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Abstract

In this study, nine isonitrogenous experimental diets containing graded levels of carbohydrates
(40 g/kg, 80 g/kg and 120 g/kg) and crude lipids (80 g/kg, 120 g/kg and 160 g/kg) were
formulated in a two-factor (3 × 3) orthogonal design. A total of 945 mandarin fish with similar
body weights were randomly assigned to twenty-seven tanks, and the experiment diets were fed
to triplicate tanks twice daily for 10 weeks. Results showed that different dietary treatments did
not significantly affect the survival rate and growth performance of mandarin fish. However,
high dietary lipid and carbohydrate levels significantly decreased the protein content of the
whole body andmuscle of cultured fish. The lipid content of the whole body, liver andmuscle all
significantly increased with increasing levels of dietary lipid, while only liver lipid level was
significantly affected by dietary carbohydrate level. Hepatic glycogen content increased
significantly with increasing dietary carbohydrate levels. As to liver antioxidant capacity,
malondialdehyde content increased significantly with increasing dietary lipid or carbohydrate
content, and catalase activity showed an opposite trend. Superoxide dismutase activity
increased significantly with increasing levels of dietary lipid but decreased first and then
increased with increasing dietary carbohydrate levels. Additionally, the increase in both dietary
lipid and carbohydrate levels resulted in a significant reduction in muscle hardness. Muscle
chewiness, gumminess and shear force were only affected by dietary lipid levels and decreased
significantly with increasing dietary lipid levels. In conclusion, considering all the results, the
appropriate dietary lipids and carbohydrate levels for mandarin fish were 120 g/kg and 80 g/kg,
respectively.

Mandarin fish (Siniperca chuatsi) is highly favoured among the Chinese, just as described in the
‘A Fisherman’s Song’ authored by the poet, Zhihe Zhang, in Tang Dynasty. In 2023, the
production of mandarin fish was above 470 000 tonnes(1). However, the mandarin fish largely
rely on live bait, and in practice, about less than 10 % of the total production of compound feed
has been applied in the cultivation of this fish species(2), which ismainly due to the lack of studies
on its nutrient requirement. Hence, studies relating to the nutritional physiological
characteristics of this fish species could produce significant benefits to its cultivation sector.

Carbohydrates and lipids act as the main non-protein energy sources of aquafeed, and their
potential protein-sparing effects have been well documented in teleosts(3,4). Carbohydrates are
the cheapest energy source and act as a binder in aquafeed. However, considerable studies have
proved that dietary carbohydrates content for most warm water carnivorous fish should be less
than 100 g/kg, and excessive dietary carbohydrates could lead to metabolic disorders, which
further induce the reduction in growth and feed utilisation, suppression of immune function
and increased pathogens susceptibility to cultured fish, such as the study on largemouth bass
(Micropterus salmoides)(5), hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂)(6)

and red-spotted grouper (Epinephelus akaara)(7). Lipid is another essential energy source, which
is also an important source of essential fatty acids and function as the carriers of fat-soluble
vitamins(4). However, excessive dietary lipid also produces negative impacts on farmed fish, such
as abnormal lipid deposition, oxidative stress and inflammation response, as reported in large
yellow croaker (Larimichthys crocea)(8), Japanese seabass (Lateolabrax japonicus)(9) and turbot
(Scophthalmus maximus L.)(10). Therefore, suitable dietary carbohydrates and lipids content for
carnivorous fish should be determined, while it cannot be truly defined due to the interaction
between dietary lipids and carbohydrates as described in some fish species, such as gilthead sea
bream (Sparus aurata)(11), hybrid grouper(12) and large yellow croaker(13). However, to date, little
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information is available on the interaction between dietary
carbohydrates and lipids in mandarin fish.

In recent years, with the improvement in living standards, the
flesh quality of farmed fish has attracted more attention. In
practice, some consumers believe that the flesh quality of farmed
mandarin fish fed compound feed does not match those fed forage
fish. It has been well documented that dietary compositions affect
the flesh quality, including nutritional and sensory quality of
farmed fish(14). The texture and structure of fish muscle are
important fresh quality attributes, which include hardness,
springiness, chewiness, cohesiveness, resilience and internal
cross-linking of connective tissue(15). Growing evidences have
confirmed that dietary lipid content is a basis for the forming of
flesh texture, and muscle lipid deposition commonly softens fish
flesh(16–18). Meanwhile, the variation in dietary carbohydrate
content leads to glycogen deposition and influences the flesh
texture as reported in farmed dentex (Dentex dentex)(19)and olive
flounder (Paralichthys olivaceus)(20). Therefore, it’s suggested that
the dietary carbohydrate and lipid levels and their interactions
might also affect the flesh quality of mandarin fish.

Considering all of the above, a two-factor (3 × 3) orthogonal
study was designed to investigate the effects of dietary carbohy-
drate and lipid levels on growth performance, hepatic histology
and antioxidant capacity and flesh quality of mandarin fish. It is
envisaged that the present study would be helpful to enrich the
current knowledge of this fish species and further promotes the
development of this aquaculture sector.

Materials and methods

Experimental diets

Nine isonitrogenous (crude protein 520 g/kg) experimental diets
containing graded levels of carbohydrates (40 g/kg, 80 g/kg and 120
g/kg) and crude lipids (80 g/kg, 120 g/kg and 160 g/kg) were
formulated in a 3 × 3 factorial design (Table 1). The feed
ingredients were mixed thoroughly and then produced a stiff
dough following the description in Li et al.(6) Then, the dough was
extruded with a pelleting machine through the 2·5 mm, 3·5 mm
and 6·0 mm die, respectively, to form different particle sizes with
the length of 1·3 cm, 1·7 cm and 2·5 cm, respectively. After that, the
pellets were cooked for starch gelatinisation (105°C, 15 min) and
dried (55°C, 6 h) in a ventilated oven. Then, the diets were stored at
–20°C until the experiment was started.

Experiment procedure

The feeding trial was conducted in the joint laboratory of Shanghai
Ocean University and Guangdong Evergreen Feed Industry Co.
Ltd (Zhanjiang, China). The juvenile mandarin fish, average body
weight of 15 g, were obtained from Guangdong Liangshi Aquatic
Seed Industry Co. Ltd (Guangzhou, China), which were then
domesticated using the experimental diet (120 g/kg crude lipid, 40
g/kg carbohydrate). After 4 weeks’ acclimation, a total of 945 fish
with similar body weights (55 g) were randomly assigned to
twenty-seven tanks (thirty-five fish/tank; water volume, 1000 litre).
Triplicate tanks of fish were fed one of the experimental diets twice
daily (07.00 and 16.30) for 10 weeks. During the feeding trial, the
fish were gradually fed the diet with particle diameters of 2·5 mm
(body weight< 50 g), 3·5 mm (body weight< 120 g) and 6·0 mm
(body weight> 120 g). The feeding trial was conducted in a
circulating water system, which was equipped with a thermostat
and a UV lamp for disinfection. During the experiment process, a

siphon was used to remove the dirt from the bottom of the bucket
and discharge the sewage from the filtration tank 2 h after feeding,
and then groundwater was added to the system as a supplement.
The water quality of the system was monitored to be consistent
throughout the entire feeding process.Water quality variables were
maintained at pH 8·0 ± 0·2, temperature 28 ± 0·5°C, nitrite
content less than or equal to 0·01mg/l, ammonia nitrogen less than
0·2 mg/l and nitrate nitrogen within 25 to 50 mg/l.

Sample collection

After 10 weeks’ feeding trial, the total fish number and fish weight
were recorded after the fish were fasted for 24 h, and the fish for
sampling were anaesthetised with eugenol (1:10 000). Then, fifteen
fish were randomly selected for further sample collection. Briefly,
for each tank, five fish were randomly collected for the analysis of
the composition of the whole body, and the individual body length
and weight of the remaining ten fish were measured for the
calculation of condition factor. Then, the liver and visceral mass of
six fish were separated for hepatosomatic index and viscerosomatic
index calculation, respectively. After that, liver samples were
collected for histological analysis, proximate composition analysis
and enzyme activity analysis, and muscle samples were separated
for the analysis of proximate composition and texture.

Body proximate composition analysis

Body composition was analysed based on the method in the
Association of Official Analytical Chemists (AOAC)(21). Moisture
content was measured by drying samples to a constant weight
(# 934.01; AOAC, 2003), ash content was determined by
combustion (# 942.05; AOAC, 2003) and the Kjeldahl nitrogen
determination method was used to measure crude protein content
(KD310, Opsis) (# 976.05; AOAC, 2003). Soxhlet extraction
method was taken to measure crude lipid content (SX-360, Opsis)
(# 920.29; AOAC, 2003). The potassium hydroxide/anthrone
was used to measure hepatic glycogen content(22), following a
commercial kit (Nanjing Jiancheng Bioengineering Institute).

Hepatic antioxidant capacity analysis

The liver tissue samples were cleaned with precooled physiological
saline at 4°C, and then the surface water of the liver sample was
absorbed using absorbent paper. The cleaned liver samples were
mixed with phosphate buffer and then homogenised using a tissue
homogeniser (1:9, w/v, 10 000–15 000 r/min) and centrifuged
(2000 rpm, 10 min, 4°C) to separate the supernatants. The total
antioxidative capacity, malondialdehyde (MDA) content and the
activity of superoxide dismutase (SOD) and catalase (CAT) were
analysed using commercial kits following the instruction (Nanjing
Jiancheng Bioengineering Institute; catalogue no.: total protein,
A045–2–2; MDA, A003–1; total antioxidative capacity, A015–2–1;
CAT, A007–1–1; SOD, A001–3). In detail, total antioxidant
capacity was evaluated by measuring the content of Fe2þ reduced
from Fe3þ, which could form a solid orange–red complex with
phenanthroline analogues, and its antioxidant capacity could be
measured by colorimetry(23). The total SOD activity was measured
with the ferricytochrome C method(24). MDA, a degradation
product of lipid peroxidation, condenses with thiobarbituric acid
to form a red product with a maximum absorption peak at 532
nm(25). The above indices were expressed as specific activity, and
the soluble protein content was determined with the coomassie
brilliant blue method(26). CAT activity was determined by
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measuring the decreased concentration of H2O2 per minute
according to Aebi(27).

Hepatic histology analysis

After sampling, liver samples were cut into 1 cm3 and fixing with
4 % paraformaldehyde. Then the samples were dehydrated and
embedded in paraffin wax. After that, the samples were sectioned
at 5 μm thickness for sub sequent staining. The slides were
deparaffinized and rehydrated with dimethyl benzene and graded
concentrations of ethanol stained with haematoxylin and eosin in
conjunction. Finally, the images were captured (40×) using the
Olympus-DP73 optical microscope (Olympus) was used to capture
images.

Flesh quality analysis

The texture analysis of the dorsal muscle was performed with
texture profile analysis using a Universal TA device (TA. ZM-Plus,
Dexin Technology (Kunming) Co. Ltd). Test conditions were set as
previously described by Xu et al.(28)

Statistical methods

All data were analysed using SPSS version 22. The interaction
effects of dietary lipid and carbohydrate levels on cultured fish were
analysed by factorial (two-way) ANOVA. If the interaction was not
significant, the Tukey’s multiple range test was followed to
determine the effects of a single main effect (lipid or carbohydrate).
If the interaction was significant, one-way ANOVA followed by
Tukey’s multiple range tests were used to determine the effects of
one factor under different levels of another factor. The significance
level was set at P< 0·05.

Result

Growth performance and feed utilisation

Different dietary lipid and carbohydrate levels did not significantly
affect the survival rate, final body weight, specific growth rate, feed
intake, feed efficiency rate and protein efficiency rate of mandarin
fish (P> 0·05) (Table 2). The fish fed a dietary lipid (160 g/kg) and
carbohydrate level (120 g/kg) displayed significantly higher
condition factor and viscerosomatic index compared with those

Table 1. Formulation and chemical composition of experimental diets (g/kg DM)

80 crude lipid 120 crude lipid 160 crude lipid

Carbohydrate level (g/kg) 40 80 120 40 80 120 40 80 120

White fish meal* 560·0 560·0 560·0 560·0 560·0 560·0 560·0 560·0 560·0

Shrimp meal* 30·0 30·0 30·0 30·0 30·0 30·0 30·0 30·0 30·0

Wheat gluten meal* 40·0 40·0 40·0 40·0 40·0 40·0 40·0 40·0 40·0

Fermented soybean meal* 40·0 40·0 40·0 40·0 40·0 40·0 40·0 40·0 40·0

Blood cell powder* 27·5 27·5 27·5 27·5 27·5 27·5 27·5 27·5 27·5

Squid paste* 20·0 20·0 20·0 20·0 20·0 20·0 20·0 20·0 20·0

Beer yeast* 20·0 20·0 20·0 20·0 20·0 20·0 20·0 20·0 20·0

Vitamin mixture† 10·0 10·0 10·0 10·0 10·0 10·0 10·0 10·0 10·0

Mineral mixture‡ 12·0 12·0 12·0 12·0 12·0 12·0 12·0 12·0 12·0

Ca(H2PO4)2* 10·0 10·0 10·0 10·0 10·0 10·0 10·0 10·0 10·0

Phospholipid oil* 30·0 30·0 30·0 30·0 30·0 30·0 30·0 30·0 30·0

Soybean oil* – – – 40·0 40·0 40·0 80·0 80·0 80·0

α-starch* 40·0 80·0 120·0 40·0 80·0 120·0 40·0 80·0 120·0

Microcrystalline cellulose 80·0 60·0 40·0 80·0 60·0 40·0 80·0 60·0 40·0

Zeolite powder* 80·0 60·0 40·0 80·0 60·0 40·0 80·0 60·0 40·0

Food attractant (Dimethyl-beta-propiothetin) 0·5 0·5 0·5 0·5 0·5 0·5 0·5 0·5 0·5

Proximate analysis (mean values, g/kg dry weight)

Moisture 32·0 34·0 36·0 30·0 32·0 38·0 35·0 35·0 36·0

Crude protein 526·4 519·3 505·5 511·0 504·8 507·3 508·1 504·5 504·8

Crude lipid 77·1 71·2 64·0 112·6 106·9 104·2 151·8 145·6 146·6

Ash 191·0 187·0 182·0 190·0 186·0 182·0 186·0 182·0 180·0

Starch 53·0 93·0 128·0 55·0 90·0 124·0 50·0 87·0 115·0

*Supplied by Xinxin Tian’en Aquatic Feed Co. Ltd.
†Vitamin Premix (mg/kg diet): vitamin A (Retinol), 4.8; vitamin D3, 0.2; vitamin K3, 14·72; vitamin B1, 17·80; vitamin B2, 48; vitamin B6, 29·52; vitamin B12, 0·24; vitamin E, 160; vitamin C, 800;
niacinamide, 79·20; calcium-pantothenate, 73·60; folic acid, 6·40; biotin, 0·64; inositol, 320; choline chloride, 1500; L-carnitine, 100.
‡Mineral Premix (mg/kg diet): Cu (CuSO4), 2·00; Zn (ZnSO4), 34·4; Mn (MnSO4), 6·20; Fe (FeSO4), 21·10; I (Ca (IO3)2), 1·63; Se (Na2SeO3), 0·18; Co (CoCl2), 0·24; Mg (MgSO4·H2O), 52·7.
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Table 2. Growth performance and feed utilisation of mandarin fish fed diets with varying lipid and carbohydrate levels for 10 weeks

Lipid (g/kg) Carbohydrate (g/kg) IBW (g) FBW (g) SR (%) FI (g/fish/d) SGR (%/d) FER PER CF VSI (%) HSI (%)

Individual treatment means*

80 40 55·05 222·04 88·33 2·37 1·85 0·97 1·92 2·31 7·02 1·05

80 80 55·03 220·06 88·33 2·41 1·85 0·96 1·90 2·48 7·60 1·08

80 120 54·94 226·40 89·17 2·40 1·89 0·99 1·94 2·53 7·17 1·09

120 40 54·99 227·39 86·67 2·41 1·89 1·00 1·97 2·52 7·61 0·98

120 80 55·01 224·35 86·67 2·48 1·78 0·91 1·81 2·48 8·17 1·15

120 120 54·96 227·68 88·33 2·44 1·90 0·98 1·92 2·56 8·54 1·12

160 40 55·01 235·93 87·50 2·40 1·92 1·03 2·04 2·54 8·22 0·97

160 80 55·02 227·66 91·67 2·38 1·92 1·01 1·95 2·65 8·92 1·10

160 120 55·04 232·49 87·50 2·42 1·90 1·00 1·90 2·60 9·09 1·24

80 40 55·05 222·04 88·33 2·37 1·85 0·97 1·92 2·31 7·02 1·05

120 40 54·99 227·39 86·67 2·41 1·89 1·00 1·97 2·52 7·61 0·98

160 40 55·01 235·93 87·50 2·40 1·92 1·03 2·04 2·54 8·22 0·97

80 80 55·03 220·06 88·33 2·41 1·85 0·96 1·90 2·48 7·60 1·08

120 80 55·01 224·35 86·67 2·48 1·78 0·91 1·81 2·48 8·17 1·15

160 80 55·02 227·66 91·67 2·38 1·92 1·01 1·95 2·65 8·92 1·10

80 120 54·94 226·40 89·17 2·40 1·89 0·99 1·94 2·53 7·17 1·09

120 120 54·96 227·68 88·33 2·44 1·90 0·98 1·92 2·56 8·54 1·12

160 120 55·04 232·49 87·50 2·42 1·90 1·00 1·90 2·60 9·09 1·24

Means of main effect

80 55·01 222·83 88·61 2·40 1·86 0·97 1·92 2·44a 7·26a 1·08

120 54·99 226·47 87·22 2·44 1·85 0·96 1·90 2·52ab 8·11b 1·08

160 55·02 232·03 88·75 2·40 1·92 1·01 1·96 2·60b 8·74c 1·10

40 55·02 228·45 87·50 2·39 1·89 1·00 1·98 2·46A 7·62A 1·00A

80 55·02 224·02 88·89 2·42 1·85 0·96 1·89 2·53AB 8·23B 1·11B

120 54·98 228·86 88·33 2·42 1·90 0·99 1·92 2·56B 8·27B 1·15B
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fed a low dietary lipid level (80 g/kg) and a low carbohydrate level
(40 g/kg), respectively, (P< 0·05) (Table 2). The hepatosomatic
index was only affected by dietary carbohydrate level and
significantly increased with increasing carbohydrate levels
(P< 0·05) (Table 2).

Approximate body composition

The whole body and liver moisture content of mandarin fish
decreased significantly with increasing dietary lipid levels
(P< 0·05) (Table 3). No significant effects were observed on
whole-body moisture content with increasing carbohydrate levels
(P> 0·05) (Table 3). However, fish fed a carbohydrate level of 40
g/kg displayed significantly higher liver moisture content than
those fed 80 g/kg and 120 g/kg carbohydrate (P< 0·05) (Table 3).
High dietary lipid and carbohydrate levels significantly decreased
the protein content of the whole body and muscle of cultured fish
(P< 0·05) (Table 3); however, only the dietary carbohydrate level
affected liver protein content (P< 0·05) (Table 3). Additionally,
significant interaction was observed between these two main
factors in muscle protein content (P< 0·05) (Table 3). The lipid
content of the whole body, liver and muscle all significantly
increased with increasing levels of lipid in the feed (P< 0·05)
(Table 3), while only liver lipid level was significantly increased as
the increase of dietary carbohydrate level (P< 0·05) (Table 3).
Hepatic glycogen content increased significantly with increasing
dietary carbohydrate levels (P< 0·05) (Table 3). However, among
different dietary lipid level groups, hepatic glycogen content
reached the highest value in the fish feeding 120 g/kg dietary lipid
(P< 0·05) (Table 3), and significant interaction between the main
factors in hepatic glycogen content was observed (P< 0·05)
(Table 3).

Liver antioxidant capacity

Significant interactions of two main factors in liver MDA content
and SOD and CAT activities of cultured fish were observed
(P< 0·05) (Table 4). In detail, MDA content was significantly
different among the dietary treatments, with its highest content
measured in fish fed 160 g/kg lipid and 120 g/kg carbohydrate
levels (P< 0·05) (Table 4). Liver CAT activity decreased
significantly with increasing dietary lipid or carbohydrate levels
(P< 0·05) (Table 4). Hepatic SOD activity increased significantly
with increasing levels of lipid content in the feed (P< 0·05) (Table
4); however, it decreased first and then increased with the
increasing level of dietary carbohydrate (P< 0·05) (Table 4).

Liver morphology

As shown in Fig. 1, when the dietary crude lipid levels were at
80 g/kg and 120 g/kg, and the dietary carbohydrate levels were at
40 g/kg and 80 g/kg, the result showed that the hepatocytes of
mandarin fish were uniformly arranged and regular, and the cell
morphology was relatively normal, with occasional small-volume
lipid droplets appearing (Fig. 1(a), (b), (d) and (e)). When the
dietary carbohydrate level reached 120 g/kg, the hepatocytes’ size
began to become larger, with blurred edges, and the cells appeared
to be swollen and vacuolated, and the nuclei of the cells were
shifted (Fig. 1(c), (f) and (i)). At a high lipid level (160 g/kg),
compared with a medium lipid level (120 g/kg) and low lipid level
(80 g/kg), hepatocytes were surrounded by a large number of oval
lipid droplets, with irregular cell morphology and obvious
vacuolation (Fig. 1(g), (h) and (i)). At a high carbohydrate levelTa
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Table 3. Body composition of mandarin fish fed diets with varying lipid and carbohydrate levels for 10 weeks (g/100 g wet weight)

Lipid (g/kg) Carbohydrate (g/kg)

Whole body Liver Muscle

Moisture Protein Lipid Ash Moisture Protein Lipid Glycogen Moisture Protein Lipid

Individual treatment means*

80 40 74·70 17·07 3·42 4·36 74·13 14·10a 3·76 3·45a 79·34 18·99c 0·87

80 80 74·80 17·04 3·15 4·41 73·39 14·86b 4·01 5·56b 80·33 18·09b 0·83

80 120 75·09 16·37 3·23 4·23 74·52 14·60ab 3·93 6·97c 80·90 17·33a 0·85

120 40 73·86 16·42 5·48 4·47 74·96 14·98 4·52 4·10a 80·50 17·59a 0·84

120 80 73·68 16·31 4·87 4·59 72·58 14·55 4·69 6·43b 80·18 17·93b 0·88

120 120 74·45 16·18 4·86 4·37 73·05 14·30 4·93 7·57c 80·50 17·78ab 0·86

160 40 73·64 16·16 5·50 4·37 73·92 14·94 5·44 3·53a 80·15 16·81a 1·02

160 80 73·93 15·84 6·09 4·04 72·41 14·78 6·03 5·36b 80·72 17·33b 0·92

160 120 73·67 15·51 6·63 3·99 71·61 13·74 6·17 7·65c 81·00 17·03ab 1·08

80 40 74·70 17·07 3·42 4·36 74·13 14·10a 3·76 3·45a 79·34 18·99c 0·87

120 40 73·86 16·42 5·48 4·47 74·96 14·98b 4·52 4·10b 80·50 17·59b 0·84

160 40 73·64 16·16 5·50 4·37 73·92 14·94b 5·44 3·53a 80·15 16·81a 1·02

80 80 74·80 17·04 3·15 4·41 73·39 14·86 4·01 5·56a 80·33 18·09b 0·83

120 80 73·68 16·31 4·87 4·59 72·58 14·55 4·69 6·43b 80·18 17·93b 0·88

160 80 73·93 15·84 6·09 4·04 72·41 14·78 6·03 5·36a 80·72 17·33a 0·92

80 120 75·09 16·37 3·23 4·23 74·52 14·60 3·93 6·97a 80·90 17·33b 0·85

120 120 74·45 16·18 4·86 4·37 73·05 14·30 4·93 7·57b 80·50 17·78c 0·86

160 120 73·67 15·51 6·63 3·99 71·61 13·74 6·17 7·65b 81·00 17·03a 1·08

Means of main effect

80 74·86b 16·83c 3·27a 4·33b 74·01b 14·52 3·90a 5·33a 80·19 18·14c 0·85a

120 74·00a 16·30b 5·07b 4·48b 73·53b 14·51 4·71b 6·04c 80·40 17·77b 0·86a

160 73·75a 15·84a 6·07c 4·13a 72·65a 14·49 5·88c 5·51b 80·96 17·06a 1·01b

40 74·07 16·55B 4·80 4·40 74·34A 14·67A 4·57A 3·70A 80·33 17·80B 0·91

80 74·14 16·40B 4·70 4·35 72·79B 14·73A 4·91B 5·78B 80·41 17·78B 0·87

120 74·40 16·02A 4·91 4·19 73·06B 14·22B 5·01B 7·40C 80·80 17·38A 0·93

Two-way ANOVA: P†

L 0·013 < 0·001 < 0·001 0·006 0·007 0·802 < 0·001 < 0·001 0·581 < 0·001 < 0·001

C 0·613 < 0·001 0·686 0·102 0·002 0·023 0·028 < 0·001 0·801 < 0·001 0·156

L × C 0·836 0·077 0·071 0·373 0·052 0·011 0·578 0·001 0·869 < 0·001 0·172

*Treatment means represent the average values of three tanks per treatment.
†Differences were regarded as significant when P< 0·05. L and C showed themain effect of each factor, and L × C indicated their interactive effect. Values (means, N= 3) with a different superscript letter are significantly different from the other dietary groups
(p < 0.05).
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(120 g/kg), the interaction effect produced by the increase in the
crude lipid level exacerbated the swelling and vacuolisation of the
cells, resulting in the confusion of cellular arrangement, the
increased volume of lipid droplets, the disappearance of some cells
nuclei and the necrosis of some hepatocyte tissues occurred (Fig.
1(f) and (i)).

Flesh texture quality

Muscle hardness of cultured fish decreased significantly with
increasing levels of dietary lipid under different dietary carbohy-
drate levels (P< 0·05) (Table 5). However, with the dietary
carbohydrate changing, it only significantly decreased in fish
feeding 120 g/kg carbohydrate compared with those feeding

40 g/kg and 80 g/kg carbohydrate (P< 0·05) (Table 5). Additionally,
only at 120 g/kg and 160 g/kg dietary lipid levels, muscle hardness
was significantly affected by dietary carbohydrate content (P< 0·05)
(Table 5). The significant interaction between the two factors was
also observed in muscle resilience (P< 0·05) (Table 5). However,
muscle chewiness, gumminess and shear force were only affected
by dietary lipid level, which were significantly decreased with the
increase of dietary lipid level (P< 0·05) (Table 5).

Discussion

The result of the present study showed that the survival, growth
performance and feed utilisation of cultured mandarin fish,

Table 4. Liver antioxidant capacity of mandarin fish fed diets with varying lipid and carbohydrate levels for 10 weeks

Lipid (g/kg) Carbohydrate (g/kg) T-AOC (U/mgprot) MDA (nmol/mgprot) CAT (U/mgpro) SOD (U/mgpro)

Individual treatment means*

80 40 0·08 0·28 699·96c 449·60b

80 80 0·07 0·28 680·62b 382·59a

80 120 0·07 0·30 581·54a 496·30c

120 40 0·08 0·27a 638·29c 431·09a

120 80 0·07 0·29b 575·64a 444·08b

120 120 0·06 0·32c 589·15b 472·29c

160 40 0·07 0·29a 570·60c 502·11b

160 80 0·07 0·30a 509·11b 500·72b

160 120 0·06 0·32b 475·06a 490·44a

80 40 0·08 0·28 699·96c 449·60b

120 40 0·08 0·27 638·29b 431·09a

160 40 0·07 0·29 570·60a 502·11c

80 80 0·07 0·28a 680·62c 382·59a

120 80 0·07 0·29b 575·64b 444·08b

160 80 0·07 0·30b 509·11a 500·72c

80 120 0·07 0·30a 581·54b 496·30c

120 120 0·06 0·32b 589·15c 472·29a

160 120 0·06 0·32b 475·06a 490·44b

Means of main effect

80 0·07 0·28a 654·04c 442·83a

120 0·07 0·29b 601·02b 449·15b

160 0·07 0·30c 518·26a 497·76c

40 0·08 0·28A 636·28C 460·93B

80 0·07 0·29B 588·45B 442·46A

120 0·06 0·31C 548·58A 486·34C

Two-way ANOVA: P†

L – < 0·001 < 0·001 < 0·001

C – < 0·001 < 0·001 < 0·001

L × C – < 0·001 < 0·001 < 0·001

T-AOC, total antioxidative capacity; MDA, malondialdehyde; CAT, catalase; SOD, superoxide dismutase.
*Treatment means represent the average values of three tanks per treatment.
†Differences were regarded as significant when P< 0·05. L and C showed themain effect of each factor, and L × C indicated their interactive effect. Values (means, N=
3) with a different superscript letter are significantly different from the other dietary groups (p < 0.05).

British Journal of Nutrition 7

https://doi.org/10.1017/S0007114524003003  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114524003003


including survival rate, specific growth rate, protein efficiency rate
and feed efficiency rate, were not significantly affected by different
dietary lipid and carbohydrate levels. It is worth noting that the
growth performance of cultured fish in the present study was
comparable to the production practice, which was outstanding
compared with some current studies on mandarin fish(29,30). This
was possibly related to the fact that under the present culture
situation, all the designed feed formulas could satisfy the growth
requirement of cultured fish, and the experiment diets had a high
palatability.

Considerable research has demonstrated the protein-sparing
effects of dietary lipid and carbohydrates in aquatic animals(3,4,31–34).
The growth of cultured fish in this study was not affected by dietary
lipid levels (80 g/kg–160 g/kg), indicating that the lowest lipid level
in this study could satisfy the lipid requirement of mandarin fish,
which was similar to the lipid requirement of red-spotted
grouper(35), large-scale shovel-jaw fish (Onychostomamacrolepis)(36)

and loach (Paramisgurnus dabryanus)(37). For carnivorous fish,
limited glucose utilisation ability has been well illustrated, and the
recommended dietary carbohydrate level should be no more than
200 g/kg(38). In the present study, the increasing carbohydrate level
from 40 g/kg to 120 g/kg did not significantly affect the survival,
growth performance and feed utilisation of cultured mandarin fish,
which were in line with the study in Yangtze sturgeon (Acipenser
dabryanus)(39) and hybrid snakehead (Channa maculata
♀ × Channa argus ♂)(40). However, dietary carbohydrate levels
exceeding 100 g/kg would negatively affect the growth performance

of largemouth bass(41) and hybrid grouper(6), which might be
because mandarin fish had a higher carbohydrate tolerance and the
underlying mechanism required further exploration.

Although the growth performance and the feed utilisation were
not significantly affected by dietary lipid and carbohydrate levels,
significant differences were observed in body compositions among
different treatment groups. In the present study, liver and muscle
crude lipid content of culturedmandarin fish showed an increasing
trend with higher levels of dietary lipid and carbohydrate, which
could also be confirmed by the H&E staining results. This
observation was similar to the study on turbot(42), lumpfish
(Cyclopterus lumpus)(43) and triploid rainbow trout (Oncorhynchus
mykiss)(44). In addition, liver glycogen significantly increased with
the increase in dietary carbohydrate level, and the same trend was
found under each dietary lipid level, which was in line with the
results of hybrid snakehead(40) and spotted sea bass (Lateolabrax
maculatus)(45). Interestingly, liver glycogen was not affected by
dietary lipid levels at low carbohydrate levels; however, when
carbohydrates reached 120 g/kg, liver glycogen was higher in the
120 g/kg and 160 g/kg lipid groups than in 80 g/kg lipid group,
which might be because that at high dietary carbohydrate level,
increasing dietary lipid could negatively affect liver glycometab-
olism of mandarin fish, but the underline mechanism required
further investigation. Furthermore, high liver lipid and glycogen
content might lead to liver injury(8,46). In the present study, liver
injury could be observed in the high lipid and high carbohydrate
groups. The increased dietary lipid and carbohydrate level also

Figure 1. Effects of dietary lipid and carbohy-
drate interactions on the histomorphology of the
liver of mandarin fish (40×). (a–c) 80 g/kg crude
lipid. Carbohydrate levels were 40 g/kg, 80 g/kg,
and 120 g/kg. (d–f) 120 g/kg crude lipid.
Carbohydrate levels were 40 g/kg, 80 g/kg and
120 g/kg. (g–i) 160 g/kg crude lipid. Carbohydrate
levels were 40 g/kg, 80 g/kg, and 120 g/kg. Lipid
droplets (yellow arrow); swelling cells (green
arrow); hepatocyte vacuolation (blue arrow);
focal necrosis (red arrow).
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reduced muscle protein content, and the increased dietary lipid
level enhanced muscle lipid content, which indicated that dietary
lipid and carbohydrate inclusion levels would also affect muscle
compositions and further affect muscle growth of mandarin
fish(47).

Increased liver lipid and glycogen content would affect the liver
antioxidant capacity of aquatic animals(12,48). As a representative
cell peroxidation product, MDA content could directly reflect
peroxidation damage(49). In the present study, the MDA content
increased with the increase of dietary lipid and carbohydrate levels,
which indicated the liver peroxidation damage induced by high
dietary lipid and carbohydrate levels. The existence of antioxidant
enzymes, such as CAT and SOD, could effectively reduce
peroxidation damage; thus, they play an essential role in balancing

the oxidation and anti-oxidation defence systems(50,51). CAT could
catalyse H2O2 decomposition, and SOD could catalyse superoxide
radical dismutation, both of which could reflect reactive oxygen
species removal ability(52). In the present study, liver CAT activity
was significantly decreased with the increase of dietary lipid and
carbohydrate level, which was similar to the study on largemouth
bass(53), mud crab (Scylla paramamosain)(54) and spotted sea
bass(45). However, the SOD activity significantly increased in both
high lipid (160 g/kg) group and high carbohydrate (120 g/kg)
group, which seems to be conflict to previous studies. The main
reason here might be that although 160 g/kg lipid level and 120 g/
kg carbohydrate level might not be the suitable level for mandarin
fish, its effect was within the limit of the fish adaptive capacity, and
the increased SOD activity indicated the self-regulation process,

Table 5. Flesh texture quality of mandarin fish fed diets with varying lipid and carbohydrate levels for 10 weeks

Lipid (g/kg) Carbohydrate (g/kg) Hardness (gf) Springiness Chewiness (gf) Resilience Gumminess (gf) Shear force (g.sec)

Individual treatment means*

80 40 671·17 0·49 174·06 0·45b 352·63 2131·82

80 80 643·12 0·49 172·32 0·43b 350·96 2402·62

80 120 643·63 0·49 165·35 0·39a 335·64 2339·76

120 40 589·66a 0·50 134·47 0·40 297·29 2009·62

120 80 629·13b 0·48 166·33 0·42 343·60 1987·02

120 120 600·82a 0·48 163·70 0·41 338·66 1721·58

160 40 516·69b 0·49 129·61 0·39 264·85 1817·27

160 80 512·06ab 0·49 135·62 0·41 276·98 1660·88

160 120 486·95a 0·49 122·80 0·38 251·70 1387·91

80 40 671·17c 0·49 174·06 0·45b 352·63 2131·82

120 40 589·66b 0·50 134·47 0·40b 297·29 2009·62

160 40 516·69a 0·49 129·61 0·39a 264·85 1817·27

80 80 643·12b 0·49 172·32 0·43 350·96 2402·62

120 80 629·13b 0·48 166·33 0·42 343·60 1987·02

160 80 512·06a 0·49 135·62 0·41 276·98 1660·88

80 120 643·63c 0·49 165·35 0·39 335·64 2339·76

120 120 600·82b 0·48 163·70 0·41 338·66 1721·58

160 120 486·95a 0·49 122·80 0·38 251·70 1387·91

Means of main effect

80 652·64c 0·49 170·58b 0·43b 346·41b 2291·40b

120 606·53b 0·49 154·90b 0·41a 326·52b 1906·08a

160 505·23a 0·49 129·34a 0·39a 264·51a 1622·02a

40 592·51B 0·49 146·11 0·41B 304·92 1986·24

80 594·77B 0·49 158·09 0·42B 323·85 2016·84

120 577·13A 0·49 150·62 0·39A 308·67 1816·42

Two-way ANOVA: P†

L < 0·001 0·721 < 0·001 0·001 < 0·001 0·001

C 0·012 0·585 0·317 0·005 0·161 0·329

L × C 0·002 0·771 0·257 0·015 0·139 0·442

*Treatment means represent the average values of three tanks per treatment.
†Differences were regarded as significant when P< 0·05. L and C showed the main effect of each factor, and L × C indicated their interactive effect. Values (means, N = 3) with a different
superscript letter are significantly different from the other dietary groups (p < 0.05).
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which might also be the reason that explained the unaffected
growth performance of mandarin fish under different lipid and
carbohydrate levels.

Since dietary lipid and carbohydrate levels significantly affected
muscle protein and lipid content, both of which were essential
factors affecting flesh texture quality, the flesh texture quality
indexes were further analysed(20,55). In the present study, muscle
hardness and resilience decreased with the increase of dietary lipid
and carbohydrate levels, which might be related to the interaction
of dietary lipid and carbohydrate, which induced a decrease in
muscle protein content, and this result was in line with a previous
study on the relationship betweenmuscle protein content and flesh
texture(56). However, the chewiness, gumminess and shear force
only react to dietary lipid changes, which might be due to the
relation between flesh quality and muscle lipid content(57,58).

In conclusion, dietary lipid and carbohydrate level up to 160 g/
kg and 120 g/kg, respectively, would not significantly affect the
growth performance and feed utilisation of mandarin fish, but high
lipid and carbohydrate levels negatively affect liver antioxidant
capacity and flesh quality of mandarin fish. Taking liver histology
and antioxidant capacity, flesh texture quality and feed processing
characteristics into account, the appropriate levels of lipid and
carbohydrate in feed of mandarin fish were 120 g/kg and 80 g/kg,
respectively. This study provided reliable experimental data and
theoretical basis for the application of artificial compound feed for
mandarin fish.
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