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Abstract

This paper reports on the experiences of using an early assessment intervention, specifically employ-
ing a Use-Modify-Create scaffold, to teach first-year undergraduate functional programming. The
particular intervention that was trialled was the use of an early assessment instrument, in which stu-
dents had to use code given to them, or slightly modify it, to achieve certain goals. The intended
outcome was that the students would thus engage earlier with the functional language, enabling
them to be better prepared for the second piece of assessment, where they create code to solve given
problems. This intervention showed promise: the difference between a student’s score on the Create
assignment improved by an average of 9% in the year after the intervention was implemented, a
small effect.

1 Introduction

Teaching programming is seen as difficult, and indeed studies suggest that “most students
who take [introductory computer science modules] do not learn the content of [them]”
(Guzdial, 2015). Functional programming is a paradigm taught at many Universities and
is one which students generally find difficult (Joosten et al., 1993; Chakravarty & Keller,
2004). The later stages of the COVID pandemic (namely the academic year 2021–2022)
has also seen, worldwide, a lack of engagement from higher education students on their
studies (Williams, 2022). Low engagement on a difficult problem (programming), espe-
cially an even more difficult subproblem (functional programming), could be deletrious
to student achievement. A number of techniques have been proposed to increase student
engagement, with the focus of this paper being on the use of assessment tasks. The partic-
ular assessment tasks were designed using the Use-Modify-Create (UMC) framework of
Lee (Lee et al., 2011), which has been extensively studied in the context of pre-University
students and computational thinking. In this paper, we report on the redesign of the sum-
mative assessment of a functional programming module, and the effects it had on student
attainment, as measured by grades.
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2 Background and related work

There are three strands to this current work: the use of summative assessment as an engage-
ment tool; the utilization of a UMC paradigm in teaching; and the teaching of functional
programming. All three topics have been covered in the literature, and in this section we
will briefly cover the salient points related to each.

Assessment is a key part of learning and the student experience. As Ramsden (Ramsden,
2003) says, “assessment always defines the actual curriculum.” In Boud et al. (2010), it
is noted that assessment is “designed to focus students,” “used to engage students,” and
“plays a key role in fostering learning.” Moreover, assessment for learning should be
present in curriculum design, not just as an afterthought. Holmes (2018) agrees, noting
that “many students are assessment driven”, and that “assessments should be designed to
help students [...] to engage with their studies.” Holmes goes further, stating that increased
engagement can be achieved through “careful design and development of the assessment
scheme.” This sentiment is also found in Rust (2002), who notes that “students are only
seriously engaging with a module [...] when they are being assessed.”

It is one thing to encourage engagement, but it is better if this increased engagement
leads to an improvement in grades. On this point, Knight (2010) notes that “regular
engagement is associated with higher final marks.” Further, dos Santos et al. (2024) found
that allowing students repeated attempts at formative quizzes meant that “many students
improv[ed] from almost failing to good-to-excellent grades.” Linking the use of inter-
mediate assessment to final marks, van Gaal & de Ridder (2013) found that students’
achievement on a final examination was better when intermediate assessment tasks were
used. It is clear, then, that redesigning a module, using intermediate assessment tasks, is a
fruitful avenue for investigation. The design of this intermediate assessment task must be
carefully considered, however.

The UMC framework was introduced in Lee et al. (2011), to promote computational
thinking. The focus of this original paper was on primary and secondary education (K-12).
Most research on UMC has been on this context. For example, Lytle et al. (2019) found that
11–12-year-old students in a UMC group were able to complete tasks more quickly than
those in a control group, and moreover self-reported the tasks as being easier. The authors
posit that the use of the framework limits the thoughts students might have of work being
“too hard.” Similarly, Franklin et al. (2020) found that, for a group of 9–14-year-olds,
UMC led to engagement with the content. They found, in particular, that the “use-modify
activities within the curriculum promoted student learning.” In higher education, Song
(2017) found that the “use-modify-create framework [...] resulted in effective learning out-
comes” in the case of non-computer science pre-service teachers. The application of UMC
as part of the assessment is thus motivated for higher education computer science students.
How UMC is designed for the specifics of functional programming, however, needs to be
examined.

Several articles give insight into the teaching experiences of academics when teaching
functional programming in higher education. Joosten et al. (1993) advises that flexibil-
ity be taught: students should be able to define functions in “several different ways, for
example recursively, with list comprehension, or with standard functions.” This observa-
tion was based on a five-year experiment to introduce functional programming into the
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first year of an undergraduate curriculum. In particular, it arose from the appreciation of
students that the types and formal specification were more important than the implementa-
tion of the function itself. For Hughes (2008), the most important aspect was motivation.
There should be a focus on “real programming,” allowing students to build their own
interesting programs early. As he observes, students “are not a priori motivated to learn
an obscure language in an obscure paradigm”; in the case of Hughes (2008), as in the
module described in this paper, the language was Haskell. This view, that motivation is
key for teaching computer science (not just functional programming), is found in Guzdial
(2015). Learner-centered design is the idea that activities should be designed “by learning
what will motivate [the student].” When specifically applied to teaching computer science
students, Guzdial (2015) suggests that peer instruction, pair programming, worked exam-
ples, and games are potential ways to motivate computer science students. The work of
Canou et al. (2017) focusses, like this paper, on the assessments themselves. In that paper,
the context was slightly different, being a massively open online course in functional pro-
gramming. The focus of Canou et al. (2017) was the development of a testing environment
which would allow instant feedback on exercises, coupled with the ability for students to
re-attempt exercises many times. This approach has showed great promise, with around
25% of 3, 000 enrolled students (this is a MOOC) completing every exercise. Ramsey
(2014) gives the experience of implementing and extending the How to Design Programs
process of Felleisen et al. (2018). As noted by Ramsey, the goal was to “teach program-
ming students how to solve problems using the computer; [...] functional programming is
a means, not an end.” The design process is broken down into eight steps, giving a clear
scaffold for students to follow. There are also mistakes to avoid in teaching, and “where
[students] do and don’t struggle in learning.” Students do not generally struggle with writ-
ing test cases but did struggle with recursion. As noted in section 3, introducing recursion
effectively is one of the goals of the intervention described in this paper.

The use of flipped classrooms and blended learning, which has become widespread
during the COVID pandemic, is the focus of Isomöttönen & Tirronen (2016) (although
this paper pre-dates the pandemic). While promising, the authors note that their approach
“requires active participation on the part of the students.” It is the lack of participation,
that is, the focus of this paper. Finally, the work of Hameer & Pientka (2019), while
ostensibly about the use of automatic grading to teach functional programming, contains
some elements of the UMC framework. They report on requiring students to use particu-
lar higher-order functions (namely map, filter, etc.) in the solution of some problems.
However, the problems themselves are still, effectively, create problems, but with a restric-
tion on what tools can be used in creating solutions. More broadly, there is a wide body of
literature on assessment practices in computer science. Becker & Quille (2019) note that,
in the 50 years of the Special Interest Group on Computer Science Education (SIGSCE),
there were 40 papers presented on Assessment, specifically in CS1 courses. “Learning &
Assessment” is now the second most common theme for research papers (behind only
“Students”), up from the seventh most common theme in the 1980s. Of particular rele-
vance is the approach of Silva et al. (2020), where the exact timing students undertook an
exam was found to have minimal increase in grades. During the COVID pandemic, many
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institutions moved to the asynchronous practices explored in Silva et al. (2020).1 Finally,
the trends which interest researchers in computer science education is covered in Becker &
Quille (2019).

3 Context and intervention

In this section, we describe the module, the (formative and summative) assessments, and
the particular form of the intervention. The module is studied over one semester, by first-
year undergraduate students (typically 18–19 years old, although a small number of mature
students are enrolled). The purpose of the module is to teach the basics of discrete mathe-
matics (propositional logic, set theory, permutations and combinations, basic probability,
and basic number theory) as applied to examples from computing. In conjunction, the mod-
ule also serves as an introduction to functional programming, using the language Haskell.
In particular, a goal of the programming part of the module is to introduce students to
recursion. There were two kinds of assessment in the module: formative (assessment for
learning, i.e., that work which is optional for the student but would be beneficial to under-
take) and summative (assessment of learning, i.e., that assessment which determines the
final grades of the students). The intervention described in this section only affects the
summative assessment.

In both years in question (academic years 2020–2021 and 2021–2022), the module was
delivered online owing to COVID restrictions in place. Four hours of synchronous sessions
were delivered. Pre-recorded lectures were made available to students: the recordings were
of the actual lectures from academic year 2019–2020.2 Students were encouraged to watch
these lectures before each synchronous session. The synchronous sessions consisted of two
2-hour blocks. In the first, there was an hour of worked mathematical examples, followed
by an hour of worked Haskell examples, each set of which was related to the material that
was in the pre-recorded lecture. The second 2-hour block was a practical session, where
students could complete formative Haskell exercises from a workbook. Student demon-
strators (students who had taken the module in previous years) were available in these
sessions to aid the module leader in answering student questions. These Haskell workbook
exercises did not contribute to the final module mark (i.e., were purely formative), but
feedback was given to the students if they asked for help. Solutions were also provided to
students to self-assess.

For the practical sessions, students could either download and install their own local ver-
sion of the Haskell compiler GHC or use the version installed on the University’s application
management tool, AppsAnywhere. The formative Haskell workbook exercises followed
the UMC paradigm and have done since the academic year 2017–2018. In the earlier
exercises, code was given to the students, and they had to answer given questions by
using the code in the GHCi interactive environment. In intermediate exercises, code was

1 Although, as with Isomöttönen & Tirronen (2016), the work reported in Silva et al. (2020) pre-dates the
pandemic.

2 Lectures in 19–20 were recorded to allow students to review material later and reduce the need for them to
take copious notes in class.
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Fig. 1. Summative assessment: The difference between the two deliveries is the introduction of the
Use-Modify coursework.

supplied to students that solved a related problem to that which was given, which they
could then modify to achieve the result they wanted. For example, they were provided
with the function called exactlyTrueIn:

exactlyTrueIn :: Int -> [Bool] -> Bool
exactlyTrueIn n bs = length (filter (==True) bs) == n

Students were then tasked with modifying this code so that it produced a function called
atLeastTrueIn.

The later exercises gave students a specification for a function and asked them to cre-
ate a function which met this specification. There were levels of difficulty built-in to this
process: the first set of create exercises given had the required patterns in the function
definition provided for them. For the last set of exercises, meanwhile, the only thing (other
than the specification) provided was the intended type signature. Recall that the exercises
in these practical sessions are purely formative: should a student not wish to do them, then
there is no penalty applied to their final grade.

The support given for the mathematics part of the module was identical in each year.
Briefly, a number of exercises were available for study, along with self-assessment tests
using the Numbas system (Perfect, 2015). This systems allows instructors to create tem-
plates for mathematics questions and can support complicated grading schemes, whereby
partial credit is given should a student require more information to answer a question. It
has been shown to be effective for Business students (Carroll et al., 2017) and Computing
students (Graham, 2020).

The intervention was the introduction of an early piece of summative coursework, the
Use-Modify coursework, which carried a small number of marks. More details on this
Use-Modify coursework, and the goals of the intervention, are given in Section 3.1. The
summative assessment for the module in the two years (hereafter 2021 and 2022, since the
module was delivered from January to May of the given year) is shown in Figure 1, with
the intervention in the heavy-lined box. To pass the module, the students were required to
achieve at least 30% in the maths test; at least 30% in the combined coursework scores
(or just the Create coursework in 2021); and to have a weighted average of at least 40%
for the maths and coursework scores. If they failed to reach the required marks, then they
had to undertake reassessments to progress with their studies. Only the results of the first
attempts are described in this paper.
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Both 2021 and 2022 made use of a Create coursework, which formed the large part of
the coursework mark. This consisted of similar exercises to the last ones from the practical
workbook: a specification for a function was given, along with a type signature and some
sample input/output pairs. An example question (from 2021) is given below:

Write a function (bigUnion) which, given a list of lists A, B, C, . . ., returns the union
of all of them. As an example,

bigUnion [[a,b,c],[c,d,e],[f,g,c]]

would return [a,b,c,d,e,f,g]. The order of the elements in your resulting list is
not important.

The student was also given the type signature, in the above example:

bigUnion :: (Eq a) => [[a]] -> [a]

and the sample input/output pairs:

bigUnion [[1,2,3],[3,4,5],[2,4,6,8]] = [1,2,3,4,5,6,8]
bigUnion ["list a", "list b"] = "list ab"

along with a reminder that the order of the elements in the resulting list was not important.
For each question, there were five test cases (details on the determination of the test cases

is given in Section 3.2). Students achieved marks for each test which achieved the correct
answer. This allowed students freedom to implement their solution; however, they wanted
and felt able to. For example, a solution using inbuilt functions (such as map, filter, and
foldl) would be worth just as much as a solution which more directly used recursion and
different clauses. As such, this matches the advice in Joosten et al. (1993).

In 2022, there was no requirement to achieve a particular score in either the Use-Modify
coursework, or the Create coursework. All that mattered was that the combined score
achieved 30%. Given the timings of the various assessments, in both years students were
aware, by the time the Create coursework was due, what mark they needed in order to pass
the module. For the majority of students, this score was 30% (in 2021) or slightly lower (in
2022, after having gained marks in the Use-Modify coursework). There are more details
on this last point in Section 4.

3.1 Intervention

The Use-Modify coursework3 consisted of 10 questions: five of which were questions
requiring students to use code given to them, and five which required students to mod-
ify code given to them. Students were provided with a Haskell file and had to replace
the definitions of functions with their own. For example, a Use question appeared in the
coursework file as:

– Question 2: What is the most common character in list2?
– The function ‘q2’ returns the most frequent character in a string.

3 All coursework briefs can be found at https://doi.org/10.17869/enu.2023.3064076.
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q2 :: String -> Char
q2 ss = gB (mP ss)

answer2 :: Char
answer2 = ‘.’ – replace this with your answer!

The functions q2, gB, and mP were intentionally obfuscated, as the aim of the question
was to get students to use code, without necessarily needing to know how it worked. Code
which produced list2 was provided at the bottom of the file. (The string itself was 300
characters long.) In a synchronous session when the coursework was handed out, it was
explained that either the answer itself (in this case the space character ’ ’) could be pro-
vided, or the code which would generate it (namely q2 list2). The student solutions were
then checked against the correct answer, and marks awarded if they matched.

The modify questions were of a similar format to the modify questions in the workbook.
Sample output for a correct modification was provided, similar to the Create coursework.
As an example, this was question 6, as it appeared in the coursework file provided to
students:

{-
Question 6: The function ‘q6’ takes the numbers less than 20 in
a given list, and then adds 10 to them.
Modify (in answer6) q6 so that it instead adds 10 to a list of
numbers, and then returns the ones that are less than 20.
-}

q6 :: [Int] -> [Int]
q6 xs = map (+10) (filter (<20) xs)

– modify the part after the = sign if you want to answer the question!
answer6 :: [Int] -> [Int]
answer6 xs = map (+10) (filter (<20) xs)

{- Sample output
answer6 [1..50] gives [11,12,13,14,15,16,17,18,19]
answer6 [1,3,5] gives [11,13,15]
answer6 [14,26] gives []
-}

If students did not wish to attempt question 6, they would just leave the code unchanged.
As with the Create coursework, these solutions were marked via test cases, in this case
only three. This meant students did not need to modify the code, they could create their
own solution. However, the most straightforward approach was to modify the given code.
The marking methodology for both the Modify and Create coursework questions is given
in Section 3.2.

The goal of the intervention was to encourage engagement with the Haskell program-
ming exercises, to ensure students were properly prepared for the Create coursework.
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In previous years, it was noted that a minority of students did not even begin the practical
exercises until the Create coursework was handed out, and in extreme cases until not long
before the Create coursework was due. Indeed, it was not unusual that students attempted
to solve the Create coursework problems without having first attempted any practical exer-
cises. This approach caused the students to struggle, especially since the practical exercises
contained similar types of problems, and also developed a number of functions which
would be useful in the Create coursework. In other words, using the UMC paradigm in
purely formative exercises did not appear to be preparing all students for the summative
Create coursework, and so an early summative assessment in the UMC paradigm was used
as a summative tool as well.

3.2 Marking methodology

We briefly explain the process by which test cases were determined for both the Modify
and Create questions, and how submissions were graded. As noted in Sections 3 and 3.1,
student code was evaluated on specific test inputs, where the output was known. These
test inputs were determined by the lecturer to cover edge cases (where the behavior of the
function changes significantly) and normal-use cases. As an example of the former, where
the function input was a list, then the empty list would be one of the test cases. Other
edge cases were numerically based. For example, in one instance a (modify) question asks
students to provide a function that “takes the numbers in a list strictly greater than 11 and
less than or equal to 30, squares them, and adds 1.” One test case then involved a list which
contained numbers both above and below the bounds of the question. A normal-use case,
meanwhile, was a list that contained numbers that are only within the range specified.

All student submissions were tested against the same set of cases. The differences
in student scores, then, should reflect only the differences in student aptitude, not the
peculiarities of particular numerical inputs.

The submissions were marked automatically. A (bash) script was created that would
append and prepend some needed functions (e.g., functions that would be able to check
equality of lists up to re-ordering) and the test cases, and then compile and run each file.
The output of running the file was a sequence of scores, written to a csv file. If the student
submission failed to compile, or exceeded a two-minute time-out,4 then the file moved to
another folder for inspection. The students were made aware of this time-out, and it was
necessary to identify non-terminating, rather than inefficient but functionally correct, code.
For example, using a left-fold on an infinite list.

Each file that did not compile, or timed-out, was examined, and the problematic code
identified. More often than not, it was because a student had deleted, or commented out,
a function from the file as an indication of their non-attempt, rather than just leaving
the placeholder code alone. Less frequently, there were issues with the student’s func-
tions itself; in such instances, the student’s answer was commented out and replaced by
the placeholder code. Students were informed before submission that this would happen.
The non-compiling files were then passed through the marking script again, with further
amendments made until each file compiled and executed within the time constraint.

4 A submission that would gain full marks could run in a few seconds.
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Table 1. The p-values are for one-tailed Wilcoxon tests

2021 2022 Difference p-Value Significance

No. of students 78 40
Maths 68.346 56.111 −12.235 0.00012 ***
Create coursework 53.256 62.249 8.993 0.0371 *

0

25

50

75

100

Test Create 
Coursework

S
co

re Year
2021
2022

Scores before and after intervention

Fig. 2. The dots represent the means for each category.

The initial csv file with scores was now discarded, and the full set of files (all of which
now compile and execute in under two minutes) were passed through the marking script
again, to produce a set of scores. This process was repeated twice, and the scores from each
run were checked for discrepancies. There were none, and so this set of scores formed the
basis for the student grades, which are discussed in the next section.

4 Results and discussion

In this section, we present an analysis of the results of the intervention.5 As noted in
Section 3, two scores were recorded for each student: their score on the (unchanged) math-
ematics test, and their score on the equivalent pieces of Haskell coursework, that is, the
Create coursework. There were 78 students who attempted both assessments in 2021 (the
year before the intervention), and 40 who attempted both assessments in 2022 (the year of
the intervention). The mean for each of these scores can be seen in Table 1. The data are
visualized in Figure 2, using a violin plot. As can be seen, the distribution of maths scores
is similar in both years, albeit with a lower mean in 2022. The Create coursework distribu-
tion, meanwhile, is more uniform in 2022, whereas there was a bias toward scores around
40 in 2021. The coursework score distribution is normal in 2021 (Shapiro–Wilk normal-
ity test, p-value = 0.1447), whereas in 2022 the distribution is not normal (p = 0.0009).
Given this, it is conservative to use the non-parametric Wilcoxon test, rather than a t-test,
to perform hypothesis testing.

5 The full (anonymized) dataset and analysis can be found at https://doi.org/10.17869/enu.2023.
3064076.
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Table 2. Item analysis for the Create coursework

Question number Item difficulty (2 d.p) Item discrimination (2 d.p)

1 0.87 0.53
2 0.73 0.93
3 0.69 0.87
4 0.46 1.00
5 0.65 0.80
6 0.48 0.87

We can see that maths scores declined between the years by just over 12%, which is
significant. Similarly, the Create coursework scores improve by around 9%, which is sig-
nificant. For the Create coursework, this yields an effect size (Wilcoxon Effect Size) of
0.164, which is small (Sawilowsky, 2009). In other words, the intervention appeared to
have the intended effect: the students were better prepared for the Create coursework, as
evidenced through better achievement on it.

The focus of this paper is on an intervention to improve Haskell engagement, as mea-
sured by scores. We now address the validity of this instrument of assessment. As noted
earlier, the scores for the Create coursework are not normal. Thus, the typical measure of
validity (Cronbach’s α) is not applicable. Instead, we use Guttman’s λ4 to assess validity.
For these data, λ4 = 0.86, which demonstrates high reliability (Cohen et al., 2002). For
small sample sizes (under 1, 000), λ4 has been shown to approximate the greatest lower
bound well (Oosterwijk et al., 2016). Further, when the validity is above 0.8, λ4 is less
likely to overestimate the true validity (Benton, 2015). In addition to the validity of the
whole coursework, item discrimination analysis was performed. The students in the upper
and lower quartiles were identified, and their performance on each question was compared.
There were six questions for students to complete. Table 2 shows the (normalized) item
difficulties and the item discrimination indices. The item difficulties are simply the average
score achieved by students on that question.The lowest discriminating question, question
1, is still providing good discrimination (Ebel, 1954), and the fourth question provides
perfect discrimination.6 With this particular question, the lowest ranking students did not
attempt it. In summary, the coursework contained a reasonable range of difficulties and
showed good discrimination. The first question was designed to be accessible (reflecting
the difficulty score), in order that weaker students were not immediately discouraged from
attempting the coursework.

We now examine other possible reasons for the improvement in coursework scores. As
mentioned in Section 3, the module ran online in both years. Synchronous sessions were
recorded in both years, too. In particular, in 2022 the recordings of both synchronous maths
and Haskell example sessions from 2021 were made available to students. The 2022 stu-
dents thus had a corpus of worked video examples larger than the 2021 students.7 In of

6 While higher discrimination is preferred, Masters (1988) warns that it may be indicative of an unintended bias
toward certain student groups. We do not have the data available to investigate that in this paper.

7 It was not twice as large, as a number of Haskell worked example videos had been produced over several years
which were available to both cohorts.
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itself, this could explain the improved Create coursework scores. An analysis of the view-
ing statistics, however, shows that while the recordings from 2021 were available to the
students in 2022, the later students did not avail themselves of the recordings. For example,
arguably the most useful recording from 2021 is that of a extended worked example of a
Create coursework question. Thirty-seven students partially viewed this recording in 2022.
But, of those 37, the median viewing time for the 75 minute video was 3 minutes and 17
seconds. Only four students watched for more than 30 minutes, and only one watched the
entire video.

Another possibility was that the assessments varied in difficulty between years. Both
Create courseworks were prepared by the same academic, with seven years experience
writing assessments on this particular module. The other pair of consecutive years which
were most directly comparable with each other was 2018 and 2019. These years were both
pre-COVID restrictions, and there were no substantive changes to the module between
them. The Create coursework scores in these instances of the module differed by less than
1%. Further, the same internal moderator (a colleague who performs quality assurance on
summative assessments before they are presented to students) did not raise any concerns
about a change in difficulty between the cohorts. It is more plausible, then, that the assess-
ments were of similar difficulty, rather than one being easier to create an increase of 9%
between years.

A final possibility is that those who were not engaged in the module simply did not
complete the module. In 2021, there were 78 submissions from a cohort of 88 students.
Meanwhile, in 2022, there were 40 students who submitted both courseworks, from a
cohort of 61. A further seven students completed the Use-Modify coursework, but not
the Create coursework. It is plausible that the higher rate of completion in 2021 may have
caused a poorer relative performance on the coursework. In particular, that an unengaged
student still attempted all of the assessments in 2021, but the low engagement affects the
coursework mark more than the test mark. The functional programming aspect, in contrast
with the mathematics material, is something that very few students will have been exposed
to in their pre-University education. There is then no prior knowledge to fall back on. In
2022, meanwhile, the early Use-Modify coursework may have caused these students to
disengage with the module completely at an early stage, and not complete the remainder
of the assessments. In other words, in this case, the early coursework has the effect of
removing the least engaged students from the module. There is no evidence to suggest this
is the case: other modules taken by the same cohort show a similar low completion rate in
2022 relative to 2021, and there were no changes to these modules between years.

Indeed, there may be reasons to believe that the improvement in engagement is actually
more pronounced than the score difference suggests. Recall from Section 3 that the stu-
dents know, by the time of the Create coursework submission deadline, what mark they
need to achieve in order to pass the module. In 2021, as in years prior to that, owing to
good performance on the maths test, this mark was 30% for the majority of students. It was
clear from looking at marksheets for the Create coursework submissions that a number of
students only even attempted around half of the coursework. In other words, they were
just trying to get enough to pass the module, and, with little engagement in the Haskell
material thus far, aimed only for the easiest marks. One of the concerns when introducing
the Use-Modify coursework was that it could excacerbate student’s low goals: by already
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awarding marks it would mean that the mark needed on the Create coursework would drop.
The mean score on the Use-Modify coursework was 76.2%, which meant that, for most
students, they only required around 16% on the Create coursework to pass the module. In
light of this, that the Create coursework scores increased at all is somewhat surprising. It
would appear then, that the use of early summative assessment increased engagement in
the Haskell material to such an extent that students actually wanted to perform well in the
Create coursework, despite them not needing to.

We must also address the fall in mathematics scores between the cohorts. There are two
plausible explanations for this drop. First, that the 2022 cohort just had weaker mathemat-
ical skills relative to the 2021 cohort. The 2022 cohort, as it has progressed to second year,
has had higher than usual failure rates for other modules, suggesting they are not as pre-
pared for University study. In the UK (where the majority of the undergraduate students
in the report study come from), national examinations in 2020 and 2021 were canceled,
meaning that University admissions were made on the basis of high school teacher recom-
mendations. There is some evidence that the 2022 cohort (who studied their entire final
high school year under COVID restrictions) have been adversely affected by these restric-
tions (Azevedo et al., 2021). The 2021 cohort, meanwhile, had only one term of COVID
restrictions.

Second, engagement dropped in mathematics in 2022 for some reason. As noted earlier,
the 2022 cohort had lower completion rates than the 2021 cohort for their other modules,
suggesting low engagement across the year as a whole. However, it could also be that the
intervention aimed at increasing engagement with functional programming was successful
to the extent that engagement with mathematics dropped as a result: students diverted their
attention from mathematics to Haskell.

Unfortunately, owing to teaching team changes, in 2023 the mathematics part of the
module was delivered by a different person than the preceding 8 years, while the functional
programming part retained the same staff member. Thus, comparisons between 2022 and
2023 will have additional variances; it may not be possible to identify what explains the
fall in mathematics scores from 2021 to 2022.

5 Conclusions and future work

In this paper, we presented the results of an intervention in a first-year University func-
tional programming module. The particular intervention was the introduction of an early,
low-stakes summative assessment task. The task was designed by leveraging the UMC
framework: namely, the early assessment task was Use-Modify. The scores for a mathe-
matics test and the final, Create coursework were measured for the two cohorts: before the
intervention and after. The cohort after the intervention saw both an improvement in their
Create coursework scores, but a drop in the mathematics test scores. This improvement in
coursework suggested that the early assessment task had its intended effect: to encourage
students to engage with the functional programming aspect of the module, and so were
better prepared for the Create coursework.

These results are aligned with what can be found in the literature, but in the specific
context of University functional programming instruction. In particular, the use of an early
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assessment task improved final outcomes (as seen in Van Gaal & De Ridder, 2013, for
economics students) and the use of the UMC framework improved students’ learning (as
seen in Franklin et al., 2020 for 9–14-year-olds). The assessment scheme in this paper also
complements the literature on teaching functional programming, which has ranged from
pedagogy (e.g., Isomöttönen & Tirronen, 2016) to specifics about language and syntax
(e.g., Tirronen et al., 2015 and Chakravarty & Keller, 2004).

Further refinement of the assessment regime can be investigated. The initial idea was to
have three separate tasks: a Use task, a Modify task, and the final Create task. However,
the risk of over-assessment of students, and marking and administrative burden on staff,
led to the pragmatism of the regime reported here. While it was successful, there are no
guarantees that other versions may make it more effective.
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