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383 Motivic integration and its interactions with model theory and non-Archimedean geometry I, R.

CLUCKERS, J. NICAISE & J. SEBAG (eds)
384 Motivic integration and its interactions with model theory and non-Archimedean geometry II, R.

CLUCKERS, J. NICAISE & J. SEBAG (eds)
385 Entropy of hidden Markov processes and connections to dynamical systems, B. MARCUS, K.

PETERSEN & T. WEISSMAN (eds)
386 Independence-friendly logic, A.L. MANN, G. SANDU & M. SEVENSTER
387 Groups St Andrews 2009 in Bath I, C.M. CAMPBELL et al (eds)
388 Groups St Andrews 2009 in Bath II, C.M. CAMPBELL et al (eds)
389 Random fields on the sphere, D. MARINUCCI & G. PECCATI
390 Localization in periodic potentials, D.E. PELINOVSKY
391 Fusion systems in algebra and topology, M. ASCHBACHER, R. KESSAR & B. OLIVER
392 Surveys in combinatorics 2011, R. CHAPMAN (ed)
393 Non-abelian fundamental groups and Iwasawa theory, J. COATES et al (eds)
394 Variational problems in differential geometry, R. BIELAWSKI, K. HOUSTON & M. SPEIGHT (eds)
395 How groups grow, A. MANN
396 Arithmetic differential operators over the p-adic integers, C.C. RALPH & S.R. SIMANCA
397 Hyperbolic geometry and applications in quantum chaos and cosmology, J. BOLTE & F. STEINER

(eds)
398 Mathematical models in contact mechanics, M. SOFONEA & A. MATEI
399 Circuit double cover of graphs, C.-Q. ZHANG
400 Dense sphere packings: a blueprint for formal proofs, T. HALES
401 A double Hall algebra approach to affine quantum Schur–Weyl theory, B. DENG, J. DU & Q. FU
402 Mathematical aspects of fluid mechanics, J.C. ROBINSON, J.L. RODRIGO & W. SADOWSKI (eds)
403 Foundations of computational mathematics, Budapest 2011, F. CUCKER, T. KRICK, A. PINKUS &

A. SZANTO (eds)
404 Operator methods for boundary value problems, S. HASSI, H.S.V. DE SNOO & F.H. SZAFRANIEC

(eds)
405 Torsors, étale homotopy and applications to rational points, A.N. SKOROBOGATOV (ed)
406 Appalachian set theory, J. CUMMINGS & E. SCHIMMERLING (eds)
407 The maximal subgroups of the low-dimensional finite classical groups, J.N. BRAY, D.F. HOLT & C.M.

RONEY-DOUGAL
408 Complexity science: the Warwick master’s course, R. BALL, V. KOLOKOLTSOV & R.S. MACKAY

(eds)
409 Surveys in combinatorics 2013, S.R. BLACKBURN, S. GERKE & M. WILDON (eds)
410 Representation theory and harmonic analysis of wreath products of finite groups, T. CECCHERINI-

SILBERSTEIN, F. SCARABOTTI & F. TOLLI
411 Moduli spaces, L. BRAMBILA-PAZ, O. GARCÍA-PRADA, P. NEWSTEAD & R.P. THOMAS (eds)
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424 Surveys in combinatorics 2015, A. CZUMAJ et al (eds)
425 Geometry, topology and dynamics in negative curvature, C.S. ARAVINDA, F.T. FARRELL & J.-F.

LAFONT (eds)
426 Lectures on the theory of water waves, T. BRIDGES, M. GROVES & D. NICHOLLS (eds)
427 Recent advances in Hodge theory, M. KERR & G. PEARLSTEIN (eds)

https://doi.org/10.1017/9781009396233.002 Published online by Cambridge University Press

http://www.cambridge.org/mathematics
https://doi.org/10.1017/9781009396233.002
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Preface

The Japan–U.S. Mathematics Institute (JAMI) is a series of workshops and
conferences that aim to further cooperation in mathematical research through
broadly based programs in mathematics. It was founded in 1998 and has been
running a series of yearly topical programs at Johns Hopkins University. The
2022 edition of JAMI was devoted to Higher Dimensional Algebraic Geom-
etry and dedicated to Prof. Vyacheslav V. Shokurov on the occasion of his
70th birthday. The conference was delayed due to the global pandemic and
finally took place on May 3–8, 2022. Fittingly, the conference was held in
Krieger Hall, Johns Hopkins University, where Shokhurov has spent most of
his mathematical career.

The first two days of this conference consisted of online lectures by
Osamu Fujino (Kyoto University), Antonella Grassi (University of Bolo-
gna), Chen Jiang (Fudan University), and Yuri Prokhorov (Steklov Math-
ematical Institute), whereas the main event was held in Krieger Hall and
consisted of 20 talks by Harold Blum (University of Utah), Paolo Cascini
(Imperial College London), Ivan Cheltsov (Edinburgh University), Kristin
deVleming (University of Massachusetts Amherst), Angela Gibney (Univer-
sity of Pennsylvania), Shihoko Ishii (Tokyo University), Yujiro Kawamata
(Tokyo University), János Kollár (Princeton University), Lena Ji (University
of Michigan), Jihao Liu (Northwestern University), Yuchen Liu (Northwestern
University), James McKernan (UCSD), Joaquı́n Moraga (Princeton Univer-
sity), Yusuke Nakamura (Tokyo University), Miles Reid (Warwick University),
Jihun Park (Pohang University), Giulia Saccá (Columbia University), Vyach-
eslav Shokurov (Johns Hopkins University), Claire Voisin (Centre National de
la Recherche Scientifique), and Ziquan Zhuang (MIT).

The conference focused on topics closely related to Shokurov’s scientific
contribution, including Fano varieties, the theory of complements, bounded-
ness of varieties, birational classification of algebraic varieties in characteristic

xv
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xvi Preface

zero and p > 0, and K-stability. Despite difficulties caused by the coronavirus
pandemic, many top national and international experts were able to participate.

The conference was preceded by a lecture series “Classification Theory of
Algebraic Varieties” by Caucher Birkar (Cambridge University), which was
delivered online on February 16, 18, and 19, 2021.

This volume is dedicated to V. V. Shokurov on the occasion of his 70th
birthday.
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1

Birational Geometry of Algebraic Varieties
and Shokurov’s Work

Chistopher Hacon

Vyacheslav Vladimirovich Shokurov attended the Faculty of Mechanics and
Mathematics of Moscow State University between 1967 and 1972 and obtained
his PhD from Moscow State University in 1975. His research advisor was Yuri
I. Manin. After receiving his PhD, Shokurov started work at the Yaroslavl’
Pedagogical Institute (1982–90); he visited the Institute for Advanced Studies
in Princeton (1990–91) and has been at Johns Hopkins University since 1991.

Throughout his career, Shokurov has advised nine PhD students: Terutake
Abe, Florin Ambro, Caucher Birkar, Ivan Cheltsov, Yifei Chen, Sung Rak
Choi, Joseph Cutrone, Nicholas Marshburn, and Jihun Park.

1.1 Early Works

Among Shokurov’s first results in birational geometry [29, 30] were posi-
tive answers to two important conjectures of Iskovskikh about Fano varieties.
Recall that X is Fano if −KX is ample and l is a straight line if it is a rational
curve such that −KX · l = 1.

Theorem 1.1.1 (General elephant conjecture) If X is a non-singular Fano
threefold, then a general divisor S ∈ | − KX | is a smooth K3 surface.

Theorem 1.1.2 (Lines on Fano solids) Every non-singular Fano three-fold X
of index 1 contains a straight line except for X ∼= P1

× P2.

While these results have a classical flavor, they are also closely related to
important questions and techniques in the minimal model program to which
Shokurov would later make many fundamental contributions.

C. H. was partially supported by the NSF research Grants Numbers DMS-1952522, and DMS-
2301374.
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In 1983, Shokurov published the paper “Prym varieties: theory and applica-
tions” [31]. In this paper he performs a detailed study of Beauville’s general-
ized Prym varieties and classifies generalized Prym varieties that are isomor-
phic (as principally polarized varieties) to a product of Jacobians of smooth
curves. One of the main applications of this result is a proof of Iskovskikh’s
celebrated rationality criterion for a standard conic bundle under the additional
assumption that the base of the bundle is a minimal rational surface.

1.2 Early Contributions to the Minimal Model Program

The minimal model program for threefolds was established in the 1980s. This
program aims to generalize to arbitrary dimension the classification of surfaces
obtained by the Italian school of algebraic geometry in the early 1900s. The
first breakthroughs were obtained by S. Mori, who introduced the cone theorem
and proved the existence of flips for terminal threefolds [23, 24]. Y. Kawamata
then proved the contraction of negative extremal rays for terminal threefolds
[16], and the cone theorem for klt pairs in any dimension [17]. This latest
result was in part inspired by Shokurov’s preprint on nonvanishing theorems.
Shokurov’s non-vanishing theorem appears in [32].

Theorem 1.2.1 (Non-vanishing theorem) Let X be a smooth variety, A a Q-
divisor with simple normal crossings such that dAe ≥ 0, D a nef Cartier divisor
such that aD+A−KX is big for some a ∈ Q>0, then H0(X ,OX (bD+dAe)) > 0
for all b� 0.

This is one of Shokurov’s best-known results and it is absolutely essential
in the higher dimensional minimal model program as it is a key ingredient
in the proof of the cone theorem, and the existence of divisorial and flipping
contractions, and has a slew of other important applications. For example, it
implies that the index of the canonical divisor of a Fano variety is at most
dimX + 1 [32].

In 1992, Shokurov published his most-cited paper [33], where he proves the
existence of three-dimensional log flips for klt pairs (X , B) (see also [20], a
Summer seminar at the University of Utah (1991) where Shokurov’s ideas are
discussed in detail. See Chapters 16–22). This paper is a tour de force that not
only completes one of the last steps of the threefold minimal model program
but also introduces many new techniques as well as important results such as
Shokurov’s connectedness theorem, special termination, n-complements, limit-
ing flips, (sub-)adjunction to divisors, and results on the inversion of adjunction
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that hold in arbitrary dimension. The termination of three-dimensional log flips
was proven by Kawamata [18].

This completed the main objectives of the three-dimensional minimal model
program and established a clear program in higher dimensions (cf. [28]).
The main obstructions to completing this program were the existence and
termination of flips and the abundance conjecture.

Conjecture 1.2.2 (Existence of flips) Let (X , B) be a klt (or log canonical)
pair and f : X → Z be a flipping contraction, then the flip f + : X+ → Z
exists.

Recall that a flipping contraction f : X → Z is a small birational morphism
(i.e., an isomorphism in codimension 1) such that X is Q-factorial, the rel-
ative Picard number is ρ(X/Z) = 1, and −(KX + B) is ample over Z. The
corresponding flip f + : X+ → Z is a small birational morphism such that
ρ(X+/Z) = 1, and KX+ +B+ is ample over Z. The flip exists if and only if the
relative canonical ring

R(KX + B/Z) := ⊕m≥0f∗OX (m(KX + B))

is a finitely generated sheaf of OZ-algebras. In this case, X+ = ProjR(KX +

B/Z).

Conjecture 1.2.3 (Termination of flips) There does not exist an infinite
sequence of flips (X1, B1) 99K (X2, B2) 99K (X3, B3) 99K . . ., where each
φi : (Xi, Bi) 99K (Xi+1, Bi+1 = φi∗Bi) is a flip of log canonical pairs.

If Conjectures 1.2.2 and 1.2.3 hold, then for any lc pair (X , B), there is a
sequence of flips and divisorial contractions (X , B) = (X1, B1) 99K . . . 99K
(Xn, Bn) =: (X ′, B′) such that

(1) if KX+B is not pseudo-effective, then there is a Mori fiber space (X ′, B′)→
Z such that dim(X ′) > dim(Z), ρ(X ′/Z) = 1, and −(KX ′ + B′) is ample
over Z, and

(2) if KX + B is pseudo-effective, then (X ′, B′) is a minimal model, that is,
KX ′ + B′ is nef.

In case (2), if KX ′ + B′ is also big, then Theorem 1.2.1 implies that KX ′ + B′

is semiample. The following conjecture (which holds in dimension 3 by [19])
predicts that this always holds (even if KX ′ + B′ is not big).

https://doi.org/10.1017/9781009396233.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009396233.002


4 Chistopher Hacon

Conjecture 1.2.4 (Abundance conjecture) If (X , B) is a log canonical pair
such that KX +B is nef, then KX +B is semiample so that |m(KX +B)| is base
point free for m > 0 sufficiently divisible.

Shokurov introduced many new ideas toward an inductive proof in all
dimensions for the existence and termination of flips. In this approach, log
canonical (or klt) pairs with R-coefficients play a fundamental role (as opposed
to varieties with terminal singularities and no boundary divisors). Many of
these ideas went on to be the backbone of recent celebrated progress in the
minimal model program. The emphasis on log pairs is essential for proofs by
induction; so much so that proving results for log pairs in dimension d is some-
times thought of being equivalent in difficulty and importance to proving the
same result for varieties in dimension d + 1

2 .

1.3 Existence of Higher Dimensional Flips

The first substantial progress toward the higher dimensional minimal model
program (dim X ≥ 4) was achieved in 2001, when Shokurov introduced a pro-
gram for proving the existence of flips in any dimension, and he announced the
proof of the existence of flips in dimension 4. This spurred an intense amount
of activity, including two special programs: one at the Steklov Mathematical
Institute of the Russian Academy of Sciences (in December 2001) and one at
the Isaac Newton Institute in Cambridge (in 2002). Both of these programs
produced volumes, including a proof of the existence of four-fold flips; the
first one (published in Proc. Steklov Inst. Math. in 2003) followed Shokurov’s
ideas closely and included [36], while the second one, edited by A. Corti [7],
includes a more substantial reworking of Shokurov’s ideas and features the
paper [10], which shows that the minimal model program for d-dimensional klt
pairs implies the existence of flips for klt pairs in dimension d + 1. This result
would be the key new ingredient in the groundbreaking papers [5, 11], where
the induction is completed and it is shown that klt flips exist in all dimensions
and moreover minimal models exist for any klt pair (X , B) such that KX + B
is pseudo-effective and either B is big or KX + B is big, and that Mori fiber
spaces exist for any klt pair (X , B) such that KX +B is not pseudo-effective. In
particular, this implies the finite generation of the canonical ring

R(KX + B) = ⊕m≥0H0(X ,OX (m(KX + B)))

for any klt pair (X , B), a result which was also proven independently by Y.-T.
Siu [41].
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It should be emphasized that many of the ideas in [5, 11] heavily rely on
previous work of Shokurov (especially [33]), and Siu’s work on deformation
invariance of plurigenera ([40]).

(1) Following ideas of Shokurov (see also [7, section 4]), the existence of flips
is reduced to the existence of pl-flips. In this case, we have a plt pair (X , S+
B) and a flipping contraction f : X → Z. We may assume that Z is affine.
By adjunction, KS + BS := (KX + S + B)|S is klt and

RS(X , S + B) = Im (R(KX + S + B)→ R(KS + BS))

is the restricted algebra. Shokurov shows that R(KX+S+B) is finitely gen-
erated if and only if the restricted algebra RS(X , S+B) is finitely generated
(see also [7, §2]).

(2) Using results of Siu on the extension of pluricanonical forms, it is shown
in [11] that the restricted algebra RS(X , S + B) is isomorphic to the log
canonical ring R(KS+2) of a klt pair (S,2), where2 is an R-divisor such
that 0 ≤ 2 ≤ BS (and in particular (S,2) is klt).

(3) It is then necessary to deduce that 2 is a Q-divisor and hence R(KS +2)
is finitely generated by induction on the dimension. This is achieved using
ideas inspired by Shokurov’s use of diophantine approximation arguments
(see also [7, §2]) and by the theory of Shokurov polytopes [15, §3].

(4) Finally, there is the issue of termination of relevant flips. This step makes
use of Shokurov’s special termination arguments as well as Shokurov
polytopes.

Finally, it should be noted that some key arguments of [11] have their origin in
[9], which in turn is motivated by a conjecture of Shokurov [35].

1.4 Termination of Flips

Termination of three-fold terminal flips was proved by Shokurov in [32], where
the notion of difficulty is introduced. After the proof of termination of three-
fold flips for log canonical pairs (which follows from [18] in the klt case, and
in the general lc case by applying Shokurov’s special termination arguments),
it is natural to wonder if termination of flips holds for four-folds and indeed for
higher dimensional varieties. The traditional approach is to seek an invariant
(often called the difficulty) that improves (strictly increases) after each flip and
then show that the possible values of this invariant satisfy the ascending chain
condition or ACC so that there can be no infinite increasing sequence of these
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invariants, and hence the sequence of flips must terminate. Versions of this
approach were successful for canonical four-folds [8] and pseudo-effective (or
anti-effective) log canonical four-folds [1, 22, 38]. In particular, [38] shows
the termination of ordered flips (flips with scaling) for pseudo-effective log
canonical four-folds (note that ordered termination is known in any dimension
for klt pairs such that KX +B or B is big [5]; however, the non-big case is quite
subtle even in dimension 4 and currently out of reach in dimension ≥ 5).

Another inspiring idea of Shokurov is the idea that two fundamental con-
jectures on minimal log discrepancies (namely, Shokurov’s conjecture on the
acc for mld’s and Ambro’s conjecture on the semicontinuity of mld’s; see Sec-
tions 2.4.1 and 2.4.2) imply the termination of flips [37]. This is a beautiful
argument that reduces a global phenomenon to questions of a local (or even
formal) nature. Even though both conjectures have proven to be extremely dif-
ficult (they are only understood in very low dimension or in special cases such
as for toric varieties), they have inspired a remarkable body of work and are
currently active areas of research.

In more precise terms, recall that a set I ⊂R satisfies the ascending chain
condition or acc (resp. the descending chain condition or dcc) if every non-
decreasing (resp. non-increasing) sequence of elements of I is eventually
constant. Let (X , B) be a log pair, so that X is normal, B=

∑
biBi is an effec-

tive R-divisor, and KX + B is R-Cartier. For any resolution f : X ′ → X we
define KX ′ +B′ = f ∗(KX +B), and for any divisor E on X ′ we let a(X , B; E) =
1−multE(B′) be the log discrepancy of (X , B) along E. The minimal log dicrep-
ancy mld(X ) is the infimum of the log discrepancies a(X , B; E), where E runs
over all divisors over X , and for any closed point x ∈ X we let mld(X , B; x) be
the minimal log discrepancy at x, which is the infimum of the log discrepancies
a(X , B; E), where E runs over all divisors over X with center x.

Conjecture 1.4.1 (Acc for minimal log discrepancies [38]) Fix d ∈ N and a
dcc set I ⊂ [0, 1], then the set of all minimal log discrepancies

{mld(X , B)| dim X = d, (X , B) a pair s.t. coeff (B) ∈ I}

satisfies the acc.

Conjecture 1.4.2 (Semicontinuity for mld’s [2, Conjecture 2.4]) Let (X , B) be
a log pair, then the function x → mld(X , B; x) is lower semicontinuous on
closed points x ∈ X .

This conjecture reflects the fact that points with bigger log discrepancies
are expected to be less singular and we expect the singularities to be worse
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at special points. Therefore, the main result of [38] can be rephrased as
follows.

Theorem 1.4.3 Conjectures 1.4.1 and 1.4.2 imply Conjecture 1.2.3.

In [6], a closely related result is proven, namely that termination of flips
(Conjecture 1.2.3) for d+1-dimensional varieties follows from the log minimal
model program, the ascending chain condition for minimal log discrepancies,
and the BAB (or Borisov–Alekseev–Borisov) conjecture for varieties in dimen-
sion d. Notice that much of the log minimal model program is known to hold
by [5] and the BAB conjecture is known by [4].

Another closely related conjecture of Shokurov, which has played an impor-
tant role in higher dimensional birational geometry, is the acc for log canonical
thresholds. If (X , B) is a log canonical pair and M ≥ 0 is an R-Cartier divisor,
then the log canonical threshold (or lct) of M with respect to (X , B) is

lct(X , B; M) := sup{t ∈ R|(X , B+ tM) is log canonical}.

Let I ⊂ [0, 1] be a dcc set and J a dcc set or positive real numbers, then

LCTd(I , J ) = {lct(X , B; M)|(X , B) is lc, dim X = d, B ∈ I , M ∈ J},

where B ∈ I , and M ∈ J means that the coefficients of B are in I and the
coefficients of M are in J . The following result conjectured in [33] is known
as Skokhurov’s acc for lcts conjecture.

Theorem 1.4.4 ([12]) Fix d = dim X and dcc sets I ⊂ [0, 1] and J ⊂ R>0.
Then the set LCTd(I , J ) satisfies the acc.

Birkar and Shokurov show that a stronger variant of this conjecture (for a-lc
thresholds) is implied by the acc for mld’s [6] and building on this result J. Liu
has shown that for a ∈ [0, 1) the acc for mld’s is in fact equivalent to the acc
for a-lc thresholds [21]. For other closely related questions we refer the reader
to [20, 18.14].

1.5 Complements

Another important theory developed by Shokurov is the theory of comple-
ments which addresses the problem of finding a well-behaved divisor in the
anticanonical (or in a multiple of the anticanonical) linear system. This theory
made one of its first appearances in Iskovskikh’s work on Fano three-folds [14]
(as already mentioned (Theorem 1.1.1), the main question of [14], related to
the smoothness of a general anticanonical divisor, is answered by Shokurov in
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[29]). These ideas were further refined and successfully applied by Kawamata,
Mori, Shokurov, and others. Shokurov used it in his proof of the existence
of three-fold flips [33]. The case of surfaces is worked out in detail in [34]
(see also [25]). If (X , B) is a log Fano pair so that (X , B) has klt (lc or ε-lc)
singularities and −(KX + B) is ample, then one knows that there is a divisor
1 ∼R −(KX + B) such that KX + B + 1 is also klt (lc or ε-lc); however, it
is often important to “control the coefficients” of the divisor in the new pair
(X , B + 1). To this end, Shokurov introduces the following precise definition
(see [33] and [25, 4.1.3]).

Definition 1.5.1 Let (X , S+B) be a subpair such that B and S have no common
components, S is a reduced divisor, and bBc ≤ 0. Then an n-complement is
given by a Q-divisor D+ such that

(1) n(KX + D+) ∼ 0 (and in particular, nD+ is integral divisor);
(2) KX + D+ is lc;
(3) nD+ ≥ nS + b(n+ 1)Bc.

The difficulty here is of course to control the integer n and the singularities of
(X , D+) (e.g., if (X , S+B) is ε-klt, then also (X , D+) should be ε-klt). Shokurov
conjectures that bounded complements exist (meaning that one can control the
index n as well as the singularities of (X , D+) in terms of the coefficients of B
and the singularities of (X , S+B)). Important results in this direction were then
proved by Shokurov and Prokhorov in [26, 27]. Later on, in his breakthrough
work on the boundedness of Fano varieties ([3, 4]), Birkar proved an important
case of Shokurov’s conjecture on bounded complements.

Theorem 1.5.2 (Boundedness of complements [3, Theorem 1.7]) Fix d ∈ N
and I ⊂ [0, 1] ∩ Q, a finite set, then there exists n ∈ N such that if (X , B) is a
projective d-dimensional lc pair of Fano type, coeff(B) ∈ I and −(KX + B) is
nef, then there is an n-complement KX + B+ of KX + B such that B+ ≥ B.

There remain many interesting open questions about complements and
there is active ongoing research in this area, including recent results by
Han-Liu-Shokurov [13] and Shokurov [39].

In conclusion, it is a pleasure to congratulate Prof. Vyacheslav
Vladimirovich Shokurov on a long and inspiring career. His many results and
conjectures have been, and continue to be, a true inspiration to many of us
working in birational algebraic geometry.
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