott, 2018). They derived
contours of vulnerability to deep-seated rotational failure for soils with different plasticities. The bottom
plots illustrate the cutting slope geometry data in the London–Bristol corridor that are built in London
Clay-type soil (data provided by Mott MacDonald and Network Rail). The bottom-right plot in Figure 3
overlays the vulnerability contours for cuttings in cohesive, high-plasticity soils over the TTF predictions
for cuttings in the London–Bristol corridor. The high GSRA failure potential (FP)corresponds to TTFs of
50 years or less. The low FP corresponds to TTFs of 150 years and above. At low slope heights (< 8m),
the vulnerability contours are determined by a combination of height and angle. For other heights, they are
almost entirely determined by the angle. In our predictions, the relation between TTF and slope geometry
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is more linear, although the gradient is steeper in the slope angle direction, which is consistent with our
sensitivity analysis.

6. Conclusion

We have used GP emulation to produce a surrogate for the cutting slope stability GM. The high
computational expense of the latter renders it impractical to evaluate for the number of experiments that
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is required for understanding the input–output relationships. Latin hypercube sampling was used to
design an optimally space-filling experiment to train the emulator. Bayesian inference and MCMC
simulation were used to estimate the GPE parameters. For a number of experiments, the ultimate failure
state was not achieved during the 184 years of experimental time. For such models, the TTF was
unobserved and was later also estimated using MCMC. The trained GPE was then used to produce
TTF maps illustrating the relationship between slope geometry and FP. The computational expense
involved in producing such inference is on the order of hours, which makes the GPE a highly attractive
tool that can be used in real-time for rapid characterization of slope stability and deterioration. For
instance, every plot in Figure 3 has 900 points and takes 3–4 hr to produce once the emulator has been
trained, and its computation could be easily parallelized if necessary. Conversely, 900 runs of the GM
simulator would take years of CPU time to evaluate, thus would be unfeasible. As the TTF maps can be
provided for any combination of input parameters, the emulator has an outstanding computational
advantage over the GM simulator and has a great potential to inform infrastructure slope design and
maintenance in engineering practice. Future work in developing the emulator includes incorporating
weather and climate change variables, for example, discrete extreme rainfall events along with the
changing patterns and magnitude of seasonal weather thought likely to occur because of a changing
future climate.
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