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Abstract

We study the Markov chain Monte Carlo estimator for numerical integration for func-
tions that do not need to be square integrable with respect to the invariant distribution.
For chains with a spectral gap we show that the absolute mean error for Lp functions,
with p ∈ (1, 2), decreases like n(1/p)−1, which is known to be the optimal rate. This
improves currently known results where an additional parameter δ > 0 appears and the
convergence is of order n((1+δ)/p)−1.
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1. Introduction

Let (X ,FX , π ) be a probability space and f : X →R be measurable as well as
π -integrable. For a random variable X ∼ π we are interested in approximating the expectation

E[f (X)] =
∫
X

f (x) π (dx) = π (f ).

A common approach is to use a Markov chain Monte Carlo (MCMC) method. Requiring the
density of π only in non-normalised form, many MCMC algorithms provide powerful tools
for scientific and statistical applications. The main idea behind these approaches is to construct
a Markov chain (Xn)n∈N, having π as the invariant distribution, and to estimate π (f ) via

Snf = 1

n

n∑
j=1

f (Xj).

Under fairly mild conditions we have Snf → π (f ) almost surely as n → ∞; cf. [2] or
[13, Chapter 17]. This ensures the strong consistency of the MCMC estimator, yet it is clearly
of interest to have non-asymptotic error bounds. For instance, given some p ∈ [1,∞), we can
consider the p-mean error,

E[|Snf − π (f )|p]; (1.1)

however, other criteria are also feasible – see, e.g., [9].
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2 J. HOFSTADLER

Setting p = 2 in (1.1), we speak of the mean squared error, and in different settings explicit
bounds are known, e.g. under a Wasserstein contraction assumption [8], spectral gap conditions
[17], or if we have geometric/polynomial ergodicity [10]. For the mean squared error to make
sense we require a finite second moment of f , i.e. ‖f ‖2

L2(π )
= π (f 2)<∞. On the other hand,

the absolute mean error, given by E|Snf − π (f )|, is well defined and finite as long as f is
π -integrable. Bounds for the absolute mean error for functions with ‖f ‖p

Lp(π ) = π (|f |p)<∞,
where p< 2, are still rare. In [18] it is shown that, under a spectral gap condition, for any
p ∈ (1, 2),

sup‖f ‖Lp(π )≤1 E[|Snf − π (f )|] ≤ C

n1−((1+δ)/p)
, (1.2)

with constants δ > 0 and C ∈ (0,∞).
Setting k = 0 in [15, Proposition 1, Section 2.2.9] (see also [7, Section 5]) shows that in

general we have the lower bound

sup‖f ‖Lp(π )≤1 E[|Snf − π (f )|] ≥ c

n1−(1/p)
, (1.3)

where c ∈ (0,∞) is a constant independent of n.
Even though δ > 0 in (1.2) may be chosen arbitrarily small, it is natural to ask whether

it can be removed completely, such that we would have the same rate as in (1.3). Under the
(strong) assumption of uniform ergodicity and reversibility we know that this is the case; cf.
[18, Theorem 1]. To the best of the author’s knowledge this is the only situation where optimal
rates are known. The goal of this note is to extend this result to the spectral gap setting – see
Theorem 2.1, where we show that

sup‖f ‖Lp(π )≤1 E[|Snf − π (f )|] ≤ C̃p

n1−(1/p)

for p ∈ (1, 2], with an explicit expression for the constant C̃p.
Let us sketch the proof. The main idea is to employ the Riesz–Thorin interpolation theorem,

a technique which goes back at least to [7] in Monte Carlo theory, and was also used to derive
(1.2) in [18]. To this end, we first derive a result for the case where (Xn)n∈N is a stationary chain;
see Proposition 3.1. Then we apply a change of measure argument to deduce Theorem 2.1.
It is worth mentioning that, based on Proposition 3.1, it is also possible to generalise
[17, Theorem 3.41]; see Corollary 3.1.

The rest of this note is organised as follows. In Section 2 we state and discuss our assump-
tions, as well as the main result. The proofs, together with some intermediate results, can be
found in Section 3.

2. Error bounds for MCMC integration

This section contains our main result, Theorem 2.1, together with the required notation and
assumptions. Let us start by specifying the general setting.

We assume that the state space (X ,FX ) is Polish with FX being countably generated. Let
K be a Markov kernel and ν a probability measure, called the initial distribution, both defined
on (X ,FX ). Then, the Markov chain corresponding to K and ν, say (Xn)n∈N, is defined on a
probability space (�,F , Pν). In particular, such a probability space exists. We assume that π
is the unique invariant distribution of K and that (Xn)n∈N is ψ-irreducible. For definitions and
further details we refer to [4, 13].
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Optimal convergence rates of MCMC integration 3

Given p ∈ [1,∞), we define Lp(π ) as the set of all functions f : X →R such that
‖f ‖p

Lp(π ) = π (|f |p)<∞. Similarly, L∞(π ) denotes the set of functions with finite ‖f ‖L∞(π ) =
ess supx∈X |f (x)|. We follow the usual convention that two functions in Lp(π ), with p ∈ [1,∞],
are considered as equal if they are equal π -almost everywhere. Then, (Lp(π ), ‖·‖Lp(π ))
is a normed space. Moreover, L2(π ), equipped with 〈f , g〉L2(π ) = ∫

X f (x)g(x) π (dx), is
a Hilbert space with induced norm ‖·‖L2(π ), and so is the closed subspace L2

0(π ) :=
{f ∈ L2(π ) : π (f ) = 0}.

Let p ∈ [1,∞]; then the Markov kernel K induces a linear operator K : Lp(π ) → Lp(π )
via f �→ Kf (·) = ∫

X f (x′) K(·, dx′). Indeed, the operator K is well defined and we have
‖K‖Lp(π )→Lp(π ) = 1; we refer to [17, Section 3.1] for further details.

We denote by Id the identity on L2(π ). The following condition about the operator Id − K,
restricted to L2

0(π ), is our main assumption.

Assumption 2.1. Assume that Id − K, considered as an operator from L2
0(π ) to L2

0(π ), has a
linear and bounded inverse with ‖(Id − K)−1‖L2

0(π )→L2
0(π ) ≤ s<∞.

Remark 2.1. The invertibility of Id − K, restricted to a suitable subspace of L2(π ), was also
studied in [11] for uniformly ergodic chains and [12] for V-uniformly ergodic chains. In partic-
ular, the existence of (Id − K)−1 on an appropriate subspace was used there to characterise the
convergence behaviour of the mean squared error. Moreover, non-reversible chains on finite
state spaces were studied recently in [3]. There, bounds for the mean squared error are shown,
where the second smallest singular value of Id − K plays an important role.

We note that Assumption 2.1 is closely related to a spectral gap; there are, however, different
definitions for a spectral gap:

• Some authors (see, e.g., [1, 4]) say K admits a(n) (absolute L2) spectral gap if
supλ∈S0

|λ|< 1, where S0 is the spectrum of K : L2
0(π ) → L2

0(π ). This is equivalent to
the existence of some m ∈N such that ‖Km‖L2

0(π )→L2
0(π ) < 1; cf. [4, Proposition 22.2.4].

• On the other hand, a different definition, for instance used in [6, 14, 17, 18], is to say
that K admits a(n) (absolute L2) spectral gap if ‖K‖L2

0(π )→L2
0(π ) < 1.

If K is reversible, which implies that the corresponding Markov operator is self-adjoint on
L2(π ), then both definitions are equivalent.

Let us emphasise that either of the above definitions of a spectral gap implies that
Assumption 2.1 is true, including in the non-reversible case. Spectral gap results were estab-
lished for a number of MCMC methods, see for instance [1, 6, 14]; see also [17, Section 3.4]
and [16, Theorem 2.1]. Moreover, we note that under Assumption 2.1 we cover the setting of
[18, Theorems 1 and 2].

If for the initial distribution we have ν� π with Radon–Nikodým derivative dν/dπ ∈ Lq(π )
for some q ∈ [1,∞], then we set Mq = ‖dν/dπ‖Lq(π ). In particular, for q = ∞ we have
supA∈FX [ν(A)/π (A)] ≤ M∞, in which case ν is called M∞-warm.

The following theorem is our main result, which shows that under Assumption 2.1 we have
the optimal rate of convergence for the absolute mean error.

Theorem 2.1. Let Assumption 2.1 be true, p ∈ (1, 2], and assume that ν is absolutely contin-
uous with respect to π with Radon–Nikodým derivative dν/dπ ∈ Lq(π ), where q> 0 satisfies
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4 J. HOFSTADLER

p−1 + q−1 = 1. Then, for any f ∈ Lp(π ) and any n ∈N,

Eν[|Snf − π (f )|] ≤ CpMq‖f ‖Lp(π )

n1−1/p
,

where Cp = 22/p−1 · (4s)1−1/p and Mq = ‖dν/dπ‖Lq(π ).

Remark 2.2. We note that Theorem 2.1 is still true, with the same bound, if we replace Snf by
Sn,n0 f = 1/n

∑n
j=1 f (Xj+n0 ), which corresponds to using a burn in of length n0 ∈N.

Remark 2.3. Let p ∈ (1, 2], q ∈ [1,∞) with p−1 + q−1 = 1, and Cp,Mq as specified in
Theorem 2.1. Given c ∈R and f ∈ Lp(π ), we set fc = f + c, and note that Snfc − π (fc) =
Snf − π (f ). Thus, for fixed f ∈ Lp(π ) and any c ∈R we have

Eν[|Snfc − π (fc)|] =Eν[|Snf − π (f )|] ≤ CpMq‖f ‖Lp(π )

n1−1/p
,

even though ‖·‖Lp(π ) is not invariant with respect to linear shifts.

Remark 2.4. In Theorem 2.1 the quantity ‖dν/dπ‖Lq(π ) appears. In some sense this penalises
our choice of the initial distribution ν, which is allowed to differ from the target π . In the
setting where a fixed computational budget is available it may be worth spending some effort
to find a ‘good’ initial distribution ν. However, discussing optimal choices of ν with respect to
different theoretical and/or practical aspects is beyond the scope of this note.

3. Proofs

In this section we prove our main results. Recall that the chain (Xn)n∈N is defined on the
probability space (�,F , Pν). For p ∈ [1,∞] we define Lp(Pν) as the set of random variables Y
on (�,F , Pν) such that ‖Y‖p

Lp(Pν ) =Eν[|Y|p]<∞. As for the Lp(π ) spaces, we consider two
random variables Y1, Y2 ∈ Lp(Pν) as equal if Y1 = Y2 holds Pν-almost surely. Then, (Lp(Pν),
‖ · ‖Lp(Pν )) is a normed space.

The first result of this section provides a bound for the mean squared error of Snh for the
case where (Xn)n∈N is stationary, i.e. where X1 ∼ π , and h is a centred function.

Lemma 3.1. Let Assumption 2.1 be true and assume that (Xn)n∈N has initial distribution π ,
i.e. X1 ∼ π . Then, for any h ∈ L2

0(π ) and any n ∈N, Eπ [|Snh|2] ≤ (4s/n)‖h‖2
L2(π )

.

Proof. Expanding Eπ [|Snh|2] and using [17, Lemma 3.25], we get

Eπ [|Snh|2] = 1

n2

n∑
j=1

n∑
k=1

Eπ [h(Xj)h(Xk)] = 1

n2

n∑
j=1

n∑
k=1

〈
h,K|j−k|h

〉
L2(π ).

We have that
∑n

j=1
∑n

k=1 K|j−k| = 2
∑n−1
�=1 (n − �)K� + nId = 2

∑n−1
�=0 (n − �)K� − nId.

Moreover, by induction it follows that
∑n−1
�=0 (n − �)K� = (Id − K)−1 ∑n

m=1 (Id − Km), where
all the operators are understood to act on L2

0(π ).
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Optimal convergence rates of MCMC integration 5

Hence, again considering all operators to act on L2
0(π ), the following identity holds:

n∑
j=1

n∑
k=1

K|j−k| = 2(Id − K)−1
n∑

m=1

(Id − Km) − nId

= 2n(Id − K)−1 − 2(Id − K)−1
n∑

m=1

Km − nId

= n(Id − K)−1(Id + K) − 2(Id − K)−1
n∑

m=1

Km. (3.1)

Set Rn = n(Id − K)−1(Id + K) − 2(Id − K)−1 ∑n
m=1 Km. By the triangle inequality and the

bounds ‖(Id − K)−1‖L2
0(π )→L2

0(π ) ≤ s and ‖Km‖L2
0(π )→L2

0(π ) ≤ 1, which are true for any m ∈N,

we obtain ‖Rn‖L2
0(π )→L2

0(π ) ≤ 2sn + 2sn = 4sn. Since
〈
h,K|j−k|h

〉
L2(π ) = 〈

h,K|j−k|h
〉
L2

0(π ) for

any j, k ∈ {1, . . . , n}, it follows from (3.1) and the bound on ‖Rn‖L2
0(π )→L2

0(π ) that

Eπ [|Snh|2] = 1

n2
〈h, Rnh〉L2

0(π ) ≤
‖h‖2

L2(π )

n2
‖Rn‖L2

0(π )→L2
0(π ) ≤

4s‖h‖2
L2(π )

n
,

which completes the proof. �

Proposition 3.1. Let Assumption 2.1 be true, let p ∈ [1, 2], and assume that (Xn)n∈N has initial
distribution π , i.e. X1 ∼ π . Then, for any f ∈ Lp(π ) and any n ∈N we have

Eπ [|Snf − π (f )|p] ≤ 22−p
(

4s

n

)p−1

‖f ‖p
Lp(π ).

Proof. For any g ∈ L2(π ) set ḡ = g − π (g) ∈ L2
0(π ). Moreover, we set Tnf = Snf − π (f ) for

f ∈ Lp(π ) with p ∈ [1, 2].
By Lemma 3.1 and the inequality ‖ḡ‖2

L2(π )
= π (g2) − π (g)2 ≤ π (g2) = ‖g‖2

L2(π )
, which is

true for any g ∈ L2(π ), we obtain

Eπ [|Tng|2] =Eπ [|Snḡ|2] ≤ 4s

n
‖ḡ‖2

L2(π ) ≤ 4s

n
‖g‖2

L2(π ),

which implies that ‖Tn‖L2(π )→L2(Pπ ) ≤ √
4s/n. Moreover, using the triangle inequality

we see that ‖Tn‖L1(π )→L1(Pπ ) ≤ 2. Thus, by the Riesz–Thorin interpolation theorem, see
[5, Theorem 1.3.4] in the setting p0 = q0 = 1, p1 = q1 = 2, and θ = 2 − 2/p, we obtain that

‖Tn‖Lp(π )→Lp(Pπ ) ≤ 22/p−1
(

4s

n

)1−1/p

,

which implies the result. �

Using a change of measure argument and Proposition 3.1 we are able to prove our main
result. However, before we turn to the proof of Theorem 2.1 let us state another consequence of
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6 J. HOFSTADLER

Proposition 3.1. We note that the upcoming result generalises [17, Theorem 3.41] by providing
a bound for the mean squared error of Snf for L2(π ) functions.

Corollary 3.1. Let Assumption 2.1 be true, let p ∈ [1, 2], and assume that ν� π with Radon–
Nikodým derivative dν/dπ ∈ L∞(π ). Then, for any f ∈ Lp(π ) and any n ∈N,

Eν[|Snf − π (f )|p] ≤ CpM∞‖f ‖p
Lp(π )

np−1
,

where Cp = 22−p · (4s)p−1 and M∞ = ‖dν/dπ‖L∞(π ).

Proof. Since Pν and Pπ only differ by the choice of the initial distribution of (Xn)n∈N, we
have

Eν[|Snf − π (f )|p] =Eπ

[
dν

dπ
(X1)|Snf − π (f )|p

]
≤

∥∥∥∥ dν

dπ

∥∥∥∥
L∞(π )

Eπ [|Snf − π (f )|p].

Hence, the result follows from Proposition 3.1. �

Finally, we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. By the same change of measure argument as before and Hoelder’s
inequality,

Eν[|Snf − π (f )|] =Eπ

[
dν

dπ
(X1)|Snf − π (f )|

]
≤

∥∥∥∥ dν

dπ

∥∥∥∥
Lq(π )

Eπ [|Snf − π (f )|p]1/p.

Now the desired result is a consequence of Proposition 3.1. �
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