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Abstract

Back-projection is an epidemiological analysis method that was developed to estimate HIV
incidence using surveillance data on AIDS diagnoses. It was used extensively during the
1990s for this purpose as well as in other epidemiological contexts. Surveillance data on
COVID-19 diagnoses can be analysed by the method of back-projection using information
about the probability distribution of the time between infection and diagnosis, which is primar-
ily determined by the incubation period. This paper demonstrates the value of such analyses
using daily diagnoses from Australia. It is shown how back-projection can be used to assess
the pattern of COVID-19 infection incidence over time and to assess the impact of control
measures by investigating their temporal association with changes in incidence patterns. For
Australia, these analyses reveal that peak infection incidence coincided with the introduction
of border closures and social distancing restrictions, while the introduction of subsequent social
distancing measures coincided with a continuing decline in incidence to very low levels. These
associations were not directly discernible from the daily diagnosis counts, which continued to
increase after the first stage of control measures. It is estimated that a one week delay in peak
incidence would have led to a fivefold increase in total infections. Furthermore, at the height of
the outbreak, half to three-quarters of all infections remained undiagnosed. Automated data
analytics of routinely collected surveillance data are a valuable monitoring tool for the
COVID-19 pandemic and may be useful for calibrating transmission dynamics models.

Introduction

As the COVID-19 pandemic has evolved, daily counts of new diagnoses have been a major
focus of governments, researchers and the broader community. However, although these
counts provide a window into the progress of the epidemic, they represent only part of the
total extent of infection within a population. Furthermore, the pattern of diagnoses over
time is a lagged and incomplete representation of the pattern of infections over time. In mon-
itoring the extent and evolution of the epidemic, as well as the effectiveness of control mea-
sures such as border closures, social distancing and community lockdowns, it is infections
not diagnoses that are of primary interest.

The purpose of this paper is to analyse Australian COVID-19 daily diagnosis counts in
order to demonstrate how these routinely collected data can be converted into information
about the quantity of fundamental interest, which is infection incidence. It is demonstrated
that with appropriate statistical analysis, based on back-projection methodology used exten-
sively to monitor the HIV/AIDS epidemic, the daily COVID-19 diagnosis data can provide
information about serial infection incidence and the extent of undiagnosed infections in a
population. As well as helping to understand the extent of the epidemic, such information
can also be used to assess the impact of government control measures. It is argued that ana-
lytics systems automating and continuously updating COVID-19 infection estimates and pro-
jections are valuable tools for monitoring the outbreak, and should be considered as
preparation for a potential second wave of infections.

Methods

Diagnosis data

In Australia, each of the eight state and territory health departments provides a daily update on
the cumulative number of COVID-19 diagnoses. Various public domain resources provide
convenient access to these data [1–5]. This paper uses confirmed case numbers taken directly
from the daily health department updates. Daily diagnosis numbers were analysed for the 105
days from the first reported case on 25 January through to 8 May, broken down by state and
territory as well as aggregated nationally. Although slight differences exist between the various
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public domain data resources, the analysis results were not sub-
stantively altered when repeated on other versions of the data.

Estimating infection incidence

The primary method of analysis was the method of back-
projection, also called back-calculation, which was originally
developed for the purpose of estimating HIV incidence using
AIDS surveillance data [6–8]. This method has also been used
extensively in other contexts where an unobserved incident
event is followed by a delay until an observed diagnosis [9,
Section 3.1], as is the case for COVID-19 infection and diagnosis.

A key piece of information required to implement a back-
projection analysis is the probability distribution of the time
D between the unobserved event of interest and the subsequently
observed diagnosis, which will be referred to as the diagnosis dis-
tribution. The diagnosis distribution specifies the probabilities
pd = Pr (D = d) for a given number of days d, and will be
described in detail below. Back-projection then makes use of
the fact that the observed serial diagnosis counts Yt, for days
t = 1,… , T, reflect the unobserved number of COVID-19 infec-
tions Xt, aggregated with the diagnosis distribution. Given the
assumed diagnosis distribution, these diagnosis counts can be
statistically decomposed to yield estimates of the infection inci-
dence, from which estimates of cumulative infections and undiag-
nosed infections may also be obtained.

The analysis is based on the fundamental relationship between
the mean diagnosis count at time t, μt = E(Yt), and the mean
infection counts λs = E(Xs), for times s up to and including time
t, weighted by the diagnosis distribution:

mt =
∑t

s=1

lspt−s t = 1, . . . , T.

Assuming that the infection counts Xt are independent Poisson
random variables leads to a high-dimensional linear Poisson
regression model for the diagnosis counts Yt. The model requires
non-negativity constraints on the parameters λt, reflecting the fact
that they are Poisson means. Once fitted, the model provides esti-
mates of the mean infection incidence l̂t , which can be used as
estimates of the unobserved infection counts over time. This pro-
cess is called back-projection because it effectively involves pro-
jecting the diagnosis counts back in time using the diagnosis
distribution, and is also referred to as Poisson deconvolution
because it involves disaggregating the mean infection counts
from the diagnosis distribution. In theory, the model is an identity
link generalised linear model, but in practice it requires special
computational software to accommodate the high dimensionality
and the parameter constraints. Reliable algorithms for this non-
standard analysis are incorporated into freely available open
source software and are used here. In particular, the analyses
were performed in the R computing environment [10] using
the addreg package that contains the nnpois function for per-
forming reliable high-dimensional non-negatively constrained
linear Poisson regression [11]. Code for implementing these ana-
lyses is available on the GitHub repository linked to the
Coronavirus 10-day Forecast resource from The University of
Melbourne [4].

The back-projection estimates l̂t provide information about
the overall incidence of infection among the population present-
ing for diagnosis. Importantly, back-projection does not estimate

the incidence of community transmission, because it includes
both infections derived from community transmission as well as
those imported from outside the population. Instead, back-
projection provides an assessment of the incidence of infections
aggregated over all sources, which can then be used to provide
information about the effectiveness of control measures and the
pattern of future case diagnoses. Conversely, transmission models
incorporate the dynamics of different sources of infection making
up the aggregated infection incidence, and for this reason back-
projection is useful for calibrating transmission models.

In view of the high dimensionality of the model, the analysis
additionally makes use of smoothing, which was implemented
using a simple moving average of width one week. This smooth-
ing was applied first to the daily diagnosis counts, and then in
each iteration of the computational algorithm for fitting the high-
dimensional linear Poisson model [12, 13]. Confidence intervals
were obtained using parametric bootstrap methods [6]. A total
of 1000 bootstrap replications of the diagnosis data were gener-
ated and the back-projection analysis was applied to each, after
which the 2.5% and 97.5% percentiles of the incidence estimates
were used as 95% confidence intervals. Adjustment for over-
dispersion relative to the Poisson model was incorporated by gen-
erating replications from a negative binomial distribution with
mean equal to the model fitted values and variance inflated by
the over-dispersion factor [6, p. 199]. As in previous smoothed
back-projection analyses, the model fitted values for generating
bootstrap replications were computed using an unsmoothed back-
projection analysis [13]. As described earlier in this section, all
data and software for implementing these analyses is available
in the public domain.

Incubation, testing and diagnosis periods

As introduced above, estimation of infection incidence using
back-projection requires an assumed probability distribution pd
for the number of days D between infection and diagnosis. For
COVID-19, there are two primary phases contributing to this
diagnosis distribution: the incubation period between infection
and the development of symptoms, and the testing period
between symptoms and final diagnosis. These two components
of the diagnosis distribution will be referred to as the incubation
distribution and the testing distribution, respectively. Information
about the incubation distribution has been published [14] and has
been incorporated into transmission modelling used by the
Australian government [15, 16]. Based on this information, the
analysis presented here used a log-normal incubation distribution
with an average of 5.2 days and a 95% percentile of 12.5 days [14].
Likewise, modelling used by the Australian government has
assumed a mean testing period of 2 days [16], which is reflected
here using a gamma distribution with rate parameter 0.6 per day
and shape parameter 1.2. This gamma distribution was chosen so
as to closely approximate an exponential distribution with mean 2
days, but with zero probability density at the time origin. Using
the incubation and testing distributions, and assuming that the
two periods are statistically independent, the diagnosis distribu-
tion is the probabilistic convolution of the two distributions.
Figure 1 plots the probability density function f(d) and the cumu-
lative distribution function F(d) for the diagnosis period D, as
well as the underlying incubation and testing distributions. The
delay between infection and diagnosis is consequently assumed
to have a mean of 7.2 days and 95% percentile of 15.1 days. To
facilitate the linear Poisson regression analysis of discrete-time
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daily data, the diagnosis distribution is represented as a discretised
version of the continuous-time distribution:

pd = Pr (D = d) = F(d + 1)− F(d) d = 0, 1, 2, . . .

Since misspecification of the diagnosis distribution can bias the
infection incidence estimates, sensitivity analyses were conducted
to assess the robustness of the primary conclusions. These were
conducted by repeating the back-projection analysis with both
short and long diagnosis distributions. The short distribution
used an incubation distribution with mean 4.1 days (lower 95%
confidence limit reported in [14]), combined with a testing
distribution having double the rate of diagnosis and therefore
half the mean time from symptoms to diagnosis. The long
diagnosis distribution was constructed similarly, with mean
incubation period 7.0 days (upper 95% confidence limit) and
half the rate of diagnosis or double the mean time from symptoms
to diagnosis. The sensitivity analyses therefore had mean diagno-
sis periods from 5.1 to 11.0 days, compared to the assumed mean
of 7.2 days.

Undetected infections

An implicit assumption of the presentation of the diagnosis
distribution is that it is a proper distribution in the sense that it
sums to 1. In practice this may not be the case because some
infected individuals may remain undetected by the testing regime,

particularly those with asymptomatic infection. In this case the
diagnosis distribution is a sub-distribution, in the sense that

∑1

d=0

pd = P , 1.

Here P is the proportion of infections that are detected by the test-
ing regime, and 1− P is the proportion of undetected infections.
If P < 1 then the diagnosis distribution has cumulative distribu-
tion function P × F(d), which means that the linear Poisson
model is re-scaled by a factor P. The consequence of this
re-scaling is that, in the presence of undetected infections, the
back-projection estimates l̂t are estimates of P × λt rather than
the actual infection incidence λt [6, pp. 201–202]. Thus, back-
projection applied to diagnosis counts may produce under-
estimates of infection incidence, particularly if the extent of
undetected infections is substantial.

Despite the potential for under-estimation, there are two key
points that make back-projection estimates useful even in the
presence of undetected infections. Firstly, it is possible to make
a range of assumptions about P or to estimate it from hospitalisa-
tion data, and then to inflate the back-projection estimates by
a factor of 1/P in order to adjust for undetected infections
[16–18]. For example, the COVID-19 transmission model used
by the Australian government [16], as well as other published
models [19], incorporate assumptions about the net proportion
of cases that present for diagnosis, which corresponds to P, and
which can be used straightforwardly to adjust the estimates for
undetected infections. One published estimate of P used by the
Australian government is 0.93, which would suggest that the
infection incidence estimates need to be inflated by 7.5%
[17, 18]. Secondly, assuming that P is relatively stable over time,
or in other words that the testing regime is relatively stable over
time, the shape of the infection incidence curve will be unchanged
in the presence of undetected infections. In this case, qualitative
features of back-projection estimates, such as the timing of peak
incidence and its temporal association with control measures,
are unaffected by the existence of undetected infections.

Control measures

Estimates of infection incidence were compared with the timing
of key government control measures. Following early measures
such as limiting outdoor and indoor gathering sizes to hun-
dreds, the Australian government implemented staged restric-
tions during the period 20 March to 31 March [20]. The
initial stage involved border closures (20 March) and Stage 1
social distancing restrictions (23 March) including prohibition
of many types of face-to-face business and entertainment activ-
ities. These were followed by Stages 2 and 3 social distancing
restrictions (26–31 March), which included limiting gatherings
to two people and restrictions on leaving the home except for
essential purposes.

Results

Infection diagnosis

The cumulative daily diagnosis counts for Australia are presented
in Figure 2 (panel A) for the period subsequent to the national
total reaching 50 cases. As at 8 May, 6943 diagnoses were reported
nationally. In addition, data from the three states with the largest

Fig. 1. Distribution of the time between COVID-19 infection and diagnosis (black
lines), which is the aggregate (convolution) of the incubation distribution (green
lines) and the distribution of the time between symptoms and diagnosis
(red lines). Panel A plots the probability density functions and panel B plots the
cumulative distribution functions.
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outbreaks, comprising over 80% of the total epidemic, are also
provided. By viewing the diagnosis counts on the logarithmic
scale, it is seen that the growth of the epidemics in each state fol-
lowed a similar pattern to the national trajectory. The smoothed
daily national diagnosis counts are also shown in Figure 2
(panel B), together with the timing of key national government
control measures. With respect to the pattern of daily diagnoses,
border closures and Stage 1 restrictions were accompanied by a
continued increase in the incidence of confirmed cases, whereas
Stages 2 and 3 restrictions were accompanied by a peak and
decline in incidence of new case diagnoses.

Infection incidence

Figure 3 (panel A) shows the back-projection estimates of daily
new infections. The estimates indicate a peak in the incidence
of new infections at around 20 March. In contrast to the trend
observed in the diagnosis data, border closures and Stage 1 restric-
tions were accompanied by a peak and decline in the incidence of
new infections. To assess model fit and uncertainty, standardised
Poisson residuals of observed daily diagnosis counts compared to
fitted daily diagnosis counts were inspected and found to be
centred around zero indicating good model fit. However, over-
dispersion relative to the Poisson model was evident, with an esti-
mated over-dispersion parameter of σ2 = 1.9. This over-dispersion
was incorporated into the calculation of 95% confidence intervals
displayed in Figure 3.

An important feature of Figure 3 (panel A) is the increase in
variability of the back-projection estimates in the very recent
past, which is a well-known property of back-projection analyses
[6]. This reflects the fact that only a few diagnoses are the result

of an infection in the very recent past, so there is less informa-
tion about infection incidence in the last few days. As demon-
strated by the widths of the confidence intervals, there is more
information about earlier incidence and about the timing of
peak incidence relative to the timing of government control
measures.

Undiagnosed infections

Due to the delay in diagnosing an infection, only a proportion of
all past infections will be diagnosed at any given point in time. By
subtracting the cumulative diagnoses from the cumulative infec-
tion estimates, it is possible to estimate the number of infections
that remain undiagnosed. Figure 3 (panel B) provides the propor-
tion of undiagnosed infections over time together with 95% con-
fidence intervals. At the height of the epidemic, only one-quarter
to one-half of all infections were diagnosed. Over time this pro-
portion has increased and is approaching 1 as the incidence of
new infections has become lower. Consistent with the confidence
intervals in panel A of Figure 3, panel B displays some uncertainty
about the undiagnosed proportion in the very recent past. Note
that panel B of Figure 3 represents the proportion of all past infec-
tions that are undiagnosed, not the proportion of active infections.
Furthermore, it is important to note that the undiagnosed infec-
tions do not include the undetected infections which are
addressed in the next subsection.

Sensitivity analyses

Sensitivity analyses exploring the impact of different diagnosis dis-
tributions and adjustment for undetected infections, are displayed
in Figure 4. The short diagnosis distribution (mean 5.1 days)

Fig. 2. Daily COVID-19 diagnosis counts for Australia. Panel A plots the cumulative
counts (log scale) for Australia (black) and the three states with the largest outbreaks,
New South Wales (red), Victoria (green) and Queensland (blue). Panel B plots the
smoothed daily number of new cases for Australia along with the timing of govern-
ment restrictions.

Fig. 3. Back-projection estimates of COVID-19 infection incidence in Australia. Panel A
plots the estimates of daily new infections and 95% bootstrap confidence intervals
along with the timing of government restrictions. Panel B plots the ratio of diagnoses
to infections and 95% bootstrap confidence intervals.
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shifted the incidence peak later while the long diagnosis distribu-
tion (mean 11.0 days) shifted it earlier. However, since these are
extreme assumptions on the diagnosis distribution, there was
not a high level of sensitivity and the broad conclusion that
peak incidence occurred contemporaneously with the initial con-
trol measures is still applicable. Adjustment of incidence estimates
for undetected infections raised the peak infection incidence but
did not alter its position. Overall, given estimates of detection
rates used by the Australian government [17, 18], adjustment for
undetected infections had little effect on the analysis.

Peak incidence and control measures

As displayed in Figure 5 (panel A), the infection incidence esti-
mates indicate that peak incidence and the initial government con-
trol measures were preceded by two weeks of exponential growth
in cumulative infections (solid black points). This is reflected by
a strongly linear trend on the logarithmic scale during these two
weeks. Subsequently, the growth shifts from exponential to sub-
exponential growth in cumulative infections. One possible explan-
ation for this shift is the timing of the border closures and Stage 1
social distancing restrictions, reflected by the shaded region. By
delaying the timing of this transition to sub-exponential growth
by one week (green points) or moving it forward one week (red
points), the effect of earlier or later control on the overall infection
numbers can be investigated. Figure 5 (panel B) reflects the effect
of these shifts on the estimates of infection incidence. Based on
these estimates, one week later control would correspond with
35 050 infections (green line), an almost fivefold increase in total
infections, whereas one week earlier control would correspond
with only 1735 infections (red line).

Further analyses

Consistent with Figure 2 (panel A), repeating the analyses on data
from each of the three states with greater than 1000 diagnoses
(New South Wales, Victoria and Queensland) yielded very similar
trends to those displayed in Figure 5 for the national data (results
not shown).

Also available are short-term projections of new daily diagno-
sis counts based on the fitted models from the back-projection
analyses. Using the fundamental linear relationship between
mean diagnoses and mean infections, as expressed in the
Methods section, the fitted model can be used to calculate the
mean number of diagnoses for a short period into the future.
This is possible because the number of diagnoses in the next
few days depends primarily on past infection incidence.
Figure 6 presents 5-day forecasts for the month of April, subse-
quent to the date of the final government control measures (31
March). For these forecasts the back-projection analyses were
repeated using data that were available prior to multiple days in
April. The 5-day forecasts from these analyses were then com-
pared with the actual (smoothed) counts that were subsequently
observed. Figure 6 demonstrates the forecasts are a worthwhile
predictive tool and a useful by-product of a back-projection ana-
lysis. Of course, other simple forecasting methods, such as
extrapolation of a regression model fitted to the diagnosis counts,
might also provide reasonable predictions. However, the forecasts
in Figure 6 make use of the underlying infection incidence that
drives future diagnoses, whereas simple extrapolation does not,
which can lead to unreliable extrapolated diagnosis counts [6,
Section 7.6].

Fig. 4. Sensitivity analyses for the main analyses presented in Figure 3. The main
analyses (grey) are compared to an analysis with a long diagnosis distribution
(red), short diagnosis distribution (green) and after adjusting for undetected infec-
tions (black).

Fig. 5. Back-projection estimates of COVID-19 infection numbers in Australia, showing
transition from exponential to sub-exponential growth (black) relative to the timing
of border closures and Stage 1 restrictions (20–23 March, shaded region). Also
shown are the infection numbers obtained by shifting the transition to sub-
exponential growth one week later (green) or one week earlier (red). Panel A displays
cumulative infection estimates and panel B displays daily numbers of new infections.
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Discussion

Daily COVID-19 diagnosis counts are a valuable data resource
providing information beyond the number of positive tests.
Back-projection has been an important analytical method in
prior epidemiological contexts, particularly HIV/AIDS, and has
great potential for the analysis of COVID-19 data. This paper
has presented a suite of analyses that can be undertaken on
COVID-19 diagnosis data to assess infection incidence using
the method of back-projection.

In Australia, the estimates of infection incidence show a peak
around 20 March, less than two weeks after reaching 100 diagno-
ses. They also show that the initial key national government inter-
ventions, particularly border closures and Stage 1 social
distancing restrictions, corresponded temporally with a peak
and subsequent decline in infection incidence. Nonetheless, sub-
sequent restriction stages are likely to have played a role in driving
incidence even lower and preventing resurgence.

The estimates suggest that a one week delay in the timing of
peak infection would have corresponded with a fivefold increase
in the total number of people infected. Likewise, shifting the
peak one week earlier would have yielded a decrease of similar

magnitude in the total number of infections. Furthermore, the
estimates suggest that at the height of the epidemic, the propor-
tion of undiagnosed infections was half to three-quarters of the
total infection pool. None of this information is directly discern-
ible from inspection of the daily diagnosis counts, which contin-
ued to increase after the first stages of government control
measures. This shows that the temporal association between con-
trol measures and the course of the epidemic may be quite differ-
ent when the epidemic’s extent is measured using estimated
infection incidence rather than observed diagnosis counts.
Back-projection estimates therefore provide useful additional
information for assessing the effectiveness of control measures,
as well as for understanding the evolution of infection incidence
during the initial wave of infections and in the event of a second
wave.

Back-projection may produce under-estimates of infection
incidence if a proportion of infected individuals never have
their infection diagnosed. This can be adjusted for by inflating
the incidence estimates by a factor that depends on the detection
proportion, which is an approach previously proposed in the con-
text of HIV/AIDS [6, pp. 201–202]. Based on modelling used by

Fig. 6. 5-day forecasts (red lines) of daily diagnoses for
the month of April based on back-projection analyses
of data available prior to each day. The 5-day forecasts
begin on 1 April (panel A), 5 April (panel B) and 10
April (panel C). Observed (smoothed) counts are
shown as black lines up to the analysis day (vertical
line) and as black points after the analysis day.
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the Australian government [17, 18], which estimates the detection
proportion to be P = 0.93, this corresponds to a 7.5% inflation of
the incidence estimates, which led to a slightly higher peak inci-
dence when adjusting for undetected infections. Importantly,
however, the shape of the infection incidence curve, and hence
the timing of key features relative to the timing of government
control measures, are unaffected by this under-estimation. Thus,
the broad conclusions of the analysis are robust to this feature
of the data. As the outbreak progresses, changes in the availability
of testing may affect the proportion of undetected infections,
which makes P time-dependent and affects the infection inci-
dence curve. This could be accounted for by modelling a time-
varying P, however, this is unlikely to be a major issue for the cur-
rent analysis since testing was restricted to confirmatory case
diagnosis.

Back-projection estimates are more uncertain in the recent
past because few cases were infected in the recent past. Also, back-
projection estimates may be sensitive to misspecification of the
diagnosis distribution. For example, estimates of the incubation
distribution may be based on data subject to retrospective ascer-
tainment of infection dates and therefore subject to uncertainties
and biases. Sensitivity analyses are therefore important in any
back-projection analysis. For the current analysis, the primary
qualitative conclusions concerning the pattern of infection inci-
dence were robust to a range of diagnosis distribution
assumptions.

As the COVID-19 pandemic evolves the diagnosis distribution
may change, making it time-dependent. Such changes may result
from introducing effective treatments, changes in the operational
definition of disease, and changes in testing policy.
Individual-specific factors may also affect the incubation distribu-
tion, such as age-dependencies. These complexities were present
for HIV/AIDS, and generalised back-projection methodology
has been developed [6, 7, 13]. Thus, while such influences
would not have a substantive effect early in an outbreak, general-
ised methods may be required for COVID-19 in the longer term.

This paper has applied back-projection to daily diagnosis
counts, however, it could also potentially be applied to routinely
reported daily mortality counts. This would require detailed
information on the probability distribution of the time from
infection to death. Since death from COVID-19 infection is likely
to have less under-reporting than case diagnosis, death data would
have the advantage of being more complete. Nonetheless, only a
small proportion of infections result in death, so back-projection
estimates from death data would need to be adjusted using exter-
nal information about the mortality rate. Another issue is that
death data may contain substantially less information than diag-
nosis data. For example, in Australia where approximately 100
deaths have occurred, such analyses would not be highly inform-
ative. Nonetheless, for high mortality countries back-projection of
death counts may be informative about past infection incidence
and future mortality.

An important line of future research is to explore the use of
back-projection estimates of detectable infection incidence for
calibrating transmission dynamics models. Such models make
critical parameter assumptions which should lead the models to
track the infection incidence estimated by back-projection. Such
an approach to transmission model calibration was used effect-
ively in the HIV/AIDS context and may have applications for
COVID-19 modelling [9, 21]. This should be a high priority for
COVID-19 epidemiological research, and would require close col-
laboration between modellers and statisticians.

Future work should also focus on developing automated ana-
lytics systems for continuous updating of estimates and projec-
tions as the outbreak evolves on a daily basis. Such analyses
would add value to the descriptive dashboards that have prolifer-
ated in the wake of the highly successful Johns Hopkins
University Coronavirus Visual Dashboard [1, 2]. Analytics soft-
ware for serial updating of estimates of basic reproduction num-
bers has previously been advocated [22]. However, currently there
is only limited implementation of back-projection methodology
for COVID-19, through the Coronavirus 10-day Forecast resource
from The University of Melbourne [4] and the epiforecasts
resource from the London School of Hygiene and Tropical
Medicine [23]. More expansive use of back-projection would
allow continuous monitoring for resource planning and identifi-
cation of key milestones, such as an infection incidence peak or
a resurgence in infections as control measures are eased.
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