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LIMITATION THEOREMS FOR
SOME METHODS OF SUMMABILITY

MiNORU TANAKA

The object of this paper is to establish limitation theorems for
the ordinary and also absolute generalized Norlund methods which
include some known results as special cases. We shall give a
different proof of the recent result of S. Narang (Proc. Indian
Acad. Sci. Sect. A 88 (1979), 115-123), and we get a
generalization of the result of G. Das (J. London Math. Soc. 41
(1966), 685-692) which states the summability factors of the

absolute Norlund methods.

1. Introduction

The object of this paper is to establish limitation theorems for the
(N, p, ) and |N, p, a| methods which include some known results as
special cases. In Theorem 2 we shall give a different proof of a recent
result of Narang ([6], Theorem 1). Tt is worth noting that in this theorem

we cannot omit the condition (Z) : A(p * a)n < 0 , which was not mentioned

in [6]. A counterexample is the case (N, p, a) = (E, A) ; in fact we may
not apply the theorem to (E, A) . Theorem 3 is a generalization of the
result of Das ([7], Theorem 1) which states the summability factors of the
absolute Norlund methods.

Let {pﬁ} and {an} be given sequences of real numbers such that

n
(p * a)n %g Py #0 forall n=0,
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and let z:an be a given infinite series with its partial sum sn . If
t *8 as n > < , where
n
VA 5
-— > =
(1.1) b = e (/= OL)n) VZ% PpviBy

then the series Z:an is said to be summable (N, p, @) to s and we

write Y a, = s(N, p, o) (see Das [2]). Also if the sequence {ti’a} is

of bounded variation

P20 P20 ¢
n n+l ?

)

the series z:an is said to be summable IN, 2 al and we write

Y a, € |, p, a| . The method (N, p, @) reduces to the Norlund method

(N, p) when a =1, to the method (N, o) when p, =1, and to the

method (E, A) when p, = (60" /n1 ana @ = &/mt (A >0, 8 >0) (see
Hardy [3], p. 179).
Throughout this paper we use the following notations. If po #0 , we

define for {pn} a sequernce {cn} such that

(1.2) (c * p)n = dn,o (Kronecker delta).
s : > < <
We shall write {pn} €M if p, >0, pn+l/pn < pn+2/pn+1 =1 for all
> = - = -
n Z 0 . We denote Aan a -a .. Van a, -a, .
A = - = . . .
nan’v an,v an+l,v and a_; 0 A capital letter K 1is an absolute

constant, not necessarily the same at each occurrence.

2. The main theorems

Concerning the (N, p, &) method, we have

THEOREM 1. Let {pn} and {an} be such that {pn} €M and a >0

for all n . Then Z:an = s(N, p, @) implies 8, =8+ o((p * a)n/an] as
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For the |N, 2 a| method, we have
THEQREM 2. [Let {pn} and {an} be two positive sequences and
suppose

(i) A(p = a)n <0 for all n,
(i) L le | <=,
(iii) {an/(p * a)n} is of bounded variation.
Then, for every series Y a, € N, p, a| with partial sum s, » the
sequence {snan/(p * u)n} is of bounded variation.

When o = 1 for all =n , the conditions (Z) and (4¢Z7) are always
satisfied, and we obtain a result of Kishore [4]. Also when p, = 1 for

all 7 , the conditions (7) and (iZ) hold and we get a result of Mohanty
(L51, Lemma 3).

THEOREM 3. Let {pn} and {an} be such that

(2 Yle,| <=,

n
(i) Y |V(p = a)u| < K|(p * a)n| ,

u=0
w v
(iii) Y |1-(o /o l e | =K for every v=o0.
n=v+l ( o] n-l) uzg | -}

Then a necessary and sufficient condition for Y €4, to be absolutely
convergent whenever 3 a €[N, p,a| is
(2.1) e, =0 /(p+a))

When a = 1 for all n , condition (Z27) is always satisfied and we
obtain a theorem of Das ([1], Theorem 1). On the other hand when p. =1
n

for all n , condition (Z) is satisfied and (ZZ7Z) is equivalent to
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(ii1)! OLn/an_l = 0(1) ,

so we have

COROLLARY. et {a } be such that (iii)' holds and

X ol = o{(1 = a)n) . Then a necessary and sufficient condition for
v=0

Y €,a, to be absolutely convergent whenever Zan € |v, a| is

€, = O[an/(l * a)n] .

3. Proof of the theorems

We need the following lemmas.
LEMMA 1 (Das [2]). Let a #0 forall n. If {tﬁ“} is
defined by (1.1), then
& a
s, = (l/an) \go cn_\)(p * a)vt{j’ for all n .
LEMMA 2 (Kulza; see [3], Theorem 22)., If {pn} €M, then

(2]
<< > >
O>O,cn_0(n_l) and ngocn_o.

LEMMA 3 (see Peyerimhoff [7], Theorem II, 14). Let A = (an\)] be

n
normal and regular, and let o_= ) a_ s . Suppose that M (A) hold:
N A K

<K-+sup |lo| for m=n.
Usm

’%as

v=0 MV V

Then ), a, = s(4) implies s, =8+ o(l/ann)

[+
LEMMA 4 (Das [1], Lemma 2). If y = Y d x_  for all n where
no,Zp nvv
{dm)} is a double sequence, then a necessary and sufficient condition that
the series ), Iynl is convergent whenever Y. ]xnl 18 convergent is that
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d =K for each vzO0.
nv
n=0

3.1. Proof of Theorem 1. By Lemma 3 it is sufficient to show that

m
Y (p. o /(p *a) ) = sup |tp | for m=sn.
n-v Vv
V=0
Now by Lemma 2 we see co >0, cn =0 for n=21. BSo we have
Z p = 2 P ¢
V=i n-v V-u v=0 n-V=-i v
ni? n-u
= P, y_1Sy ~ z: P c
v=0 7VTHV vemoper  VTHY
n=-H
=9, o~ p °v
-\, Na—pl n-v-u
=0,
since m- U4+ 1 21 . Hence we get
m
T (o, /e * @) (o, /a) (e + @)
_O \)_
T ) 3
= (p *a) /(p *a) ) P .C
u=0 u n v=u 7n-v v-Uu
( ) T, 3
= (1/(p * a) Y p Y (p*a)e
n ,oop PV 11=0 Y Vv-u

*
(/e a),) gpnvv
=1 for m=n.
But this result is a necessary and sufficient condition for Ml((N, P, a))

since by Lemma 1 the inverse matrix of (N, p, o) is (aév) where

aév = cn-v(p * a)v/an (nzv), =0 (n <y) (see Peyerimhoff [7], p. 31).

Therefore we have the conclusion.

3.2. Proof of Theorem 2. By Abel's transformation it follows from
Lemma 1 that
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T s P b
s o = At e, p*a) e (p*a)
nn v=0 Vv n- T’L u=0 n-y u
n-1

SRS AN IR

and also
n+l

A(snan) - (cn-v'cnﬂ-v)(p * o),

v=0

v+1
Z (at ){ NV (p * a)\,+1 - UZ:O cn+l_uV(p * a)u} * n+l( n n+l] ’

Hence we have
A(snan/(p * a)n)
@@/t *w ))sa + (1/(p » a),.)a(s,0)

-1
- /e =T (n) z e, (P * @) 4t 0 } ¢ (/% a) )
n n i
AL Oedeate o - £ 00 nyite v e o)
n-1 \Y
= (a(a/(p + a)n)) \Eo (At\)) u§0 e, (P * @),
n
* (1/(p * 0L)n+l) ZO (At\))cn-\)(p * 0‘)\)+l
V=
n V
- (l/(p * oL)7'z+l) \)Z:O (At\)) U§O cn+l—uv(p * a)u

A(antn/(p * 0L)n) - (an/(p * 0L)rz+l) (Atn)

Therefore we get
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F 18,000+ 0,1
© n-1 Y
< go (A(x/(p = a)n)) \Eo (Atv) ugo cn_u(p * Ot)u

n
‘¥ |0/t ) £ 08)e, o+ o]

oo n \Y
- @/ + a),,,) DRI 3 @,
o Tl @)1 T (o )00,
= Jl + J2 + J3 + J)4 + J5 , say.
Then by (Z) and (4%),
© n-1 v
5= 3 0e @) T lel e, le e,
(o] (o] \)
- Tl T (e ra)) ¥ e, I ),
<Y laglp ) |T e S aQs )
5 i [£ 1] £, s -0

(o]
<k T ol <o,
v=0

o n
J_ < !
2= Lo, Bl e e,
= At
vég | vl né% [l/(p * a)n+l)lcn-vl(p * 0L)\)+l
= Y ot ¥ ole | <,
v=o Y n=0 "
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J_, = Z (l/(p * Q) ) Z IAt | Z |c IV(p * Q)
3 n=0 n+lt 5 v u=0 n+l-u U
S lae | T ) T |
= Z lAt 1/(p * a) e IV(p * )
V=0 V' on=v n+l u=0 n+l-u H
T lat,l( ) ¥ )
<K - At [{1/(p * a) Vip * o)
V=0 \Y v+l 1=0 u
<K=+ Y |At\)| <,
v=0

Also we have by (7i7), and by our assumption,

Iy = L Ialet /(o= o) )] <=,
n=0

o)
K+ )Y |ot | <.
n=0 n

<
IA

Therefore it follows that

o

T I8/ @) <o
Thus the proof of our theorem is completed.

3.3. Proof of Theorem 3 . Sufficiency. By Lemma 1 and by Abel's

transformation we have, for n 2 1 ,

n-1 %
(3:2) @ = T ot T (8, (e, /@) (P » o)

n-1 v
i v§=:o i ugo , (cn—u/an))(p *el s

since (1.2) implies

M~

B (Vn(cn-u/an))(p * a)u (l/an)(c *pra) - (1/Gn_l)(0 *pra) o

=0.
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Moreover using Abel's transformation again,

v v
ugo (%, (e, /e ) e+ @) = (V0/a))) ugo CpylP * @)y,
v
* (l/an—l) UZS cn_uV(p * a)u - (l/an-l)cn-l-v(p * a)v ?
and it follows that
T lea,l- L Je, T
ea | = £ at {}
n=1 " n=1 ' " vo VY
© n- v
< nZ; €, vzg Atv(V(l/an)) ng cn_u(p * OL)u
T e, T se,0/m, ) ¥
+ ) e At (1/a > e Vip *oa)
o b Ty n-1’ 2, M- u
v ole, T et (e ) (p * )|
+ € At (1/a e p*a
St RN/ 7n-1/" n-1=v v
=Zl+22+23 , say.
Now, by (2.1) with (iZ), we get
-1
-1 n
el = Ko | (e + 0, ) = Kl | 3 19 + o)
v -1
= Klanl Y |Vp * a)ul for m= Vv .

Hu=0

Hence we have by (2i%),
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o n-1 v
e Tl T a9l T e, e+ 9,
@ o Vv
= [at | Y e |[v(1/a )] e, [l(p *a) |
vég Vioewl  ° ( n) uég n-y H
Yol T le | 19a/a)l| 3 | S te |
= At e |[VIL/a Vip = a) . ) e
v=0 Y m=v1 " " lizo i e
(=] o] Vv
<K |at_ | [1- (o /o | le. |
vgg v n=%;1 ( " n-l) uég e
<K » Z IAt l < o
v=0

Also by (Z) and since (ZZ%) implies an/an = 0(1) , we get

-1

(e <) -

\Y
o= 3 e llve, 1 3 leg) T le, 19 x|

L. =
n=1 v=0 u=0
) [~} \Y)
=y lae,l ¥ e llae | ¥ e, [|V(p *0) |
V=0 Vv nmvl n n-1 =0 n-y H

A

-1
kY Jat ] T Ve xa) | Y |9p % a) | S Jasa |l |
v=0 v u=0 u u=0 U —] n n-1 n-u

(>

ool
Ky lae,l ¥ e l
V=0 \Y n=vtl n=-Vv=-1

1A

tA

K Yy |at | <o,
v=o v

Similarly we have

% n-1

.= Y le | ¥ latglli/e lle [(p * o) |
3 =1 n 2 v n-1''"n-1l-p v
= Y lag e+ | X e |li/a|le |
V=0 v v n=vil n 7-1 n-1-v
o v -1 o
=1 \Eo |At\)ll(p ) 0L)\)ILEO ¥+ a)ul] n=%+1 Ia"/a"'lllcn_l'vl

tA

(=]
K'Y ot ] <o,
v=0 v
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oo
Hence it follows that Z Ienanl < o _ and the proof of the sufficiency
n=0

part is completed.

Necessity. From (3.1) we have, for n =1 ,

n
€a, = Z Atvdn

\Y]
n V=0 N

where

e, L (v (e, /a))pra), (v=n),

1=0 n*n-y n

0 (v >n)

Now, by Lemma 4, a necessary condition for Z [Ena | to be convergent

n
(oo}
whenever ) a_ is summable |N, p, a| is that > |d .| =k . Hence
n M,V
n=v+l ?
iy s - >
it is necessary that dv+l,v 0(l) as Vv >« _ But
v
dye1,v T Fue ugg (vv(cv+1-u/av+l])(p * o),

~€usp (5% ) (P * @)

V+1
Therefore the condition (2.1) is necessary.

This completes the proof of Theorem 3.
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