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LIMITATION THEOREMS FOR
SOME METHODS OF SUMMABILITY

MINORU TANAKA

The object of this paper is to establish limitation theorems for

the ordinary and also absolute generalized Norlund methods which

include some known results as special cases. We shall give a

different proof of the recent result of S. Narang (Proa. Indian

Acad. Scl. Sect. A 88 (1979), 115-123), and we get a

generalization of the result of G. Das (J. London Math. Soe. 41

(1966), 685-692) which states the summability factors of the

absolute Norlund methods.

1. Introduction

The object of this paper is to establish limitation theorems for the

(N, p, a) and |N, p, ot| methods which include some known results as

special cases. In Theorem 2 we shall give a different proof of a recent

result of Narang ([6], Theorem l). It is worth noting that in this theorem

we cannot omit the condition (i) : A(p * a) S O , which was not mentioned

in [6]. A counterexample is the case (N, p, a) = (E, A) ; in fact we may

not apply the theorem to (E, X) . Theorem 3 is a generalization of the

result of Das ([/], Theorem 1) which states the summability factors of the

absolute Norlund methods.

Let (p.} and {ot } be given sequences of real numbers such that

n

(P * « ) n = Z Pn_v% * °
 for a11 " 2 0 ,

Received 30 April I98O.

373

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700006699
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 00:02:27, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700006699
https://www.cambridge.org/core


374 Minoru Tanaka

and let Y a be a given infinite series with its partial sum s . If

t •*• 8 as n •* °° , where
n

(l.D

then the series Y a

write Y, a ~ S(N> P>

of bounded variation

the series

to be summable (N, p, ot) to s and we

(see D a s CZ3)- A l s o i f t h e sequence is

n n+1

to be summable |N, p, a\ and we write

Y a ^ |N, p, ot| . The method (N, p, a) reduces to the Korlund method

(N, p) when a = 1 , to the method (N, a) when p = 1 , and to the

method (E, A) when pn = (6A)
n/n! and o^ = &n/nl (\ > 0, & > 0) (see

Hardy [3], p. 179).

Throughout this paper we use the following notations. If pfi + 0 , we

define for \p } a sequence \c } such that

(1.2) (a * p)n = <5n 0 (Kronecker delta).

We sha l l wri te {pj € M i f Pn > 0 , Pn+1/pn $ Pn+2
/Pn+1 ~ X f o r a 1 1

n > 0 . We denote A ^ = % - a ^ , V«n = «n - a ^ ,

' A ceiP^'i'&-l~ le t ter K is an absolute

constant, not necessarily the same at each occurrence.

A a a v ~ a + l v a n d a - l

2. The main theorems

Concerning t h e (N, p, a.) method, we have

THEOREM 1. Let {p } and {a } be such that {p } € M and a > 0

for all n . Then Y a = S(N> P•> a ) implies s = s + o[(p * a) /a ) as
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L i m i t a t i o n t h e o r e m s f o r s u m m a b i l i t y 375

n -*• °° .

For the |N , p , a | method, we have

THEOREM 2. Let {p } and {a } be two positive sequences and

suppose

(i) A(p * a) S O for all n ,

(Hi) {a /(p * a) } is of bounded variation.

Then, for every series £ a € |N, p, a| with partial sum s , the

sequence | s a / ( p * a ) } is of bounded variation.

When a = 1 for all n , the conditions (i) and (Hi) are always

satisfied, and we obtain a result of Kishore [4]. Also when p = 1 for

all n , the conditions (i) and (ii) hold and we get a result of Mohanty

([5], Lemma 3)•

THEOREM 3. Let {p } and {a } be such that

n
(ii) y |V(p * a) I 5 K\(p * a) I ,

U=0 V

oo V

(Hi) £ 11_ (a /a ) | £ | e | 5 # /or every v > 0 .
n=V+l n n~ y=0 n-li

a necessary and sufficient condition for £ e a to be absolutely

convergent whenever £ a € |N, p, a| is

(2.1) e^ = o(an/(p * a)J .

When a = 1 for all n , condition (iii) is always satisfied and we

obtain a theorem of Das ([?], Theorem l). On the other hand when p = 1

for all n , condition (i) is satisfied and (iii) is equivalent to
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376 M i noru Tanaka

(Hi) ' c ^ / a ^ = 0(1) ,

so we have

COROLLARY. Let {a } be such that (Hi)' holds and

n
Y la I = o[(l * a) ) . Then a necessary and sufficient condition for
v=0 n

Y e o- to be absolutely convergent whenever Y a € |N, a| is

e = ofa /(I * a) ) .
n K n n'

3. Proof of the theorems

We need the following lemmas.

LEMMA 1 (Das [ 2 ] ) . Let a / 0 for all n . If j ^ ' 0 1 ) - is

defined by ( l . l ) , then

n
s = ( l /a j Y G (p * a) if ' for all n .

V=0

LEMMA 2 (Kulza; see [3], Theorem 22). If {p } € M , then

00

cQ > 0 , c SO (« > l) and Y ° - ° •
n n=0 n

LEMMA 3 (see Peyerimhoff [ 7 ] , Theorem I I , l i t ) . Let A = [a ) be

n
normal and regular, and let o = Y a ,s Suppose that M (A) hold:

n . ,_n nv v js_

m
I a

V=0 " v S v
S K • sup | a I for m •$ n .

Then Y a = s(A) implies s = s + o[l/a ) .

LEMMA 4 (Das [/], Lemma 2). If y = Y d x^ for all' n where

{d y } is a double sequence, then a necessary and sufficient condition that

the series Y \h I ^s convergent whenever Y \x | is convergent is that
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n=0
\d | S K for each v > 0 .

nv

3 . 1 . Proof of Theorem 1. By Lemma 3 i t i s suff ic ient to show that

m
I k> <\/(p * a>Mk

V=0 n-v v
- sup for m "S n .

Now by Lenma 2 we see c > 0 , e SO for n 2 1 . So we have

n-v-y v

n-u

V=0

= 6

^ 0 ,

since m - p + 1 > 1 . Hence we get

e -

V p

P=0
frw\/(p * a U (ex^,,/aJ(p * a),n-v v

m
f(P * a) / ( p * a) ) y P

= (l/(p * a) J I p I (p
V=0 p=0

= (l/(p * a)B) l^ pn_vav

2 1 for m 2 n .

But this result is a necessary and sufficient condition for M ((N,

since by Lemma 1 the inverse matrix of (N, p, a) is [a' ) where

a) c
P v-p

p, a))

anv = Cn-v(p * (« - v)» = ° (« < Y) (see Peyerimhoff [7], p. 31).

Therefore we have the conclusion.

3.2. Proof of Theorem 2. By Abel's transformation it follows from

Lemma 1 that
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n - 1

s a =
nn

(At ] Y o ( p * a ) + t y e ( p * a )
*• \> _ n n-\x V n _ n-\i V

n-1

and also

rc+1
Afs a 1 = V [a -o )(p * a ) t

n n v=n n " v n + 1 ~ v v v

n r v + l -i
= y (At l i e (p * a) , - y e , V(p * a) \ + t , (a - a ,^ >• vJ I n-v v+l n+l-u ul n+1^ n n+1

v + l

v=o v >• " " v V i " y=0

Hence we have

A(s a / ( p * a) 1K n n' ^ 'nJ

= (A(l/(p * a)n ) )snan + (l/(p * a)n+1)A(snan)

I VM
(P *

C n n v i
x J (At le (p * a) , - y (At 1 Y a , V(p * a) +t (a -a H

= (A(l/(P * a) )) Y (At ) I a (p * a)
v=o y=o M

a g - (an/(p *

Therefore we get
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oo

n=0
(A(l/(p *

= J± w 2 w 3 +

Then by (i/l and (ii),

a)

*

*

n-i

V=C

oo

oo

n=0

(1

(1

oo

n=0

+ J5 '

(At

/(P

/(P

v«
say

J
* (

•

V
I

y=c

* } *

e

j j

a),

n

n
I (

v=0

* a)

« » )

oo

y

cn-v

V

IK

( P .

/(P *

a ) X H l

V(p * a)
-y y

00 n - 1 v
J 2 E (A(l/(p * a) )) E |A6 I E k |(p * a)

n=0 v=0 y=0 n~v ^

= E | A * I E ( A ( l / ( P * a ) J J E | c \(p * a )
v=0 n=v+l

v=0

00

- £ E
V=0

I At , | ( p * a ) . I k.l
y=o

A(l/(p * a)nJ

'v+l

L>=0 n=v 'v+l

v=o
E

n=0
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00 \)

S X ' I |At |(l/(p * a) ] I V(p *aj
v=0 u=0

5 K - I I At I < » .
V=0

Also we have by (Hi), and by our assumption,

n=0

oo

J < X • X I A*n I < °° -

Therefore i t follows that

OO

y |A(s a /(p * a) ) I < oo .
n=0

Thus the proof of our theorem is completed.

3.3. Proof of Theorem 3 . Sufficiency. By Lemma 1 and by Abel's

transformation we have, for n > 1 ,

+ * I (vnK_,/
aJ)(p * a\

y=0 n v n \
n-l v
y At y fv [a /a ])(P * a) ,
v=0 y=0

since (1.2) implies

2̂  (V [o /a JJ(p * a) = (l/a J (e * p * a) -
M=0

 M y n n

= 0 .

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700006699
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 00:02:27, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972700006699
https://www.cambridge.org/core


Limitation theorems for summabi I ity 38

Moreover using Abel's transformation again,

v v

I (v,
U=0

and it follows that

n=l n n n=i

OO

* I
n=l

n-l
At { }

V

n-l

say.

Now, by (2.1) with (ii), we get

*a)

* a),

* a),

j 0

y=o
* a ) J

n1
n
I

for

)

n

|V(p

> V

* a)

•

-1

a)

»\

Hence we have by (Hi) ,
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n - l
E < T le I I |A* | | v ( l / a ) | I |e * a)

v=0

v=o

n=v+l

n=v+l

y=0

E |V(P * o) .
^=0

7
y=0

< K T I At | 7 l l - fa / a )
v=0 n=v+l y=0 n-]i'

s « • E 1 ^ 1 < °° •
V=0

Also by ft/1 and since (Hi) implies a /a _ = 0(l) , we get

^o - I |e I l l /a I v=0 p=0

v=0
y le | l l / a n

n=v+l n " - 1

* a)J
v=0 M=0

V

E
u=0

n-\i

|V(p *

|V(p

a)ul
u

* a)

- 1

rn=v+l
|a / a I |e
' n n - l M n-v

E I A * I E l c I
v=0 n=v+l " -1

| A *
v=0

Similarly we have

n - l

^ * E | A * , | | ( p *
v=0

SK I | A* I < - .
V=0

E |V(P * a)

- l
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Hence i t follows that £ | e a | < °° , and the proof of the sufficiency
n=0

part is completed.

Necessity. From (3.1) we have, for n i l ,

n
e a = y At d
n n ^ v n v

v=0

where

% 1 (v
n(

cn-y/aJ)(p *°°u (v ~n) '

0 (v > n) .

Now, by Lemma h, a necessary condition for £ |e a | to be convergent

00

whenever £ a is summable |N, p, a| is that £ |<2 | 5 X . Hence
n n=\H-l n'v

it is necessary that d = 0(l) as V ->•«>. But

v

v+i,v ~ v+l *- *• v

= -e fe /a J (p * a)
v+l1- o v+i; r v+l

Therefore the condition (2.1) is necessary.

This completes the proof of Theorem 3.
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