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ABSTRACT

Generalized linear models are a popular tool for the modelling of insurance
claims data. Problems arise with the model fitting if little statistical information
is available. In case that related statistics are available, statistical inference can be
improved with the help of the borrowing-strength principle. We present a cred-
ibility approach that combines the maximum likelihood estimators of individ-
ual canonical generalized linear models in a meta-analytic way to an improved
credibility estimator. We follow the concept of linear empirical Bayes estima-
tion, which reduces the necessary parametric assumptions to a minimum. The
concept is illustrated by a simulation study and an application example from
mortality modelling.

KEYWORDS

Linear Bayes estimator, canonical generalized linear model, meta-analysis,
pseudo likelihood estimator, multi-population mortality modelling.

1. INTRODUCTION

Greatest accuracy credibility theory is a set of prediction techniques for random
effects models that use the borrowing-strength principle, i.e. individual predic-
tions are improved by using also information on the group that the individual
belongs to. It started withWhitney (1918), who investigated the insurance prob-
lem of how to estimate individual expected claims from both, individual claims
experience and portfolio claims data. Whitney proposed that the predictor be
a linear combination of individual experience and group average, and this lin-
earity assumption is fundamental to credibility theory since then. Many papers
following afterwards focussed on models with parametric distribution assump-
tions, until Bühlmann (1967) emphasized that the linearity assumption com-
bined with least square estimation allows for distribution free credibility formu-
las. That non-parametric notion of Bühlmannwas a big step forward for greatest
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accuracy credibility theory as in insurance applications detailed knowledge on
appropriate parametrizations is often missing. Following Bühlmann’s perspec-
tive on credibility theory, which is also called linear (empirical) Bayes estima-
tion, we use a linear representation assumption for the credibility estimator and
least squares estimation in order to develop a credibility approach for the statis-
tical analysis of groups of random effects generalized linear models (GLMs). In
particular, we avoid parametric distribution assumptions for the random effects,
just using moments of first and second order. In the credibility theory literature,
only the contribution by De Vylder (1985) combines non-linear regression and
non-parametric random effects modelling. Unlike De Vylder, we take the per-
spective of a meta-analysis and base our credibility estimator on the conditional
maximum likelihood estimators (MLEs) of the individual models rather than (a
transformation of) the full observed sample.We think that our estimator is more
intuitive, and it has advantages when access to the full original data is costly or
restricted.

Let us consider the following example: For a group of different populations
i = 1, . . . , n, a survival model shall be fitted to empirically observed mortality
data. Most of the survival models in the actuarial literature can be written in
the form of a GLM, so we posit here that

g(E[Yi ]) = Xiβi , i = 1, . . . , n, (1.1)

where the random vector Yi is the observed central death rate for each consid-
ered age in population i . The link function g and the matrix Xi characterize the
family of survival models, and the fixed effect vector βi is the parameter vector
that shall be estimated for population i . Let β̂i be the classicalMLE for βi based
only on the individual data. The borrowing-strengths principle suggests that β̂i
can be improved by involving also the data of the other populations, and finding
such an improved estimator is exactly the aim of this paper.

In order to get the individual models (1.1) into a joint framework, the funda-
mental (Bayesian) idea of credibility theory is to replace unknown fixed effects
by random effects (the credibility parameter), cf. chapter 1.2.4 in Bühlmann
and Gisler (2005). In our example, the deterministic vectors βi are replaced by
independent and identically distributed (i.i.d) random vectors Bi . The redefined
and combined models form then a multi-population model:⎛⎜⎝ g(E[Y1 | B1])

...

g(E[Yn | Bn])

⎞⎟⎠ =

⎛⎜⎝ X1B1
...

XnBn

⎞⎟⎠ . (1.2)

By adding parametric assumptions for the distribution of Bi , we could inter-
pret this multi-populationmodel as a generalized linearmixedmodel (GLMM),
a hierarchical generalized linear model (HGLM), or a hierarchical Bayesian
model. The statistical literature offers amultitude of well-established techniques
for GLMMs, HGLMs and hierarchical Bayesian frameworks. However, in our
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example we know hardly anything about the distribution of Bi , so that specific
parametric assumptions should be avoided. This paper shows how parametric
assumptions for Bi can indeed be avoided by using concepts from credibility
theory.

After redefining the unknown individual fixed effects as i.i.d. random effects,
the second fundamental idea of greatest accuracy credibility theory in terms of
Bühlmann is to choose the estimator B̂i of Bi as the best linear unbiased es-
timator in a mean squared error sense, cf. chapter 3 in Bühlmann and Gisler
(2005). Without the linearity assumption, the best estimator would always be
the conditional expectation of Bi given the sample, also called the Bayes esti-
mator. Adding the linearity assumption has two useful consequences: First, the
resulting predictor has always an easy and intuitive interpretation, and second,
estimations can be solely based on first- and second-order moments. Moreover,
the linearity assumption tremendously simplifies computations. In statistical in-
ference theory, similar concepts are used, there known as linear Bayes estima-
tion, see Norberg (1980) and the overview paper Norberg (2004) for further
references.

The linearity assumptions in the credibility theory literature are not through-
out consistent. Most authors assume linearity with respect to the sample. In our
example, that would mean that

B̂i ∈ span{1,Y1, . . . ,Yn}.
The non-linear regression credibility estimator as suggested byDeVylder (1985)
is of the form

B̂i ∈ span{1, h1(Y1), . . . , hn(Yn)},
where the non-linear functions hi are inverses of the mappings b �→ g−1(Xib) in
order to retrieve linearity with respect to the sample. De Vylder (1985) alterna-
tively suggests to replace the non-linear regression problem by an approximat-
ing linear regression problem. In our example, that would mean that we replace
g in (1.2) by a linear approximation and then apply credibility theory for lin-
ear regression. This paper uses neither of De Vylder’s approaches but assumes
that

B̂i ∈ span{1, β̂1, . . . , β̂n}. (1.3)

TheMLEs β̂1, . . . , β̂n can have irregularities, so we will replace them by asymp-
totically equivalent estimators, but for the moment we can simply think of the
classical MLEs.

In order to motivate assumption (1.3), we have to go back to the
original aim of credibility theory: The usual quantity of interest in cred-
ibility theory is the expected claims of an individual risk i . The cred-
ibility estimator for this quantity of interest is typically linear in two
ways:
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a. it is a linear combination of the observed sample,
b. it is a linear combination of the predictors that we would obtain from indi-

vidual fixed effect models.

In our opinion, it is rather the second property that makes credibility formu-
las so appealing, because it allows the perspective of a meta-analysis: Separate
investigations for each risk lead to individual empirical estimators, and the cred-
ibility formula is a meta step that linearly combines the results of the separate
investigations in order to achieve a higher statistical power. In our mortality
example, the two perspectives translate to

a. B̂i is a linear combination of the observed sample Y1, . . . ,Yn,
b. B̂i is a linear combination of the predictors β̂1, . . . , β̂n that we obtain from

the individual fixed effect models (1.1).

In contrast tomost classical credibility models, in our non-linear regression case
the two perspectives (a) and (b) are not equivalent anymore but are mutually
exclusive. Which kind of linearity should be maintained? Theoretically, from a
mean squared error perspective it is optimal to let the credibility estimator be
linear in some sufficient statistic of Bi , cf. Taylor (1977). The present paper takes
a rather practical perspective and chooses (b) for two reasons:

• The individual predictors β̂1, . . . , β̂n relate stronger to the quantity of inter-
est Bi than the sample Y1, . . . ,Yn (or the transformed sample of De Vylder
(1985)), yielding a more intuitive interpretation of the linear credibility for-
mula.

• The meta analysis structure is a big advantage whenever the access to the
original sample is restricted or costly.

Credibility estimators are also called linear Bayes estimators, and the ques-
tion on what statistics to base a linear Bayes estimator is generally discussed
in Neuhaus (1985) from the perspective of efficiency. We focus here on inter-
pretability and data availability rather than efficiency. Our concept of linearly
combining individual MLEs to an improved estimator has similarities with
Efron (1996), where individual likelihoods are combined to define empirical
Bayes estimators. Contrary to Efron (1996), our credibility estimators are lin-
ear empirical Bayes estimators, which allows us to further weaken the a priori
assumptions. While we directly combine the MLEs of the credibility parame-
ters, Efron assumes a parametric distribution for the credibility parameters and
works with the MLEs for the hyperparameter.

Credibility estimators for linear regression models were first introduced by
Hachemeister (1975), followed by many further contributions in this field. Tay-
lor (1977) extended Hachemeister’s linear regression concept to general Hilbert
spaces. Norberg (1980) showed the general link between credibility theory and
linear Bayes estimation by discussing linear regression examples. Lo et al. (2007)
explored the approach of generalized estimating equations (GEE) for linear re-
gression credibility models. For further references, see the overview paper by
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Brazauskas et al. (2014), who emphasize that many common linear regression
credibility models can be represented as linear mixed models. A first attempt
to extend credibility theory to general non-linear regression has been made by
De Vylder (1985), who proposes two different approaches. The first approach
bases on a transform of the observed sample which reverses the non-linearity.
The resulting credibility estimator is linear in the transformed sample (instead of
the original sample), see the comments above. The second approach linearizes
— and thereby approximates — the non-linear regression problem itself. Pit-
selis (2004) showed how to make De Vylder’s credibility estimators more ro-
bust. Ohlsson and Johansson (2006) and Ohlsson (2008) study credibility esti-
mation for non-linear regression within the parametric framework of Tweedie-
GLMs. The random effects are assumed to have natural conjugate distributions
and have the form of multiplicative factors that equally affect all observations
and GLM-coefficients. Generally, we can interpret fully parametric regression
credibility models as HGLMs, c.f. Nelder and Verrall (1997), or GLMMs, c.f.
Antonio and Beirlant (2007), for which the statistical literature provides a mul-
titude of inference methods. Differing from these concepts, the present paper
assumes only that the conditional individual models are parametric (namely
GLMs) but refrains from making parametric assumptions for the credibility
parameters. This takes account of the fact that in many applications there is
hardly any information available on the distributional properties of the credibil-
ity parameters. Non-parametric regression estimation appears in the context of
credibility theory inQian (2000), who derives credibility premiumswith the help
of Kernel estimators. The focus is on the estimation of expectations, variances
and quantiles of insurance claims. A broader study of nonparametric credibility
regression models is still missing.

This paper is organized as follows. Section 2 recalls the linear regression cred-
ibility model of Hachemeister (1975) and develops a fundamental framework
for credibility GLMs (CGLMs). In Section 3, the classical MLEs for GLMs are
embedded in the extended CGLM framework, providing a mathematical rig-
orous basis for the following sections. Section 4 calculates the theoretical cred-
ibility estimator and studies its asymptotic properties. In Section 4, empirical
estimators for the hyperparameters in the theoretical credibility estimator are
discussed, leading to the empirical credibility estimator. Section 6 studies the
performance of the credibility estimator on a theoretical basis and by a simula-
tion example. Section 7 demonstrates the application of the credibility estimator
in mortality modelling. Section 8 concludes. Section 9 provides proofs of results
from the previous sections.

2. THE CREDIBILITY REGRESSION MODEL

Throughout the paper, we consider a portfolio of N clusters with observation
vectors Yi = (Yi1, . . . ,Yin) and random effects Bi , i = 1, . . . , N on some prob-
ability space (�,F, P).
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2.1. The linear regression credibility model

In the linear regression credibilitymodel, theYi j are univariate randomvariables
that, conditional on the random effects Bi , satisfy a linear regression equation.
For a given design matrix Xi ∈ Rn,p with full rank p, the precise model assump-
tions according to Hachemeister (1975) are as follows.

i. Conditionally, given Bi , the Yi j , j = 1, . . . , n, are independent and fulfil

E[Yi j | Bi ] = Xi j Bi , (2.1)

where Xi j ∈ R1,p is the j -th row of Xi . Furthermore, the clusters satisfy

Cov(Yi | Bi ) = �i (Bi ). (2.2)

ii. The pairs (B1,Y1), . . . , (BN,YN) are independent and B1, . . . , BN are i.i.d.

The credibility estimator B̂i for the random regression parameter Bi is defined
as the orthogonal projection of Bi on L(1,Y), where the expectation is taken
with respect to the full probability measure P and

L(1,Y) =
⎧⎨⎩a +

N∑
i=1

n∑
j=1

Ai jYi j : a ∈ Rp, Ai j ∈ Rp,p

⎫⎬⎭ . (2.3)

Thus, every component of the vector B̂i is an affine function of all observations.
An equivalent formulation can be provided by writing B̂i as the solution of the
optimization problem

B̂i = argmin
B̃i∈L(1,Y)

E
[
(B̃i − Bi )′(B̃i − Bi )

]
,

where B′
i denotes the matrix transposition of Bi . Hachemeister (1975) showed

that the credibility estimator has the form

B̂i = Ai β̂i + (I − Ai )E[Bi ] (2.4)

with

β̂i = (X′
i�i (Bi )Xi )−1X′

i�i (Bi )Yi (2.5)

and credibility matrix

Ai = Cov(Bi )
(
Cov(Bi ) + (

X′
iE[�i (Bi )]−1Xi

)−1
)−1

.

As the best individual estimators (2.5) are linear in Y, the credibility estimator
also satisfies

B̂i = argmin
B̃i∈L(1,β)

E
[
(B̃i − Bi )′(B̃i − Bi )

]
, (2.6)
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where the estimator is now from the linear space

L(1, β) =
{
a +

N∑
k=1

Akβ̂k : a ∈ Rp, Ak ∈ Rp,p

}
. (2.7)

That means that in the linear regression case it does not make a difference
whether we assume linearity of the credibility estimator with respect to (a) the
observed sample or (b) the MLEs from individual fixed effect models. Both
variants are equivalent. However, this equivalence property gets lost in the non-
linear regression case. As motivated in the introduction of this paper, we aim to
keep the second kind of linearity in the non-linear regression case.

2.2. The extended regression credibility model

The linear regression model can be naturally extended to canonical GLMs as
follows.

A1. Conditional on Bi = βi , the components of the vector Yi are independent
and their distributions belong to a simple exponential family with natural
parameters θi = (θi j )

n
j=1 ⊂ � and weights wi = (wi j )

n
j=1 ⊂ R+. The

conditional joint pdf fβi takes the form

fβi (y) =
n∏
j=1

c(yj , wi j ) exp

⎛⎝ n∑
j=1

wi j
(
θi j yj − b(θi j )

)⎞⎠ , y ∈ Rn. (2.8)

A2. The natural parameters are linked to a linear predictor by the identity

θi j = g(E[Yi j | Bi ]) = ξi j + Xi j Bi , a.s., (2.9)

where g is the canonical (natural) link function and ξi = (ξi j )
n
j=1 ⊂ R are

offset terms.
A3. The random effects B1, . . . , BN are i.i.d. The pairs (B1,Y1), . . . , (BN,YN)

are independent but not necessarily identically distributed (as the param-
eters wi , ξi , Xi may differ).

The distribution of Y = (Y1, . . . ,YN) is not specified until we condition on
the outcome β = (β1, . . . , βN) of B = (B1, . . . , BN). Then, under the condi-
tional measure Pβ , assumptions (A1) and (A2) state that the Yi j follow a GLM
of a univariate simple exponential family with parameter βi . The linear predic-
tor describes the first two conditional moments of Yi j through the mean and
variance functions

μi j (Bi ) = E[Yi j | Bi ] = b′(ξi j + Xi j Bi ), (2.10)

wi jvi j (Bi ) = Var(Yi j | Bi ) = wi j b′′(ξi j + Xi j Bi ), (2.11)
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respectively. Notice that b′ = g−1. The Bi thus characterizes the individual
distributions of the clusters, but without conditioning on B the clusters are
homogeneous up to known parameters as declared by assumption (A3). The
weights in (2.8) may describe known nuisance parameters λi j by wi j = 1/λi j ,
e.g. the number of trials in a Binomial model. Also clusters with different sample
sizes can be incorporated by choosing binary weights denoting the presence or
absence of an observation. As we combine ideas from credibility theory and
GLMs, we refer to the model as a CGLM. We concentrate on the univariate
case since it is of main interest in practice and greatly simplifies the notation.
Comments on CGLM for q-variate exponential families will follow later on.

Our aim is to establish credibility estimation for this model and a first step
is to find a proper definition of the credibility estimator for Bi . In the linear
regression case, the credibility estimator has been defined as the orthogonal
projection of Bi on the space L(1,Y), but can be equivalently defined as the or-
thogonal projection of Bi on the space L(1, β), cf. (2.6). In the extended model,
this equivalence is not true anymore, because the conditional expectations of
the Yi j are in general not linear in Bi . Estimators which are linear functions of
the observation vector cannot capture the effects of the link g so that choosing
L(1,Y) as the admissible class of estimators is too restrictive. We suggest to
select the credibility estimator within the class of the best individual solutions
instead, and this requires us to follow a semi-parametric approach.

What do the best individual solutions look like? If only data for one specific
cluster i is available and if we condition on Bi = βi , the natural choice will be
the best estimator of a GLM, i.e. the MLEs β̂i . We therefore define β̂i as the
maximizer of the function

lin(β) =
n∑
j=1

wi j
(
θi jYi j − b(θi j )

)
, (2.12)

which is the true likelihood function for Yi when conditioned on Bi = β. Also
of great importance are the score functions and Fisher information matrices

sin(β) = ∂lin(β)

∂β
=

n∑
j=1

wi j X′
i j

(
Yi j − μi j (β)

)
, (2.13)

Fin(β) = ∂2lin(β)

∂β∂β ′ =
n∑
j=1

wi jvi j (β)X′
i j Xi j . (2.14)

In particular, the MLE solves sin(β̂i ) = 0. Special caution is needed as the cred-
ibility approach assumes that the GLM parameter is a random effect. The map
lin represents the true log-likelihood function under the conditional measure
Pβ but not under the unconditional measure P. The latter requires integration
involving the distribution of the random effect Bi , which we have not specified.
The reader should keep in mind that the β̂i are, to be precise, conditionalMLEs.
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The presence of N similar clusters should improve the estimation of the Bi .
The idea of credibility estimation is to compose the best individual solutions
into a mixing estimator which benefits from the shrinkage effect. As we will
later see, β̂i is already, in a proper sense, a good estimator but one should be
worried if all other β̂l , l �= i , clearly differed. Following the considerations we
have made so far, we select the admissible class of estimators as

L(1, β) =
{
a +

N∑
i=1

Ai β̂i : a ∈ Rp, Ai ∈ Rp,p

}
. (2.15)

The credibility estimator for Bi is then defined as the orthogonal projection of
Bi on L(1, β), or equivalently, as the minimizer of the quadratic loss function

B̂i = argmin
B̃i∈L(1,β)

E
[
(B̃i − Bi )′(B̃i − Bi )

]
,

where the expectation is taken with respect to the full probability measure P.
However, a necessary condition is that L(1, β) ⊂ L2, i.e. the β̂i must be square
integrable. This is in general not satisfied as the next example reveals.

Example 2.1. We consider the Poisson case with the simple design matrix
X = (1 . . . 1)′ ∈ Rn,1 giving that, conditional on Bi = βi ,

Yi j ∼ Poi (exp(βi )) , j = 1, . . . , n.

Then,

sin(βi ) =
n∑
j=1

(Yi j − exp(βi ))

and it follows that

β̂i = log

⎛⎝1
n

n∑
j=1

Yi j

⎞⎠ . (2.16)

This expression is not well defined if
∑n

j=1Yj = 0 which occurs with positive prob-
ability. Thus, β̂i /∈ L2 and also not with respect to the conditional measure Pβ .

We have to modify the MLEs in order to ensure square integrability. Struc-
ture (2.16) is not only to a counterexample for square integrability of β̂i but also
a general problem in maximum likelihood estimation. Indeed, MLEs are meant
to be defined on some measurable set contained in the whole sample space, cf.
Witting and Nölle (1970) and Fahrmeir and Kaufmann (1983). In many papers
of nowadays, this aspect of an MLE is often not mentioned. The absence is
justified by the asymptotic existence of the estimator, that is the probability of
existence converges to one as sample size n increases. For the particular case of
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(2.16), one can easily check that

P

⎛⎝ n∑
j=1

Yi j = 0

⎞⎠ n→∞−→ 0

and we say that
β̂i1{∑n

j=1 Yi j>0} (2.17)

is anMLE on {∑n
j=1Yi j > 0}. Such defining sets play a crucial role in credibility

estimation and must be constructed properly.

3. CONSTRUCTION OF A PSEUDO MAXIMUM LIKELIHOOD ESTIMATOR

To stress the role of the defining set of an MLE and to clearly distinguish
from the unrestricted MLE, we introduce an explicit notation for estimators
of type (2.17). For some family of measurable sets (Min)n∈N ⊂ F , we call

β̃in := β̂in1Min , n ∈ N, (3.1)

the pseudomaximum likelihood estimator (PMLE) for βi . The additional index
n now emphasizes the quantities’ dependence on the sample size. The aim of this
section is to construct Min such that β̃in ∈ L2 and further properties that will
follow. For that purpose, we will work from now onwith the following regularity
assumptions.

R1. The random vectors Bi have a compact and convex support B. Further-
more, Bi has no mass at 0 ∈ Rp and on the boundary of B, i.e.

P(Bi = 0) = 0, (3.2)

P(Bi ∈ ∂B) = 0. (3.3)

R2. The link function g is twice continuously differentiable with non-singular
Jacobian.

R3. The admissible set of covariates{
Xj : j ∈ N

} ⊂ Rp

is bounded and all of its elements satisfy Xjβ ∈ �0 for all β ∈ B. Here,
�0 denotes the interior of �.

R4.
∑n

j=1 X
′
j Xj has full rank p for sufficiently large n.

R5. The scaled Fisher information matrix n−1Fin(β) converges pointwise to a
positive definite limit Fi (β) for all β ∈ B.

R6. The weights wi j and offset terms ξi j are bounded.
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Remark. The above assumptions have to ensure that the conditional GLM
is pointwise well defined for all realizations β ∈ B of Bi . Thus, they naturally
coincide with common assumptions on classical GLMs. Only (R5) is a totally
new assumption and addresses asymptotic properties of maximum likelihood
theory. In fact, it generalizes the linear growth condition of the Fisher informa-
tionmatrix as used byMcFadden (1973) andAndersen (1980) to the whole state
space B of Bi . The compactness condition in (R1) seems to contradict the usual
assumption of parameter spaces being open sets, but we can without loss of
generality enlarge B to an open set, say B̃B, where B̃B\B gets zero weight. The
main purpose of (R1) is to make the Bi almost surely bounded. Compactness is
required for Lemma 9.1, which follows soon. Condition (3.2) is just for technical
reasons, excluding the trivial case where a regression model is redundant.

The idea for the explicit construction of the sets (Min) goes back to Fahrmeir
and Kaufmann (1985). For δ > 0, we define a sequence of neighbourhoods

Nn(δ, Bi ) := {β ∈ B :
√
n‖β − Bi‖ ≤ δ}, n ∈ N, (3.4)

which are spheres with radius δ/
√
n and random central point Bi . In addition,

let

Mδ
in := {lin(β) − lin(Bi ) < 0, for all β ∈ ∂Nn(δ, Bi )} . (3.5)

If the eventMδ
in occurs, there exists a local maximum in the interior of Nn(δ, Bi ).

Since the log-likelihood function lin is concave, the local maximum is also a
unique global maximum which is attained by β̂in. Therefore, ω ∈ Mδ

in implies
that β̂in(ω) ∈ Nn(δ, Bi (ω)), i.e.

1Mδ
in
‖β̂in − Bi‖ ≤ δ√

n
, a.s. (3.6)

The PMLE will be constructed along these sets with an appropriate choice for
δ.

Theorem 3.1. For all η > 0, there exist a δ > 0 and an nη ∈ N such that for all
n ≥ nη,

P
(
Mδ
in

) ≥ 1 − η, i = 1, . . . , N.

Moreover, there exist a null sequence (ηn)n∈N with corresponding sequence (δn)n∈N

such that
P
(
Mδn
in

)
→ 1

and δn/
√
n → 0, i.e.

Nn(δn, Bi ) → {Bi } a.s.

for all i = 1, . . . , N as n → ∞.

Proof. See Section 9.1.
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Based on this theorem, we can finally define the PMLE as follows.

Definition 3.2 (PMLE). Let (δn) be defined as in Theorem 3.1. Then, the sets

Min := Mδn
in

define the PMLE

β̃in = β̂in1Min , i = 1, . . . , N.

Theorem 3.1 is a very strong result as it provides asymptotic existence under
the unconditional measure P even though the distribution of Bi has not been
specified. The resulting PMLE is more comfortable to work with compared to
the ordinary MLE. Especially, β̃in is now square integrable.

Remark q-variate exponential families. We can easily extend the results
from univariate to q-variate simple exponential families. Credibility estimation
will be purely based on the PMLEs.Drawing observations from q-variate simple
exponential families only affects the construction of these estimators. The ex-
tension concerns the likelihood functions, score functions and the Fisher infor-
mation matrices, which now involve multivariate quantities. The proof of The-
orem 3.1 remains valid, see the remark at the end of the proof of Theorem 3.1
in Section 9.1.

Proposition 3.3. It holds that β̃in ∈ L2 for all n ∈ N.

Proof. We have

E
[‖β̃in‖2] = E

[‖β̂in1Min‖2
]

= E
[
1Min‖Bi + (β̂in − Bi )‖2

]
≤ E

[
1Min

(‖Bi‖2 + ‖β̂in − Bi‖2 + 2‖Bi‖‖β̂in − Bi‖
)]

≤
(
c2B + δ2n

n
+ 2cB

δn√
n

)
P(Min) < ∞.

The proof demonstrates how the restriction to this particular Min dramati-
cally simplifies the calculation. Further asymptotic properties are given in the
following theorem.

Theorem 3.4. The PMLE satisfies the following asymptotic properties as the
number of observations n grows to infinity.

i. β̃in is weakly consistent, i.e.

β̃in
P−→ Bi .
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ii. β̃in is asymptotically unbiased, i.e.

E[β̃in] → E[Bi ].

iii. The second moments converge, i.e.

Cov
(
E[β̃in | Bi ]

) → Cov(Bi )

and

Cov
(
E[β̃in | Bi ], Bi

) → Cov(Bi ).

iv. The conditional second moments converge, i.e.

Cov(β̃in | Bi ) → 0

almost surely and in L1.
v. β̃in is asymptotically Normal, i.e.

FT/2
in (β̃in)(β̃in − Bi )

d−→ N (0, I).

In particular, F−1
in (β̃in) is the asymptotic covariance matrix of β̃in − Bi .

Proof. See Section 9.2.

All properties except (iii) correspond to classical GLM theory, cf. Theo-
rems 1 to 3 in Fahrmeir and Kaufmann (1985). If β0 denotes the true parame-
ter in a classical GLM, the convergence towards β0 holds under Pβ0 . Theorem
3.4 generalizes the convergence results to the unconditional measure P. More-
over, the modification to the PMLE does not disturb the convergences. All these
properties will play a central role in the next section where we will address the
credibility estimation.

4. THE CREDIBILITY ESTIMATOR

We now redefine

L(1, β) :=
{
a +

N∑
k=1

Akβ̃k : a ∈ Rp, Ak ∈ Rp,p

}
(4.1)

as the class of admissible estimators bymixing the PMLEs instead of theMLEs.
The final credibility estimator only depends on these variables and it does not
matter whether the PMLEs belong to a multivariate or a univariate exponential
family. It directly follows from Proposition 3.3 that L(1, β) is a subspace of L2.
Its linearity obviously follows from construction, and since L(1, β) has finite
dimension it is also closed.
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Definition 4.1 (GLM credibility estimator). The credibility estimator for Bi is de-
fined as the orthogonal projection

B̂i = Pro(Bi | L(1, β)) (4.2)

of Bi on L(1, β), or equivalently as

B̂i = argmin
B̃i∈L(1,β)

E
[(
B̃i − Bi

)′ (
B̃i − Bi

)]
. (4.3)

By choosing a = 0 and Ak = δikIp, with Ip ∈ Rp,p being the identity ma-
trix, one can easily see that β̃i ∈ L(1, β). Therefore, the GLM credibility esti-
mator performs at least as good as the PMLE. Since β̃i is a weakly consistent
and asymptotically unbiased estimator, cf. Theorem 3.4, it is already a good
estimator. Moreover, the Bayes estimator E[Bi | Yn] is a Yn-martingale, where
Yn = (Yi1, . . . ,Yin)Ni=1, and it converges almost surely and in L1 to Bi due to
the martingale convergence theorem. As β̃i converges in probability to the same
limit Bi , both estimators agree in probability as n → ∞. Thus, the restriction to
the linear class L(1, β) is not a big concern. All these n-asymptotic properties
of the PMLE seem to make credibility estimation redundant at first glance. In
fact, credibility models target situations where n is not very large. In these cases,
missing observations can be partially compensated by involving further clusters
and this effect can be observed in the credibility formula for Bi , which follows
now.

Theorem 4.2. The credibility estimator is given by

B̂i = E[Bi ] + Ai (β̃i − E[β̃i ]) (4.4)

with credibility matrix

Ai = Cov(Bi , β̃i )Cov(β̃i )−1. (4.5)

Proof. By plugging the linear representation of B̃i according to (4.1) into
the mean squared error (4.3), we get the objective function

fi (a, A1, . . . , AN) := E

⎡⎣(a +
N∑
k=1

Akβ̃k − Bi

)′ (
a +

N∑
k=1

Akβ̃k − Bi

)⎤⎦ .
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Taking its partial derivatives with respect to the components of a and the Al
and setting them equal to zero leads to the equations

a = E[Bi ] −
N∑
k=1

AkE[β̃k],

E[Bi β̃ ′
l ] = E[aβ̃ ′

l ] +
N∑
k=1

AkE[β̃kβ̃ ′
l ], l = 1, . . . , N,

whereat the latter equation simplifies to

Cov(Bi , β̃l) =
N∑
k=1

AkCov(β̃k, β̃l), l = 1, . . . , N, (4.6)

also called the orthogonality conditions. Notice that fi is differentiable as it is
a polynomial with respect to all components of a and Al . Thus, we may in-
terchange differentiation and integration. Since the function fi is convex, the
solution of these equations is indeed a minimizer. The stochastic components
in β̃l are β̂l and 1Mln . Both depend only on (Bl ,Yl), so by assumption (A3), β̃l
and β̃k are independent for l �= k. Thus, (4.6) simplifies to

Cov(Bi , β̃l) = Al Cov(β̃l).

By the same argument, Cov(Bi , β̃l) = 0 for i �= l and it follows that Al = 0 for
i �= l. Finally, we obtain

Ai = Cov(Bi , β̃i )Cov(β̃i )−1

and putting together the pieces completes the proof.

Notice that the covariance matrix Cov(β̃i )may be singular, which happens if
and only if a component of β̃i is almost surely a linear combination of the others.
Such a component is redundant and should be avoided in the stage of modelling
by choosing covariate vectors with p − 1 components. Therefore, without loss
of generality, we assume that Cov(β̃i ) is positive definite and, thus, invertible
so that the credibility matrix Ai always exists. The resulting credibility formula
(4.4) slightly differs from that for the linear regression model (2.4) but an analo-
gous structure can be established in an n-asymptotic meaning. Notice that Ai as
well as B̂i depend on n through the PMLE β̃in and its moments. The additional
index n will be used whenever its role is stressed.

Recall that twomultivariate sequences (Gn), (Hn) ⊂ Rq are said to be asymp-
totically equivalent as n → ∞, written Gn

n∼ Hn, if

(Gn − Hn) ∈ o(Hn). (4.7)
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The little-o symbol describes asymptotic dominance, i.e.

‖Gn − Hn‖ ≤ c‖Hn‖
for all c > 0 and n large enough.As the name suggests, asymptotic equivalence is
indeed an equivalence relation providing reflexivity, symmetry and transitivity.
Especially, (4.7) is equivalent to (Gn−Hn) ∈ o(Gn).We can generalize the notion
of asymptotic equivalence to random vectors and matrices by interpreting (4.7)
in a probabilistic manner. To this end, we use the oP-notation introduced by
Pratt (1959).

Definition 4.3. Let (Gn) and (Hn) be sequences of multivariate random variables.
They are asymptotically equivalent in probability, written Gn

n∼ Hn, if

Gn − Hn ∈ oP(Hn),

i.e. for every c > 0,
P(‖Gn − Hn‖ ≤ c‖Hn‖) n→∞−→ 1.

This is an intuitive generalization of the deterministic counterpart as the
convergence of the fraction ‖Gn−Hn‖/‖Hn‖ towards 0must now hold in proba-
bility.We use the same symbol since its meaning is always clear from the context.

Theorem 4.4. Two n-asymptotic credibility formulas are given by

B̂in
n∼ Ainβ̃in + (Ip − Ain)E[Bi ] (4.8)

and

B̂in
n∼ Ainβ̃in + (Ip − Ain)E[β̃in], (4.9)

where Ain is defined as in (4.5).

The right-hand side of (4.8) now has the familiar structure as we know it
from the linear regression credibility formula (2.4). The credibility estimator
is composed of the best individual estimator β̃in and an average value, both
weighted according to their credibility. If the individual estimator is evaluated to
be highly credible, i.e. Ain ≈ Ip, then the credibility estimator will approximately
equal the PMLE. As we will soon see, this is the case for large sample sizes n,
where β̃in consistently estimates Bi . The average value part will compensate the
lack of information if necessary. Thus, it can be interpreted as a learning effect
which vanishes as n increases.

The right-hand side of (4.9) can be seen as an empirical variant of (4.8). The
empirical version is in particular useful from the meta-analysis perspective, as
it involves only the PLME.

The proof of Theorem 4.4 requires some preparation.

Lemma 4.5. We have
Ain

n→∞−→ Ip
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and consequently ‖B̂in − β̃in‖ → 0 almost surely and in L1.

Proof. By (4.5),

Ain = Cov(Bi , β̃in)Cov(β̃in)−1

so that

Ain − Ip = (
Cov(Bi , β̃in) − Cov(β̃in)

)
Cov(β̃in)−1. (4.10)

The law of total covariance yields

Cov(Bi , β̃in) = E
[
Cov(Bi , β̃in | Bi )

]+ Cov
(
E[Bi | Bi ], E[β̃in | Bi ]

)
= Cov

(
Bi , E[β̃in | Bi ]

)
and

Cov(β̃in) = E
[
Cov(β̃in | Bi )

]+ Cov
(
E[β̃in | Bi ]

)
.

Hence, (4.10) can be written as

Ain − Ip = (Cov(Bi , E[β̃in | Bi ]) − Cov(E[β̃in | Bi ])
− E[Cov(β̃in | Bi )])Cov(β̃in)−1.

By claims iii. and iv. of Theorem 3.4, the first factor in brackets converges to
the zero matrix almost surely and in L1. Furthermore, Cov(β̃in) converges to
Cov(Bi ), which is invertible, and so does Cov(β̃in)−1. We conclude that

sup
n

∥∥Cov(β̃in)−1
∥∥ < ∞

and finally

‖Ain − Ip‖ n→∞−→ 0.

The convergence of B̂in − β̃in follows since supn ‖β̃in‖ < ∞ almost surely.

Lemma 4.6. The credibility estimator B̂in is weakly consistent.

Proof. The claim directly follows by weak consistence of β̃i and Lemma 4.5.
To be more precise,

‖B̂in−Bi‖ = ‖E[Bi ] + Ainβ̃in − AinE[β̃in] − AinBi − (Ip − Ain)Bi‖
≤ ‖Ain(β̃in−Bi )‖+‖Ain(E[Bi ]−E[β̃in])‖+‖(Ip−Ain)(E[Bi ] − Bi )‖

and the right-hand side vanishes in P.

We can now prove the asymptotic credibility formula (4.9).
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Proof of Theorem 4.4. We have to show that(
Ainβ̃in + (Ip − Ain)E[Bi ]

) n∼ (
E[Bi ] + Ain(β̃in − E[β̃in])

)
,(

Ainβ̃in + (Ip − Ain)E[β̃in]
) n∼ (

E[Bi ] + Ain(β̃in − E[β̃in])
) (4.11)

in the sense of Definition 4.3. In fact, the differences are

Ain(E[β̃in] − E[Bi ]), E[β̃in] − E[Bi ],

whose norms vanish according to ii. of Theorem 3.4 and Lemma 4.5. It suffices
to show that they are also asymptotically dominated by the right-hand side of
(4.11), which is B̂in. Lemma 4.6 implies that ‖B̂in‖ converges in probability to
‖Bi‖. Therefore,

‖Ain(E[β̃in] − E[Bi ])‖
‖B̂in‖

,
‖E[β̃in] − E[Bi ]‖

‖B̂in‖
are products of converging sequences. They converge in probability to 0, which
is the product of the limits, provided that P(‖Bi‖ = 0) = 0. The latter is guar-
anteed by condition (R1) so that the claim follows.

5. ESTIMATION OF THE HYPERPARAMETERS

The structural parameters to be estimated in (4.5) and (4.9) areE[β̃i ], Cov(β̃i )−1

and Cov(Bi , β̃i ). Difficulties arise since we only have one i.i.d sample for each
β̃i . The PMLE have in common that each of them is a weakly consistent esti-
mator of the corresponding Bi . These target variables Bi are i.i.d. Thus, cluster
specific effects will vanish as n → ∞, and this property will be repeatedly used
in estimation. For that purpose, we will use the variables

T := Cov(Bi )

and

Si := E
[
Cov(β̃in | Bi )

]
.

By Theorem 3.4, they allow for the asymptotic decomposition

Cov(β̃in)
n∼ T + Si , (5.1)

which consists of a cluster common and a cluster specific term.We first motivate
the estimators using typical structures and then discuss the necessary changes
for the particular setting. Readers who are mainly interested in the results may
jump over to Theorem 5.2.

https://doi.org/10.1017/asb.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.11


CREDIBILITY APPROACH FOR GENERALIZED LINEAR MODELS 549

ad E[β̃in]. A simple estimator is given by the sample mean

β̂0 = 1
N

N∑
i=1

β̃in.

The n-asymptotic unbiasedness of β̃in yields

lim
n→∞ lim

N→∞
∥∥β̂0 − E[β̃in]

∥∥ ≤ lim
n→∞ lim

N→∞
∥∥β̂0 − E[Bi ]

∥∥+ lim
n→∞

∥∥E[Bi ] − E[β̃in]
∥∥

= lim
n→∞ lim

N→∞

∥∥∥∥∥ 1
N

N∑
i=1

(β̃in − Bi ) + (Bi − E[Bi ])

∥∥∥∥∥
≤ lim

n→∞ lim
N→∞

1
N

N∑
i=1

∥∥β̃in − Bi
∥∥

+ lim
N→∞

∥∥∥∥∥ 1
N

N∑
i=1

Bi − E[Bi ]

∥∥∥∥∥ .

The second sum almost surely vanishes by the strong law of large numbers. For
the first sum, we use the dominated convergence theorem. All its summands are
almost surely bounded such that

lim
N→∞

sup
n∈N

1
N

N∑
i=1

∥∥β̃in − Bi
∥∥ ≤ lim

N→∞
1
N

N∑
i=1

sup
n∈N

∥∥β̃in − Bi
∥∥ < ∞

and therefore

lim
n→∞ lim

N→∞
1
N

N∑
i=1

∥∥β̃in − Bi
∥∥ = lim

N→∞
1
N

N∑
i=1

lim
n→∞

∥∥β̃in − Bi
∥∥ = 0.

The last convergence holds in probability, cf. Theorem 3.4. Hence, β̂0 properly
estimates all E[β̃in]. It is weakly consistent as n → ∞ and N → ∞ and also
n-asymptotically unbiased. Nonetheless, we propose a weighted sample mean
of the type

β̂0 =
(

N∑
i=1

Ci

)−1 N∑
i=1

Ci β̃i (5.2)

with Ci ∈ Rp,p. The sample mean can be written in form of structure (5.2) by
selecting constant weights Ci ≡ C. The estimator obtained by choosing the
Ci as the inverse covariance matrices of the β̃i has minimum MSE among all
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estimators of type (5.2). Thus, we choose

β̂0 :=
(

N∑
i=1

Cov(β̃in)−1

)−1 N∑
i=1

Cov(β̃in)−1β̃in. (5.3)

Notice that β̂0 does not depend on i although the target variable E[β̃in] does.
The idea behind this is the asymptotic equivalence of the first moments, i.e.

E[β̃in]
n∼ E[Bi ] =: β0, i = 1, . . . , n. (5.4)

For calculation of (5.3), the inverse covariance matrices in (5.3) have to be re-
placed by their estimators which follow soon. Besides that, structure (5.3) can
be differently interpreted by means of the credibility matrices Ai . Since

Cov(Bi , β̃in)
n∼ Cov(Bi ) = T,

we have Ai
n∼ TCov(β̃in)−1 so that

β̂0 =
(

N∑
i=1

Cov(β̃i )−1

)−1

T−1
N∑
i=1

TCov(β̃i )−1β̃i
n∼
(

N∑
i=1

Ai

)−1 N∑
i=1

Ai β̃i .

The right-hand side is the credibility weighted sample mean and the asymptotic
equivalence will become an equality if we plug in the final estimators Âi of Ai .

ad Cov(β̃i )−1 and Cov(Bi , β̃i ). In a first step, we analyse the sample covari-
ance matrix

τ̂ = 1
N − 1

N∑
i=1

(
β̃i − 1

N

N∑
l=1

β̃l

)⎛⎝β̃i − 1
N

N∑
j=l

β̃l

⎞⎠ .

Using the independence of the β̃i , we get

E[τ̂ ] = 1
N− 1

N∑
i=1

E

⎡⎣(β̃i − 1
N

N∑
l=1

β̃l

)(
β̃i − 1

N

N∑
l=1

β̃l

)′⎤⎦

= 1
N− 1

N∑
i=1

⎛⎜⎝N − 2
N

E
[
β̃i β̃

′
i

]− 2
N

N∑
l=1
l �=i

E[β̃i ]E[β̃ ′
l ]

+ 1
N2

N∑
l=1

E
[
β̃l β̃

′
l

]+ 1
N2

N∑
l=1

N∑
k=1
l �=l

E[β̃l ]E[β̃ ′
k]

⎞⎟⎠ .
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Further, by (5.4),

E[τ̂ ]
n∼ 1
N− 1

N∑
i=1

(
N− 2
N

(
Cov(β̃i ) + β0β

′
0

)− 2(N− 1)
N

β0β
′
0

+ 1
N2

N∑
l=1

Cov(β̃l) + 1
N

β0β
′
0 + N− 1

N
β0β

′
0

)

= 1
N− 1

N∑
i=1

(
N− 2
N

Cov(β̃i ) + 1
N2

N∑
l=1

Cov(β̃l)

)

= N − 2
N(N− 1)

N∑
i=1

Cov(β̃i ) + 1
N(N− 1)

N∑
i=1

Cov(β̃i )

= 1
N

N∑
i=1

Cov(β̃i ).

This simplification will not be possible if we use the weighted sample mean (5.3)
instead of 1

N

∑
l β̃ln in τ̂ . The β̃in have different covariance matrices and τ̂ esti-

mates their sample mean. Hence, for some specific cluster i , τ̂ over- or under-
estimates Cov(β̃i ) depending on the constellation of the portfolio. In order to
remove the systematic error, we use decomposition (5.1). We then obtain

E[τ̂ ]
n∼ Cov(Bi ) + 1

N

N∑
i=1

E[Cov(β̃i | Bi )] = T + 1
N

N∑
i=1

Si . (5.5)

By (5.5), we set

T̂ := τ̂ − 1
N

N∑
i=1

Ŝi (5.6)

and by (5.1)

τ̂−1
i := ̂Cov(β̃in)−1 := (

T̂ + Ŝi
)−1

. (5.7)

It remains to find estimators for the Si .
ad Si . For the estimation of

Si = E[Cov(β̃i | Bi )],

https://doi.org/10.1017/asb.2016.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.11


552 MARCUS C. CHRISTIANSEN AND EDO SCHINZINGER

we use that the inverse Fisher information matrix is the asymptotic covariance
matrix of β̃in given Bi , cf. Theorem 3.4. Thus, we propose

Ŝi := 1
N

N∑
l=1

F−1
in (β̃l). (5.8)

The idea behind this choice is that F−1
in (Bi ) is, conditional on Bi , also the asymp-

totic covariancematrix of β̃i . See Theorem 3 in Fahrmeir andKaufmann (1985).
Since B1, . . . , BN are i.i.d,

1
N

N∑
l=1

F−1
in (Bl)

consistently estimatesE[F−1
in (Bi )] as portfolio size N increases and (5.8) replaces

the Bl by β̃l . The following lemma justifies this procedure.

Lemma 5.1. For all i and l = 1, . . . , N, Fin(Bl) and Fin(β̃l) as well as F−1
in (Bl)

and F−1
in (β̃l) are asymptotically equivalent in probability.

Proof. First we show that 1
n Fin(Bl) − 1

n Fin(β̃l) converges in probability to
zero. In fact, for ε > 0

P

(∥∥∥∥1n Fin(Bl) − 1
n
Fin(β̃l)

∥∥∥∥ > ε

)
= P

(∥∥∥∥1n Fin(Bl) − 1
n
Fin(β̃l)

∥∥∥∥ > ε | Mln

)
P(Mln)

+ P

(∥∥∥∥1n Fin(Bl) − 1
n
Fin(β̃l)

∥∥∥∥ > ε | Mc
ln

)
P(Mc

ln)

≤ P(Mln)

(
P

(∥∥∥∥1n Fin(Bl) − 1
n
Fin(β̃l)

∥∥∥∥ > ε | Mln, β̃ln ∈ B
)

P(β̃ln ∈ B | Mln)

+ P

(∥∥∥∥1n Fin(Bl) − 1
n
Fin(β̃l)

∥∥∥∥ > ε | Mln, β̃ln /∈ B
)

P(β̃ln /∈ B | Mln)

)
+ P(Mc

ln).

Fin is Lipschitz continuous on B with a Lipschitz constant L > 0 that does not
depend on n. Furthermore, on Mln,

β̃ln = Bl + (β̃ln − Bl)

with ‖β̃ln − Bl‖ ≤ δn√
n . By (3.3), Bl almost surely lies in the interior of B, i.e.

there exists an η-neighbourhood around Bl that is completely included in B.
Thus, since δn√

n → 0,

P(β̃ln ∈ B | Mln)
n→∞−→ 1.
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Altogether, we have

P

(∥∥∥∥1n Fin(Bl) − 1
n
Fin(β̃l)

∥∥∥∥ > ε

)
≤ (

P
(
L
∥∥β̃l − Bl

∥∥ > ε | Mln, β̃ln ∈ B)P(β̃ln ∈ B | Mln)

+P(β̃ln /∈ B | Mln)
)
P(Mln) + P(Mc

ln)
n→∞−→ 0.

On the other hand, the asymptote 1
n Fin(Bl) almost surely converges to a positive

definite matrix Fi (Bl). The quotient∥∥Fin(Bj ) − Fin(β̃ j )
∥∥∥∥Fin(Bj )

∥∥
converges in probability to zero so that asymptotic equivalence follows. The
proof for the inverse sequences works similarly.

We summarize the results in the following theorem.

Theorem 5.2. The structural parameters can be estimated as follows.

i. A weakly consistent estimator for E[β̃in] as both n → ∞ and N → ∞ is
given by

β̂0 =
(

N∑
i=1

τ̂−1
i

)−1 N∑
i=1

τ̂−1
i β̃in, (5.9)

where τ̂−1
i is defined in (5.7).

ii. The random matrix

Ŝi = 1
N

N∑
l=1

F−1
in (β̃l)

is an asymptotically unbiased and weakly consistent estimator for Si as both
n → ∞ and N → ∞.

iii. Let τ̂ be the sample covariance matrix of (β̃i )
N
i=1. Then,

T̂ = τ̂ − 1
N

N∑
i=1

Ŝi (5.10)

is an asymptotically unbiased and weakly consistent estimator ofCov(Bi , β̃i )−1

as both n → ∞ and N → ∞.
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iv. A weakly consistent estimator of Cov(β̃i )−1 as both n → ∞ and N → ∞ is
given by

τ̂−1
i = (

T̂ + Ŝi
)−1

.

v. The credibility matrix (4.5) can be estimated by

Âi = T̂τ̂−1
i ,

which is a weakly consistent estimator as both n → ∞ and N → ∞.

Finally, the credibility formula can be evaluated by replacing its hyperpa-
rameters (structural parameters) by their estimators.

Corollary 5.3. The estimator

ˆ̂Bi = Âi β̃i + (Ip − Âi )β̂0 (5.11)

is a weakly consistent estimator for the exact credibility estimator (4.4) as both
n → ∞ and N → ∞.

Proof. The claim is a direct consequence of Theorems 4.4 and 5.2.

As T̂ estimates a covariance matrix, it should be symmetric and positive
semi-definite. By the nature of structure (5.10), T̂ is symmetric but not neces-
sarily positive semi-definite. If in practical applications T̂ is indeed not positive
semi-definite, we suggest to use the following modification: There exist an or-
thogonal matrix Q and a diagonal matrix D such that

D = Q′T̂Q,

where the diagonal elements of D are the eigenvalues of T̂. We construct a new
matrix D∗ by replacing all negative entries of D by zero. Then, a positive semi-
definite alternative T̂∗ for T̂ is given by

T̂∗ = QD∗Q′.

Instability and lack of positive definiteness is a general problem in empirical
covariance estimation.As an alternative, the literature offers various approaches
that use the concept of shrinkage.

6. RELATIVE GAIN IN EFFICIENCY

To understand the benefits of credibility estimation, we take a closer look at the
mean squared errors

E[‖B̂i − Bi‖2] and E[‖β̃i − Bi‖2].
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The effort of considering the whole portfolio instead of a single cluster will be
worth if the improvement in terms of the mean squared errors is large, i.e. if

rMSEi = E[‖B̂i − Bi‖2]
E[‖β̃i − Bi‖2]

(6.1)

is clearly smaller than 1. By definition of the credibility estimator, rMSEi ≤ 1
always holds.

6.1. Simulation study

We evaluate the performance of the credibility estimators by means of the ratios
of the simulated mean squared errors (simulated rMSE)∑m

k=1 ‖ ˆ̂Bi (ωk) − Bi (ωk)‖2∑m
k=1 ‖β̃i (ωk) − Bi (ωk)‖2

, i = 1, . . . N. (6.2)

A value of (6.2) smaller than 1 means that the credibility estimator performs
better than the PMLE. Its computation is based on m = 10, 000 scenarios de-
noted by ω1, . . . , ωm.

6.1.1. Poisson case. We consider a Poisson-CGLM for several constellations
of the portfolio and sample sizes (N, n). The Bi are independently drawn from
a normal distribution with mean vector (2, 1) and covariance matrix I2. The
covariate vectors are given by

Xi j = Xj = (
1 j

n

)
, j = 1, . . . , n,

including an overall and a linear effect. Table 1 shows the simulated rMSEs for
cluster i = 1. The columns labelled no.1 list the relative improvement of the
credibility estimator without making T̂ positive semi-definite. The modification
is applied in the estimation whose results are given in columns no.2. There are
noticeable differences between these two estimators and the modification is in
fact absolutely essential in the cases n = 50 and n = 100 to make the credibil-
ity estimator performing better than the PMLE. Generally, extremal behaviour
can be observed in the first row (N = 5) and in the last column (n = 100).
If the portfolio contains only a small number of clusters, the estimation of the
structural parameters as described in Theorem 5.2 will not work well. There are
simply too few independent observations to estimate the empirical means and
covariance matrices properly. When sample size n is large, the relative improve-
ment is very small. That does not mean that credibility estimation performs
badly. Rather, the opposite is the case: The credibility estimator is as good as
the PMLE, which is already itself a good estimator. In all other constellations
of (N, n), the credibility estimator shows considerable improvements in sense
of the mean squared error. Lack of statistical information in single clusters can
be compensated by the huge amount of information that the portfolio delivers.
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TABLE 1

RELATIVE IMPROVEMENT OF THE CREDIBILITY ESTIMATOR COMPARED TO THE PMLE. THE LINE MSE SHOWS
THE SIMULATED MEAN SQUARED ERROR OF THE PMLE.

n = 15 n = 25 n = 50 n = 100

N no.1 no.2 no.1 no.2 no.1 no.2 no.1 no.2

5 2.14 1.02 3.33 1.06 5.89 1.05 12.04 1.05
10 1.12 0.90 1.47 0.95 2.02 0.98 3.28 0.98
20 0.90 0.85 1.01 0.90 1.18 0.95 1.49 0.97
30 0.86 0.83 0.93 0.89 1.04 0.94 1.20 0.97
50 0.82 0.81 0.89 0.88 0.97 0.93 1.05 0.96

MSE 0.132 0.078 0.038 0.019

It is also remarkable that the n-asymptotic credibility formula delivers a good
approximation for even a small number of n, e.g. n = 15.

6.1.2. Binomial case. We consider a portfolio of N = 30 independent clusters
each with sample size n = 25. The assumptions on the Bi and Xi j remain the
same as in the Poisson case. Conditionally, given Bi , the Yi j follow a Binomial
distribution with success probability characterized through the linear predic-
tor Xj Bi via the logit-link. The weights wi j in (2.8) are equal to the nuisance
parameters, i.e. the number of trials, which we choose as

wi j = 10 + i

for all i and j . Figure 1 shows the values of (6.2) for several constellations and
estimators. The top-left plot belongs to the current case of N = 30 and includes
the simulated rMSEs for two different estimators. The solid line (1) represents
our proposed credibility estimator, i.e. T̂ is made positive semi-definite and β̂0 is
the weighted sample mean (5.9). Line (2) uses the unweighted sample mean of
the PMLEs for the estimation of the E[β̃i ]. The credibility estimators perform
well for each cluster and we observe improvements in a range between 30% and
65%. Improvements compared to the PMLEare especially large for clusters with
small weights, i.e. a small number of trials. The line (2) is hardly visible since it is
almost identical to (1) but there is a minor advantage for (1) in the per thousand

range. In fact, both estimators for E[β̃i ] and also the credibility estimators ˆ̂Bi do
not show any noteworthy differences. However, it should be mentioned that the
weighted sample mean β̂0 has, as originally motivated, a lower variance in both
of its components. The last modification concerns T̂ and we strongly recom-
mend to use the positive semi-definite version of T̂. Without this modification,
the simulated ratio of mean squared errors without are in some cases clearly
greater than 1, see the bottom-left plot in Figure 1. In the worst case, it reaches
the value 15.40 and indicates a bad performance of the credibility estimator. The
top-right and bottom-right plots in Figure 1 are the analogues of the left ones
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FIGURE 1: Plots of the rMSE for a Binomial-CGLM with N = 30 (top and bottom left) and N = 60 (top
and bottom right). The lines correspond to the following estimators. Simulated rMSE (1): The proposed

credibility estimator with positive semi-definite T̂ and weighted sample mean β̂0.
N−p−2
N−1 τ̂−1 instead. Simulated

rMSE (2): The credibility estimator using the unweighted sample mean instead. Simulated rMSE (3): The
credibility estimator using a non-modified version of T̂ instead.

for the case N = 60. Estimation of the structural parameters should be more
accurate and in fact, the simulated rMSEs of the first 30 clusters have improved
by around 5%. When we take a look at the modified estimators, we observe the
same behaviour as in the case N = 30. Estimator (2) is almost identical to (1)
but a non-modified T̂ should be avoided, see the bottom-right plot.

7. APPLICATION TO MORTALITY DATA

GLMs are a popular tool for studying mortality data of single populations. If
also mortality data for related populations is available, the CGLM approach
can help to improve statistical estimates for single populations.

7.1. The model

Suppose that we observe mortality statistics for people of ages x = x1, . . . , xm
and calendar years t = 1, . . . ,T, where m is the number of age groups. For
example, the Human-Mortality-Database (2014) provides death counts Dx(t)
as well as the initial exposure-to-risk Ex(t) for each age x and year t. Poisson
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models and Poisson-GLMs are typical tools for studying counted data and this
also applies for the current case of mortality data. For instance, the Cairns–
Blake–Dowd model (CBD model) by Cairns et al. (2006) is a Poisson model
with the structure

logE[Dx(t)] = log Ex(t) + κ1(t) + κ2(t)(x− x̄) (7.1)

for x = x1, . . . , xm and t = 1, . . . ,T. The two κ-terms denote the age in-
dependent and age dependent period effects, respectively. The latter describes
the impact of linear age effects, where x̄ = 1

2 (x1 + xm) is the central age in
fit. Model (7.1) can be also written in form of a GLM by choosing the GLM
parameter

β = (
κ1(1) . . . κ1(T) κ2(1) . . . κ2(T)

)′ ∈ R2T

and the design matrix X = (X(1), X(2)) ∈ RmT,2T with

X(1) = IT ⊗ 1m = IT ⊗

⎛⎜⎝1...
1

⎞⎟⎠ and X(2) = IT ⊗

⎛⎜⎝x1 − x̄
...

xm − x̄

⎞⎟⎠ . (7.2)

Recall that the Kronecker product of matrices G = (gi j ) ∈ Ra,b and H ∈ Rc,d

is given by

G ⊗ H =

⎛⎜⎝g11H . . . g1bH
...

. . .
...

ga1H . . . gabH

⎞⎟⎠ ∈ Rac,bd .

It is easy to check that the linear predictor with offset log Ex(t) represents the
right-hand side of (7.1). The GLM can now be solved for the unknown period
parameters κ1(t) and κ2(t).

We adjust the CBD model (7.1) to fit into the credibility framework de-
scribed by (A1) to (A3) in Section 2. The observed death counts are assumed
to be drawn from random variables Dix(t) that, conditionally on Bi , follow a
Poisson distribution. The linear predictor is given by

logE[Dix(t) | Bi ] = log Eix(t) + Ki1(t) + Ki2(t)(x− x̄), (7.3)

where the first T entries of Bi correspond to the process Ki1 = (Ki1(t))Tt=1 and
the last T to Ki2 = (Ki2(t))Tt=1. The two processes are assumed to be indepen-
dent. We can reformulate structure (7.3) in the form of (2.9) by using the design
matrix X = (X(1), X(2)) as defined in (7.2).

7.2. Empirical results

Our portfolio consists of N = 36 countries which are Australia, Austria, Be-
larus, Belgium, Bulgaria, Canada, Czech, Denmark, Estonia, Finland, France,
East Germany, West Germany, Hungary, Iceland, Ireland, Italy, Japan, Latvia,
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FIGURE 2: The quadratic deviations between the credibility and ML estimators for Ki1 and Ki2 respectively.

Lithuania, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portu-
gal, Russia, Slovakia, Scotland, Spain, Sweden, Switzerland, Taiwan,UK,USA
and Ukraine. These are all countries of the Human-Mortality-Database (2014)
for which data is available from 1980 on or earlier. Note that Germany is sep-
arately considered in its eastern and western part. We fit the CBD model for
the ages 90 to 100 and the calendar years 1980 to 2009, thus m = 11 and
T = 30. First, individual MLE are obtained by fitting the conditional model,
which is (7.1), separately for all countries. In doing so, we use the normed design
matrix (

X(1)

‖X(1)‖
X(2)

‖X(2)‖
)

to make the two period effects comparable. The estimators are then combined
to the credibility estimators according to formula (5.11). We are especially in-
terested in the countries where the credibility estimates clearly differ from the
conditional maximum likelihood estimates. Figure 2 shows the quadratic devi-
ations. The credibility and MLE almost agree for most of the countries but Ice-
land and Luxembourg clearly stand out. Since Iceland and Luxembourg have
the smallest population of all N countries, the result is plausible and agrees with
the theoretical idea of credibility theory. The plots in Figure 3 display the esti-
mators for Ki1 of Iceland. An interesting behaviour can be observed for Iceland
in year 1983, when none of its three 100-years-old citizens died. The MLE is
strongly affected and exhibits a downward peak. The same incidence happens
in Luxembourg, 1984. In that year, all 22 of the 96-year-old people survived. If
we look at the collective estimates (line beta0) for the years 1983 and 1984, we
cannot recognize any unusual downwardmovements. The credibility estimators
weaken the peaks of the MLE. There are alternative ways to smooth the esti-
mators, for example using a penalty term in the likelihood function, see Currie
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FIGURE 3: The credibility CBD model for high ages, estimators for Ki1 of Iceland (left) and Luxembourg
(right).

et al. (2004). The advantage of the CGLM approach is that it relies much more
on empirical observations than a a priori model assumptions.

The empirical example shows that the credibility approach becomes useful
when populations are studied that have the size of Luxemburg’s population or
smaller. In recent years, many life insurers in Europe started to use life tables for
increasingly smaller sub-populations, differentiating by postcode areas, smok-
ing habits, and so on. This trend towards smaller sub-populations makes the
credibility approach increasingly relevant and useful.

8. DISCUSSION

Theoretically every GLM can be extended to a CGLM as far as data is avail-
able and properly structured. Yet, additional regularity conditions are needed
in order to verify that the credibility estimators really behave well. We sug-
gested a set of regularity conditions that define a large class of canonical
GLMs. For this class, we calculated asymptotic properties for the correspond-
ing credibility estimators, showing that the credibility estimators indeed behave
well. The simulation study and the mortality example indicate that the the-
oretical gain in efficiency indeed materializes in practice whenever the num-
ber of clusters is large enough. Special caution is needed for the estimation of
the hyperparameters (structural parameters). We presented and discussed sev-
eral modifications for the estimators, but it seems that there is still room for
improvement.

9. PROOFS

The remainder of the paper is devoted for proofs and we begin with that of
Theorem 3.1 which claims asymptotic existence of the PMLE.
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9.1. Proof of Theorem 3.1

Lemma 9.1. The scaled Fisher information matrices converge uniformly on B, i.e.

sup
β∈B

∥∥∥∥1n Fin(β) − Fi (β)

∥∥∥∥ → 0

as n → ∞ for all i = 1, . . . , N.

Proof 1. Since 1
n Fin converges pointwise and its domain B is compact, uni-

form convergence is guaranteed if the sequence ( 1n Fin)n is equicontinuous. This
is indeed the case. First, recall that a sequence of functions (gn) on D is said to
be equicontinuous if for all x ∈ D and ε > 0, there exists a δε,x > 0 such that
for all y ∈ D with ‖y− x‖ < δε,x and all n ∈ N,

‖gn(x) − gn(y)‖ < ε.

In short, the δ depends only on ε and x but not on n. A sufficient condition for
equicontinuity is that the family is Lipschitz continuous with the same Lipschitz
constant. In fact, for all β1, β2 ∈ B, the mean value theorem yields that∥∥∥∥1n Fin(β1) − 1

n
Fin(β2)/n

∥∥∥∥ ≤ 1
n

n∑
j=1

∥∥wi j X′
i j Xi j

(
vi j (β1) − vi j (β2)

)∥∥
≤ 1
n

n∑
j=1

|wi j |
∥∥X′

i j Xi j
∥∥ ∥∥∥ sup

γ∈β1β2

X′
i j b

(3)(ξi j + Xi jγ )

∥∥∥ ‖β1 − β2‖

≤ L‖β1 − β2‖ .

Such a bound L > 0 exists since b′ = g−1 is twice continuously differentiable
by (R2) and since the domains of wi j , ξi j , Xi j and γ are bounded.

Throughout the following proofs, the cluster index i is omitted for notational
simplicity, e.g. a particular element of B = (B1, . . . , BN) will be denoted by B
instead of Bi .

The set Mδ
n . Recall the constructions (3.4)

Nn(δ, B) = {β ∈ B :
√
n‖β − B‖ ≤ δ}, n ∈ N,

for δ > 0 and (3.5)

Mδ
n = {ln(β) − ln(B) < 0, for all β ∈ ∂Nn(δ, B)}.

We have already seen that √
n‖β̂n − B‖ ≤ δ

whenever the eventMδ
n occurs. What remains to show is that 1−P(Mδ

n) vanishes
for a particular choice of δ. More precisely, it suffices to prove that for all η > 0
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there exist a δ > 0 and an nη ∈ N such that

P
(∃β ∈ ∂Nn(δ, B) : ln(β) − ln(B) ≥ 0

) ≤ η, for all n ≥ nη.

Let δ > 0 and β ∈ ∂Nn(δ, B). The Taylor expansion of ln around B gives

ln(β) − ln(B) = (β − B)′sn(B) − 1
2
(β − B)′Fn(ξ)(β − B), (9.1)

with derivatives sn = ∂ln/∂β and Fn = −∂2ln/(∂β∂β ′) and an intermediate point
ξ which lies between β and B. By construction of Nn(δ, B),

√
n‖β − B‖ = δ

and thus, the vector

v :=
√
n

δ
(β − B)

fulfils ‖v‖ = 1. Substituting with v, the Taylor expansion (9.1) can be written as

ln(β) − ln(B) = δ√
n
v′sn(B) − 1

2
δ2v′ Fn(ξ)

n
v,

where the two summands on the right-hand side satisfy

v′sn(B) ≤ max
‖z‖=1

|z′sn(B)| ≤ ‖sn(B)‖ (9.2)

v′ Fn(ξ)

n
v ≥ min

‖z‖=1
z′
Fn(ξ)

n
z. (9.3)

The last inequality of (9.2) follows by the Cauchy–Schwarz inequality.

9.1.1. Lower bound for (9.3). Since B ∈ Nn(δ, B) ⊂ B and β ∈ ∂Nn(δ, B),
it directly follows from convexity of B that ξ ∈ Nn(δ, B). Now uniform con-
vergence of the scaled Fisher information matrix, cf. Lemma 9.1, yields a lower
bound for the expression

z′
Fn(ξ)

n
z, ‖z‖ = 1.

Specifically, there exists for all ε > 0 an nε ∈ N which does not dependent on ξ

such that for all n ≥ nε , ∥∥∥∥ Fn(ξ)

n
− F(ξ)

∥∥∥∥ ≤ ε, a.s.

It follows for all z ∈ Rp with ‖z‖ = 1 that∣∣∣∣z′ Fn(ξ)

n
z− z′F(ξ)z

∣∣∣∣ ≤ ε
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and thus,

z′
Fn(ξ)

n
z ≥ z′F(ξ)z− ε.

By assumption the matrix F(ξ) is positive definite for all ξ . Furthermore, as
a uniform convergent limit of continuous functions Fn, F is also continuous.
Boundedness of the domain therefore provides for sufficiently small ε and some
d > 0 that

z′
Fn(ξ)

n
z ≥ d > 0, for all n ≥ nε.

9.1.2. Putting the pieces together. Altogether, we have

P (∃β ∈ ∂Nn(δ, B) : ln(β) − ln(B) ≥ 0)

= P

(
∃β ∈ ∂Nn(δ, B) : (β − B)′sn(B) ≥ 1

2
(β − B)′Fn(ξ)(β − B)

)
= P

(
∃β ∈ ∂Nn(δ, B) :

δ√
n
v′sn(B) ≥ 1

2
δ2v′ Fn(ξ)

n
v

)
≤ P

(
δ√
n
‖sn(B)‖ ≥ 1

2
δ2 min

‖z‖=1
z′
Fn(ξ)

n
z
)

≤ P

(
‖sn(B)‖ ≥ 1

2

√
nδd

)
(9.4)

for n ≥ nε . By Chebyshev’s inequality, the last expression satisfies

P

(
‖sn(B)‖ ≥ 1

2

√
nδd

)
≤ 4
nδ2d2

E
[‖sn(B)‖2] , (9.5)

where the expectation linearly grows in n. More precisely,

E
[‖sn(B)‖2] =

p∑
k=1

E

⎡⎢⎣
⎛⎝ n∑

j=1

w j Xjk
(
Yj − μ j (B)

)⎞⎠2
⎤⎥⎦

=
p∑

k=1

E

⎡⎢⎣E

⎡⎢⎣
⎛⎝ n∑

j=1

w j Xjk
(
Yj − E[Yj | B])

⎞⎠2

| B

⎤⎥⎦
⎤⎥⎦

=
p∑

k=1

E

⎡⎣ n∑
j=1

w2
j X

2
jkVar(Yj | B)

⎤⎦
≤ pnV.
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The covariate vectors and weights are bounded according to assumption (R3)
and (R6). In addition, boundedness ensures that the conditional variances as
continuous images w j b′′(ξ j + Xj B) are bounded. Hence, the above summands
are bounded by some V > 0.

For a given η > 0, we can finally choose nη = nε and

δ := 2

√
pV
ηd2

.

For these choices,

1 − P(Mδ
n) = P

(∃β ∈ ∂Nn(δ, B) : ln(β) − ln(B) ≥ 0
) ≤ η

for all n ≥ nη, which shows the asymptotic occurrence of Mn.
For the second part of the theorem, we choose a null sequence (ηn) which

converges to zero strictly slower than 1/n. Then, since δn = const ·η−1/2
n , δn/

√
n

vanishes and the neighbourhood shrinks to a singleton

Nn(δ, B) → {B}, a.s.

as n → ∞. This completes the proof.

Remark q-variate exponential families. The proof can be easily extended
from univariate to q-variate simple exponential families. We only need to verify
the last step (9.5). Specifically, we have q-variate quantities Xjk, Yj and μ j (B)

so that

E
[‖sn(B)‖2] =

p∑
k=1

E

⎡⎢⎣
⎛⎝ n∑

j=1

w j X′
jk

(
Yj − μ j (B)

)⎞⎠2
⎤⎥⎦

=
p∑

k=1

E

⎡⎢⎣E

⎡⎢⎣
⎛⎝ n∑

j=1

w j Xjk
(
Yj − E[Yj | B])

⎞⎠2

| B

⎤⎥⎦
⎤⎥⎦

=
p∑

k=1

E

⎡⎣ n∑
j=1

w j X′
jk� j (B)Xjk

⎤⎦
≤ pnV.

We can find such a constant V > 0 since every covariate vector and every com-
ponent of the conditional covariance matrix � j (B) is almost surely bounded.
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9.2. Proof of Theorem 3.4

All proofs are based on (3.6) and Theorem 3.1, i.e.

‖β̂n − B‖1Mn ≤ δn√
n
, a.s.

with a vanishing upper bound and P(Mn) → 1 at the same time. Also recall that
B is almost surely bounded by some constant cB > 0.

ad i. Let ε > 0. Then, β̃n is weakly consistent since

P(‖β̃n − B‖ > ε) = P(‖β̂n − B‖ > ε | Mn)P(Mn) + P(‖B‖ > ε | Mc
n)P(Mc

n)

n→∞−→ 0.

ad ii. Concerning asymptotic unbiasedness, we have

‖E[β̃n] − E[B]‖ ≤ E[‖β̃n − B‖]
= E[‖β̂n − B‖1Mn ] + E[‖B‖1Mc

n
]

≤ δn√
n

P(Mn) + cBP(Mc
n)

n→∞−→ 0.

ad iii. We claimed that

Cov(E[β̃n | B]) n→∞−→ Cov(B).

In fact,∥∥Cov(E[β̃n | B]) − Cov(B)
∥∥

=
∥∥∥E [(E[β̃n | B] − B+ B− E[β̃n]

) (
E[β̃n | B] − B+ B− E[β̃n]

)′]
−E[BB′] + E[B]E[B]′

∥∥
≤ E

[∥∥E[β̃n | B] − B
∥∥2]+ 2E

[∥∥E[β̃n | B] − B
∥∥ ∥∥B− E[β̃n]

∥∥]
+
∥∥∥E [(B− E[β̃n]

) (
B− E[β̃n]

)′]− E[BB′] + E[B]E[B]′
∥∥∥

= : I + 2II + III,
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where all summands I to III turn out to be null sequences. Specifically,
by claim (ii),

III ≤
∥∥∥E[B] (E[B] − E[β̃n]

)′∥∥∥+
∥∥∥E[β̃n] (E[β̃n] − E[B]

)′∥∥∥
≤ ∥∥E[B]∥∥∥∥E[B] − E[β̃n]

∥∥+ ∥∥E[β̃n]∥∥∥∥E[β̃n] − E[B]
∥∥ → 0.

Note that the L1-convergent sequence (β̃n) satisfies

sup
n

‖E[β̃n]‖ ≤ sup
n

E[‖β̃n‖] < ∞. (9.6)

For the summand II,

E
[∥∥E[β̃n | B] − B

∥∥ ∥∥B− E[β̃n]
∥∥]

≤ δn√
n

E
[∥∥B− E[β̃n]

∥∥1Mn

]+ cBE
[∥∥B− E[β̃n]

∥∥1Mc
n

]
.

By (9.6),

E
[∥∥B− E[β̃n]

∥∥1Mn

] ≤ cBP(Mn) + sup
n

E[‖β̃n‖]P(Mn) < ∞,

E
[∥∥B− E[β̃n]

∥∥1Mc
n

] ≤ cBP(Mc
n) + sup

n
E[‖β̃n‖]P(Mc

n) → 0

so that II vanishes. At last, convergence of summand I easily follows as

I = E
[∥∥E[β̂n | B] − B

∥∥2 (1Mn + 1Mc
n
)
]

≤ δ2n

n
P(Mn) + c2BP(Mc

n)

→ 0.

We similarly show the second part of the claim, which was

Cov(E[β̃n | B], B) → Cov(B).

The proof works analogue to above, but we add 0 = −B+ B only in the
first factor of Cov(E[β̃n | B], B).

ad iv. Limiting behaviour of the conditional covariance matrix is derived sim-
ilarly to (iii). Since

‖Cov(β̃n | B)‖ ≤ E[‖β̃n − E[β̃n | B]‖2 | B]
≤ E[‖β̃n − B‖2 | B] + 2E[‖β̃n − B‖‖B− E[β̃n | B]‖ | B]

+ E[‖B− E[β̃n | B]‖2 | B]
=: I + 2II + III,
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it suffices to prove that all three summands converge to zero in the proper
senses. By using the monotonicity of the conditional expectation, we
obtain

I = E[‖β̃n − B‖21Mn | B] + E[‖β̃n − B‖21Mc
n
| B]

≤ δ2n

n
P(Mn | B) + c2BP(Mc

n | B).

The last expression vanishes almost surely and in L1. We get the same
upper bound for II and III as

II = E[‖β̃n − B‖‖B− E[β̃n | B]‖1Mn | B]
+ E[‖β̃n − B‖‖B− E[β̃n | B]‖1Mc

n
| B]

= E[‖β̃n − B‖‖E[B− β̃n | B]‖1Mn | B]
+ E[‖β̃n − B‖‖E[B− β̃n | B]‖1Mc

n
| B]

≤ δ2n

n
P(Mn | B) + c2BP(Mc

n | B)

and

III = E[‖B− E[β̃n | B]‖21Mn | B] + E[‖B− E[β̃n | B]‖21Mc
n
| B]

≤ δ2n

n
P(Mn | B) + c2BP(Mc

n | B).

ad v. Conditional on B = β, the relation

FT/2
n (β̂n)(β̂n − B)

d−→ N (0, I)

holds under Pβ . It follows that β̂n is also asymptotically Normal under
the unconditional measure P. In detail, let Z ∼ N (0, Ip) and A be a
Borel set in Rp, then by the dominated convergence theorem,

lim
n→∞ P

(
FT/2
n (β̂n)(β̂n − B) ∈ A

)
=
∫
B
lim
n→∞ Pβ

(
FT/2
n (β̂n)(β̂n − B) ∈ A

)
P(B ∈ dβ)

=
∫
B

Pβ(Z ∈ A)P(B ∈ dβ)

= P(Z ∈ A).
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The asymptotic normality of the PMLE β̃n can be directly concluded.
We have

FT/2
n (β̃n)(β̃n − B) = FT/2

n (β̂n)(β̂n − B)1Mn − FT/2
n (0)B1Mc

n
.

Since 1Mn converges in probability to 1 and FT/2
n (0)B1Mc

n
converges

in probability to 0, the claim follows by Slutsky’s theorem, cf. Klenke
(2006).
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