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Abstract

The aim of this article is to prove a symmetry result for several overdetermined boundary
value problems. For the two first problems, our method combines the maximum
principle with the monotonicity of the mean curvature. For the others, we use essentially
the compatibility condition of the Neumann problem.
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1. Introduction

We assume throughout that D ⊂RN (N ≥ 2) is a bounded ball which contains all the
domains we use. If ω is an open subset of D, let ν be the outward normal to ∂ω and
let |∂ω| (respectively |ω|) be the perimeter (respectively the volume) of ω.

Consider the following overdetermined boundary value problem:

S(k)


−1u� = 1 in �,

u� = 0 on ∂�,

−
∂u�
∂ν
= k on ∂�.

Notice that since u� vanishes on ∂� then −(∂u�/∂ν)= |∇u�|.
In 1971, Serrin [19] proved that if Problem S(k) has a solution u� ∈ C2(�) then

� must be a ball and u� is radially symmetric. The method used by Serrin combines
the maximum principle together with the device of moving planes [11] to a critical
position and then showing that the solution is symmetric about the limiting plane.
In the same year, Weinberger [21] gave a simplified proof for this problem. His
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strategy of proof consists first of showing that |∇u|2 + (2/N )u = k2 in � and then
deriving a radial symmetry from this. Concerning other methods, we refer the reader
to the paper by Payne [15] and the references therein. The last problem studied
in Section 5 comes from this paper. For more details about the symmetry results
see [9, Introduction] and the references therein. Fragalà et al. [9], obtained their
symmetry result by combining a maximum principle for a suitable P-function with
some geometric arguments involving the mean curvature of ∂�. However, they
assumed the solution � to be star-shaped with respect to the origin. This assumption
seems to be crucial for the proof of their main results and they cannot remove it.

The method we present here needs the use of the maximum principle together
with the monotonicity of the mean curvature. Therefore, it can be extended to more
general divergence operators such as the p-Laplacian for which one can use Hopf’s
comparison principle or the operator −div(A(|∇u|)∇u) for which a boundary point
principle is considered [9]. The novelty of our method is the following. First, to
prove the main results of Section 3, we do not ask � to be star-shaped with respect
to the origin. Second, this method can be extended to other problems such as P(c),
see Section 4:

P(c)


−1u� = 1 in �, u� = 0 on ∂� denoted P(�),

−1v� = u� in �, v� = 0 on ∂� denoted Q(�),

|∇u�||∇v�| = c on ∂�.

The problem P(c) arises from the variational problem in probability [10, 13].
Fromm and McDonald [10] related this problem to the fundamental result of Serrin.
Then, using the moving plane method combined with Serrin’s boundary point lemma,
they showed that if this problem admits a solution � then it must be a ball. Huang and
Miller [12] established the variational formulas for maximizing the functionals (which
they considered) over Ck domains with a volume constraint and obtained the same
symmetry result for their maximizers.

Section 2 contains some preliminary results which are useful for solving the shape
optimization problems presented in Sections 3 and 4. Section 3 is devoted to the
problem S(k) whereas Section 4 concerns the problem P(c). In Section 5, by using the
compatibility condition of the Neumann problem [14], we obtain the same symmetry
result for other boundary value problems for which the overdetermined condition is
not constant.

2. Preliminaries

DEFINITION 2.1. Let K1 and K2 be two compact subsets of D. We call a Hausdorff
distance of K1 and K2 (or briefly dH (K1, K2)) the following positive number:

dH (K1, K2)=max[ρ(K1, K2), ρ(K2, K1)],

where ρ(Ki , K j )=maxx∈Ki d(x, K j ), i, j = 1, 2, and d(x, K j )=miny∈K j |x − y|.
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DEFINITION 2.2. Let ωn be a sequence of open subsets of D and let ω be an open
subset of D. Let Kn and K be their complements in D̄. We say that the sequence ωn

converges in the Hausdorff sense, to ω (or briefly ωn
H
−→ ω) if

lim
n→+∞

dH (Kn, K )= 0.

DEFINITION 2.3. Let {ωn, ω} be a sequence of open subsets of D. We say that the

sequence ωn converges in the compact sense to ω (or briefly ωn
K
−→ ω) if:

• every compact subset of ω is included in ωn for n large enough; and
• every compact subset of ω̄c is included in ωc

n for n large enough.

DEFINITION 2.4. Let {ωn, ω} be a sequence of open subsets of D. We say that
the sequence ωn converges in the sense of characteristic functions to ω (or briefly

ωn
L
−→ ω) if χωn converges to χω in L p

loc(RN ), p 6= ∞ (χω is the characteristic
function of ω).

DEFINITION 2.5 ([3]). Let C be a compact convex set. The bounded domain ω

satisfies C-GNP if:

(1) ω ⊃ int(C);
(2) ∂ω \ C is locally Lipschitz;
(3) for any c ∈ ∂C there is an outward normal ray1c such that1c ∩ ω is connected;

and
(4) for every x ∈ ∂ω \ C the inward normal ray to ω (if exists) meets C .

REMARK 2.6. If � satisfies the C-GNP and C has a nonempty interior, then � is
connected.

Put

OC = {ω ⊂ D | ω satisfies C-GNP}.

THEOREM 2.7. If ωn ∈OC , then there exist an open subset ω ⊂ D and a subsequence

(again denoted by ωn) such that (i) ωn
H
−→ ω, (ii) ωn

K
−→ ω, (iii) χωn converges to χω

in L1(D) and (iv)ω ∈OC . Furthermore, the assertions (i), (ii) and (iii) are equivalent.

Barkatou proved this theorem [3, Theorem 3.1] and the equivalence between (i), (ii)
and (iii) [3, Propositions 3.4, 3.5, 3.6, 3.7 and 3.8].

PROPOSITION 2.8. Let {ωn, ω} ⊂OC such that ωn
H
−→ ω. Let un and uω be

respectively the solutions of P(ωn) and P(ω). Then un converges strongly in H1
0 (D)

to uω (un and uω are extended by zero in D).

This proposition was proven for N = 2 or 3 [3, Theorem 4.3].
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DEFINITION 2.9. Let C be a convex set. We say that an open subset ω has the C-SP

if:

(1) ω ⊃ int(C);
(2) ∂ω \ C is locally Lipschitz;
(3) for any c ∈ ∂C there is an outward normal ray1c such that1c ∩ ω is connected;

and
(4) for all x ∈ ∂ω \ C Kx ∩ ω = ∅, where Kx is the closed cone defined by

{y ∈RN
| (y − x) · (z − x)≤ 0, for all z ∈ C}.

REMARK 2.10. Kx is the normal cone to the convex hull of C and {x}.

PROPOSITION 2.11 ([3, Proposition 2.3]). ω has the C-GNP if and only if ω satisfies
the C-SP.

DEFINITION 2.12 ([8]). We say that a domain ω satisfies the ε-cone property if for all
x ∈ ∂ω there exists a direction vector ξ ∈RN such that the cone C(y, ξ, ε)⊂ ω for all
y ∈ B(x, ε) ∩ ω. ε denotes both the angle and the height of the cone.

Denoting by Oε the class of domains which have the ε-cone property, we have the
following lemma.

LEMMA 2.13 ([8]). If ωn ∈Oε, then there exist an open subset ω ⊂ D and

a subsequence (again denoted by ωn) such that (i) ωn
H
−→ ω, (ii) ω̄n

H
−→ ω̄,

(iii) ∂ωn
H
−→ ∂ω, (iv) χωn converges to χω in L1(D), (v) ω ∈Oε and (vi) uωn

converges strongly in H1
0 (D) to uω (uω is the solution of P(ω)).

PROPOSITION 2.14 ([5, Theorem 3.5]). Let vn and vω be respectively the solutions of
the Dirichlet problems P(ωn, gn) and P(ω, g). If gn converges strongly in H−1(D)
to g then vn converges strongly in H1

0 (D) to vω (vn and vω are extended by zero in D).

LEMMA 2.15 ([6, 17]). Let ωn be a sequence of open and bounded subsets of D.
There exist a subsequence (again denoted by ωn) and some open subset ω of D such
that:

(1) ωn converges to ω in the Hausdorff sense; and
(2) |∂ω| ≤ lim infn→∞ |∂ωn|.

2.1. Shape derivative In this subsection, we use the standard tool of the domain
derivative to write down the optimality conditions. Before doing this, recall the
definition of the domain derivative [20]. Suppose that ω is of class C2. Consider
a deformation field V ∈ C2(RN

;RN ) and set ωt = {x + tV (x) | x ∈ ω}, t > 0. The
application Id+ tV (a perturbation of the identity) is a Lipschitz diffeomorphism for
t small enough and, by definition, the derivative of J at ω in the direction V is

d J (ω, V )= lim
t→0

J (ωt )− J (ω)

t
.
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As the functional J depends on the domain ω through the solution of some Dirichlet
problem, we need to also define the domain derivative u′ω of uω:

u′ω = lim
t→0

uωt − uω
t

.

Furthermore, u′ω is the solution of the following problem [20]:−1u′ω = 0 in ω,

u′ω =−
∂uω
∂ν

V · ν on ∂ω.
(2.1)

Now to compute the derivative of the functionals we consider below, recall the
following [20].

(1) The shape derivative of the volume is∫
∂ω

V · ν dσ. (2.2)

(2) The shape derivative of the perimeter is∫
∂ω

(N − 1)H∂ωV · ν dσ. (2.3)

(3) Suppose that uω is in H1
0 (D) and ω is of class C2.

(a) If F(ω)=
∫
ω

u2
ω dx , then the Hadamard formula gives

d F(ω, V )= 2
∫
ω

uωu′ω dx .

But vω is in H1
0 (D) and−4vω = uω in ω, so by Green’s formula we obtain

d F(ω, V )= 2
∫
∂ω

|∇uω||∇vω|V · ν dσ.

(b) If G(ω)=
∫
ω
|∇uω|2 dx , by the Hadamard formula we get

dG(ω, V )=
∫
∂ω

|∇uω|
2V · ν dσ.

Since the set ω satisfies some geometric property (the ε-cone property or the C-
GNP), we ask the deformation set ωt to satisfy the same property (for t sufficiently
small). To keep the ε-cone property any direction is admissible. The aim in what
follows is to prove the same thing for the C-GNP. With ω having the C-GNP, by
Proposition 2.11, it satisfies the C-SP. Then

for all x ∈ ∂ω \ C : Kx ∩ ω = ∅.
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For t sufficiently small, let ωt = ω + tV (ω) be the deformation of ω in the direction V .
Let xt ∈ ∂ωt . There exists x ∈ ∂ω such that xt = x + tV (x). Using the definition of
Kxt and the equality above, we get (for t small enough and for every displacement V )

for all xt ∈ ∂ωt \ C : Kxt ∩ ωt = ∅,

which means that ωt satisfies the C-SP (and so the C-GNP) for every direction V when
t is sufficiently small.

3. Problem S(k)

3.1. Auxiliary lemmas

LEMMA 3.1. Let Bρ be a solution of S(k) so then ρ = Nk.

PROOF. Let uρ be the solution of P(Bρ). Using polar coordinates, uρ verifies

−u′′ρ −
N − 1

r
u′ρ = 1 for r ∈ ]0, ρ[,

uρ(ρ)= 0.

By the first equation, (r N−1u′ρ)
′
=−r N−1. Since uρ(ρ)= 0, we get

r N−1u′ρ(r)= ρ
N−1u′ρ(ρ)+

∫ ρ

r
s N−1 ds.

As r→ 0, r N−1u′ρ(r)→ 0 (otherwise we get a distributional contribution to 1uρ at
the origin). Thus

−u′ρ(ρ)=
1

ρN−1

∫ ρ

0
s N−1 ds =

ρ

N
.

Now if Bρ is a solution of S(k) then −u′ρ(ρ)= k. Thus ρ = Nk. 2

LEMMA 3.2. Let � be a solution of S(k). Let ω ⊃� and let uω be the solution of
P(ω). If ∂ω ∩ ∂� 6= ∅ and if |∇uω| ≤ k on ∂ω ∩ ∂� then ω =�.

PROOF. Suppose by contradiction that � is different to ω. As ω ⊃�, ∂ω 6= ∂�. But
∂ω ∩ ∂� 6= ∅, so applying the maximum principle to uω and u� and using the fact that
� is a solution of S(k), we obtain

k = |∇u�|< |∇uω| ≤ k on ∂ω ∩ ∂�,

which gives the contradiction. 2

As a consequence, we have the following corollary.

COROLLARY 3.3. Let ω and � be two solutions of S(k). Suppose that �⊂ ω and
∂ω ∩ ∂� 6= ∅, then ω =�.
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3.2. Shape optimization problems Let � be a solution of S(k). Let Bρ be the
ball centred at the origin of radius ρ. Denote by B the greatest ball contained in �.
Denote by OB (respectively OBρ ) the class of all domains which satisfy the B-GNP

(respectively the Bρ-GNP). Set

O� = {D ⊃ ω ⊃� | ω ∈OB},

O� = {ω ⊂�⊂ D | ω ∈Oε},

and

Oρ = {D ⊃ ω ⊃ Bρ | ω ∈OBρ }.

Consider the following functionals:

j1(ω)=
N

N − 1
k2
|∂ω| −

1
2

∫
ω

|∇uω|
2,

j2(ω)=
N

N − 1
k|∂ω| − |ω|,

and

j3(ω)=
k2

2
|ω| −

1
2

∫
ω

|∇uω|
2.

Here uω is the solution of P(ω).
We then have the following propositions.

PROPOSITION 3.4. Suppose N ∈ {2, 3}. There exists �1 ∈O� which is of class C2

such that:

(1) j1(�1)=min{ j1(ω) | ω ∈O�} and u�1 is the solution of P(�1);
(2) {

|∇u�1 | ≤ Nk2 H∂�1 on ∂�1 ∩ ∂�,

|∇u�1 | = Nk2 H∂�1 on ∂�1 \ ∂�.
(3.1)

PROOF. To get item (1), we use Theorem 2.7, Proposition 2.8 and item (2) of
Lemma 2.15. For item (2), using the same notation as in Section 2.1, to get � in
(�1)t (for t small enough) the admissible directions V must satisfy

V · ν ≥ 0 on ∂� ∩ ∂�1.

Notice that, for ∂�1 \ ∂�, each V is admissible. Now since u�1 vanishes on ∂�1,
(2.3) and 3(b) above imply

d j1(�1, V )=
∫
∂�1

(N H∂�1k2
− |∇u�1 |

2)V · ν dσ.

Since d j1(�1, V )≥ 0 for each admissible direction V , according to the preceeding
calculations we obtain (3.1). 2
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PROPOSITION 3.5. Suppose that N ≥ 2. There exists �2 ∈O� such that:

(1) j2(�2)=min{ j2(ω) | ω ∈O�};
(2) if �2 is of class C2 then{

Nk H∂�2 ≤ 1 on ∂�2 ∩ ∂�,

Nk H∂�2 = 1 on ∂�2 \ ∂�.
(3.2)

PROOF. The first item is obtained by using (iv) and (v) of Lemma 2.13 together with
item (2) of Lemma 2.15. The continuity with respect to the domains for the Dirichlet
problem P(�2) is obtained by (vi) of Lemma 2.13. For the second item, on ∂�2 \ ∂�,
any direction V is admissible whereas V must satisfy

V · ν ≤ 0 on ∂� ∩ ∂�2.

Then, arguing as above, (2.2) and (2.3) imply (3.2). 2

PROPOSITION 3.6. Suppose that N ∈ {2, 3}. There exists �3 ∈Oρ which is of class
C2 such that:

(1) j3(�3)=min{ j3(ω) | ω ∈Oρ} and u�3 is the solution of P(�3);
(2) {

|∇u�3 | ≤ k on ∂�3 ∩ ∂Bρ,

|∇u�3 | = k on ∂�3 \ ∂Bρ .
(3.3)

PROOF. The first item is due to Theorem 2.7 and Proposition 2.8. For the second item,
the admissible directions V must satisfy V · ν ≥ 0 on ∂� ∩ ∂�3. Then (2.2) and 3(b)
imply (3.3). 2

REMARK 3.7. The C2 regularity obtained for �1 and �3 is due to [4, Theorem 1.4].

REMARK 3.8. The continuity-compactness result obtained by Bucur and Trebeschi
[5] allows us to extend the previous propositions to other divergence operators such as
div(a(x, Du)), especially for the p-Laplacian case.

3.3. Main results Let � be a solution of S(k).

THEOREM 3.9. Suppose that N = 2. Let �2 be as in Proposition 3.5, then �=�2
= B2k .

The proof of this theorem uses the following lemma.

LEMMA 3.10 ([7, Section 30.4.1]). Suppose that N = 2 and let � be a simply
connected domain which is of class C2,α . If H∂� ≤ 1/% then � contains a ball of
radius %.

REMARK 3.11 ([7, Section 30.4.2]). The result of the previous lemma cannot be
extended to N ≥ 3.
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PROOF OF THEOREM 3.9. Item (2) of Proposition 3.5 gives H∂�2 ≤ 1/Nk on ∂�2.
Since �2 ⊂� and N = 2, Lemma 3.10 implies that B2k ⊂�2 ⊂�. Without loss
of generality we may assume that B2k touches ∂� tangentially at a point x0, so
that they have the same outward normal vector ν0 (otherwise we shift B2k). So
|∇u B2k (x0)| = k = |∇u�(x0)|. Suppose now that B2k 6=�. As B2k ⊂�, ∂B2k 6= ∂�.
Now as−4u B2k = 1=−4u� in B2k and u B2k ≤ u� on ∂B2k , the maximum principle
gives |∇u B2k (x0)|< |∇u�(x0)|which is absurd. It then follows that�=�2 = B2k . 2

THEOREM 3.12. Suppose that N ∈ {2, 3}. Let �3 be as in Proposition 3.6, then
�3 =�= BNk .

PROOF. BNk ⊂�3 ⊂� by the definition of Oρ . Then using the same arguments as
in the proof of Theorem 3.9, we obtain the same result for �, �3 and BNk . 2

THEOREM 3.13. Suppose that N ∈ {2, 3}. Let �1 and �2 be as in Propositions 3.4
and 3.5. If ∂�1 ∩ ∂�2 6= ∅ then �1 =�=�2 = BNk .

PROOF. Since �2 ⊂�⊂�1, ∂�1 ∩ ∂�2 6= ∅ implies ∂�1 ∩ ∂�2 ∩ ∂� 6= ∅. Sup-
pose by contradiction that �1 6=�, then ∂�1 6= ∂�. According to (3.1) and (3.2), the
monotonicity of the mean curvature together with the maximum principle implies

k = |∇u�|< |∇u�1 | ≤ Nk2 H∂�1 ≤ Nk2 H∂�2 ≤ k on ∂�1 ∩ ∂�2 ∩ ∂�,

which is absurd. So �1 =�. Therefore (3.1) gives k = |∇u�| ≤ Nk2 H∂� on ∂�.
Thus 1≤ Nk H∂� which can be combined with (3.2) and the monotonicity of the
mean curvature to get H∂�2 = 1/Nk on ∂�2, that is �2 is a ball with radius Nk [1].
Now Lemma 3.1 implies that �2 is a solution of S(k) and, since ∂� ∩ ∂�2 6= ∅,
Corollary 3.3 gives �=�2. 2

4. Problem P(c)

4.1. Auxiliary lemmas

LEMMA 4.1. Let BR be a solution of P(c), so then R = 4
√

N 3(N + 2)c.

PROOF. Let u R (respectively vR) be the solution of P(BR) (respectively Q(BR)).
On the one hand, replacing ρ by R in the proof of Lemma 3.1, one obtains
−u′R(R)= R/N . Then a simple calculation shows that

u R(r)=
1

2N
(R2
− r2) for r ∈ ]0, R[.

On the other hand, there exists a radial function vR satisfying
−v′′R −

N − 1
r

v′R = u R for r ∈ ]0, R[,

vR(R)= 0

−v′R(R)=
1

RN−1

∫ R

0
s N−1u R(s) ds =

N

N + 2

(
R

N

)3

.

Therefore, since BR is a solution of P(c), R = 4
√

N 3(N + 2)c.
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LEMMA 4.2. Let �∗ be a solution of P(c). Let ω ⊃�∗ and let uω (respectively vω)
be the solution of P(ω) (respectively Q(ω)). If ∂ω ∩ ∂�∗ 6= ∅ and if |∇uω||∇vω| ≤ c
on ∂ω ∩ ∂�∗ then ω =�∗.

PROOF. Suppose by contradiction that ω 6=�∗. Since ω ⊃�∗, ∂ω 6= ∂�∗. On the
one hand, �∗ is a solution of P(c) so the maximum principle implies 0≤ u�∗ ≤ uω in
�∗ and |∇u�∗ |< |∇uω| on ∂ω ∩ ∂�∗ which is nonempty. On the other hand, one can
apply the maximum principle to vω and v�∗ and obtain |∇v�∗ |< |∇vω| on ∂ω ∩ ∂�∗.
Therefore,

c = |∇u�∗ ||∇v�∗ |< |∇uω||∇vω| ≤ c on ∂ω ∩ ∂�∗,

which gives the contradiction. 2

COROLLARY 4.3. Let ω∗ and�∗ be two solutions of P(c). Suppose that�∗ ⊂ ω∗ and
∂ω∗ ∩ ∂�∗ 6= ∅, then ω∗ =�∗.

4.2. Shape optimization problems Let �∗ be a solution of P(c). Denote by B the
greatest ball contained in �∗. Replacing � by �∗ in O� (respectively in O�)) we
obtain the definition of O�∗ (respectively O�∗). Set

OR = {D ⊃ ω ⊃ BR | ω ∈OBR }.

Consider the following functionals:

J1(ω)= c
R

N − 1
|∂ω| −

1
2

∫
ω

u2
ω, J2(ω)=

R

N − 1
|∂ω| − |ω|,

and

J3(ω)= c|ω| −
1
2

∫
ω

u2
ω.

By the Green formula,

J1(ω)= c
R

N − 1
|∂ω| −

1
2

∫
ω

vω

and

J3(ω)= c|ω| −
1
2

∫
ω

vω.

uω and vω are respectively the solutions of P(ω) and Q(ω).
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PROPOSITION 4.4. Suppose that N ∈ {2, 3}. There exists �∗1 ∈O�∗ which is of class
C2 such that:

(1) J1(�
∗

1)=min{J1(ω) | ω ∈O�∗} and u�∗1 (respectively v�∗1 ) is the solution of
P(�∗1) (respectively Q(�∗1));

(2) {
|∇u�∗1 ||∇v�∗1 | ≤ cRH∂�∗1 on ∂�∗1 ∩ ∂�

∗,

|∇u�∗1 ||∇v�∗1 | = cRH∂�∗1 on ∂�∗1 \ ∂�
∗.

(4.1)

PROOF. (1) Let u D be the solution of the Dirichlet problem P(D). By the maximum
principle, 0≤ uω ≤ u D so J1(ω)≥−(1/2)

∫
D u2

D and inf J1 exists. Let �n be a
minimizing sequence in O�∗ . Since �n ⊂ D, then there exist an open set �∗1 and

a subsequence of �n (still denoted by �n) such that �n
H
−→�∗1. Now according

to (iii) of Theorem 2.7 and Proposition 2.8,
∫

D u2
nχ�n converges to

∫
D u2

�∗1
χ�∗1

and

by item (2) of Lemma 2.15 we get J1(�
∗

1)≤ lim infn→+∞ J1(�n). Then, according
to (iv) of Theorem 2.7, �∗1 ∈O�∗ ; therefore J1(�

∗

1)=minω∈O�∗ J1(ω). Now, on the
one hand, Proposition 2.8 implies that u�∗1 is the solution of P(�∗1). On the other
hand, Proposition 2.8 together with Proposition 2.14 implies that v�∗1 is the solution
of Q(�∗1).

(2) Since u�∗ = 0 on ∂�∗, (2.3) and 3(a) above imply that

d J1(�
∗, V )=

∫
∂�∗1

(cRH∂�∗1 − |∇u�∗1 ||∇v�∗1 |)V · ν dσ

for all admissible directions V . Thus we obtain (4.1). 2

PROPOSITION 4.5. Suppose that N ≥ 2. There exists �∗2 ∈O�
∗

such that:

(1) J2(�
∗

2)=min{J2(ω) | ω ∈O�
∗

}, u�∗2 (respectively v�∗2
) is the solution of

P(�∗2) (respectively Q(�∗2));
(2) if �∗2 is of class C2 then{

RH∂�∗2 ≤ 1 on ∂�∗2 ∩ ∂�
∗,

RH∂�∗2 = 1 on ∂�∗2 \ ∂�
∗.

(4.2)

PROOF. (1) The first assertion is due to Lemma 2.13 and item (2) of Lemma 2.15.
Then (vi) of Lemma 2.13 together with Proposition 2.14 gives the continuity with
respect to the domains for the Dirichlet problems P(�∗2) and Q(�∗2).

(2) Arguing as in the proof of Proposition 3.5 and using (2.2) and (2.3), we
obtain (4.2). 2
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PROPOSITION 4.6. Suppose that N ∈ {2, 3}. There exists �∗3 ∈OR which is of class
C2 such that:

(1) J3(�
∗

3)=min{J3(ω) | ω ∈OR} and u�∗3 (respectively v�∗3 ) is the solution of
P(�∗2) (respectively Q(�∗2));

(2) {
|∇u�∗3 ||∇v�∗3 | ≤ c on ∂�∗3 ∩ ∂BR,

|∇u�∗3 ||∇v�∗3 | = c on ∂�∗3 \ ∂BR .
(4.3)

PROOF. (1) Theorem 2.7 and Proposition 2.8 imply the existence of the minimum�∗3.
Propositions 2.8 and 2.14 give the continuity with respect to the Dirichlet problems
P(�∗3) and Q(�∗3).

(2) Arguing as in the proof of Proposition 4.4, (2.3) and 3(a) above imply (4.3). 2

REMARK 4.7. The C2 regularity obtained for �∗1 and �∗3 is due to [4, Theorem 1.4].

4.3. Main results Let�∗ be a solution of P(c). By applying the maximum principle
to (u�∗; v�∗) and (u BR ; vBR ), the proofs of the two first theorems are similar to those
of Theorems 3.9 and 3.12.

THEOREM 4.8. Suppose that N = 2. Let �∗2 be as in Proposition 4.5, so �∗ =�∗2
= B2 4√c.

THEOREM 4.9. Suppose that N ∈ {2, 3}. Let �∗3 be as in Proposition 4.6, so
�∗3 = BR .

THEOREM 4.10. Suppose that N ∈ {2, 3} and R = 4
√

N 3(N + 2)c. Let�∗1 and�∗2 be
as in Propositions 4.4 and 4.5. If ∂�∗1 ∩ ∂�

∗

2 6= ∅ then �∗1 =�
∗
=�∗2 = BR .

PROOF. Since �∗2 ⊂�
∗
⊂�∗1, ∂�∗1 ∩ ∂�

∗

2 6= ∅ implies that ∂�∗1 ∩ ∂�
∗

2 ∩ ∂�
∗
6= ∅.

Suppose by contradiction that �∗1 6=�
∗, then ∂�∗1 6= ∂�

∗. Using (4.1) and (4.2), the
monotonicity of the mean curvature together with the maximum principle imply that

c = |∇u�∗ ||∇v�∗ | < |∇u�∗1 ||∇v�∗1 | ≤ cRH∂�∗1
≤ cRH∂�∗2 ≤ c on ∂�∗1 ∩ ∂�

∗

2 ∩ ∂�
∗,

which is absurd. So �∗1 =�
∗. Therefore (4.3) gives c = |∇u�∗ ||∇v�∗ | ≤ cRH∂�∗

on ∂�∗. Thus 1≤ RH∂�∗ which can be combined with (4.2) and the monotonicity
of the mean curvature to get H∂�∗2 = 1/R on ∂�∗2, that is �∗2 is a ball with radius R.

Since R = 4
√

N 3(N + 2)c, Lemma 4.1 implies that �∗2 is a solution of P(c) and since
∂�∗ ∩ ∂�∗2 6= ∅, Corollary 4.3 gives �∗ =�∗2. 2

5. Other problems

This section is concerned with several overdetermined boundary value problems for
which the overdetermined condition is not constant. The aim here is to prove for them
the same symmetry result obtained for S(k) and P(c).
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THEOREM 5.1. Let u� be a solution of P(�) such that (x · ν)|∇u�|3 = c(N + 2)
on ∂�. Let v� be the solution of Q(�). If (i) |∇u�||∇v�| ≤ c on ∂� or if
(ii) |∇u�||∇v�| ≥ c on ∂� then � is a solution of P(c). As a consequence � is a
ball of radius 4

√
N 3(N + 2)c.

PROOF. The proof needs the well-known Rellich formula [18], valid for any
v ∈ C1(�) ∩ H2(�),

2
∫
∂�

(x · ∇v)
∂v

∂ν
dσ −

∫
∂�

(x · ν)|∇v|2 dσ

= 2
∫
�

(x · ∇v)4v dx + (2− N )
∫
�

|∇v|2 dx . (5.1)

Replacing in (5.1) v by u� and using ∇u� =−|∇u�|ν on the boundary, we find that∫
∂�

(x · ν)|∇u�|
2 dσ =−2

∫
�

(x · ∇u�) dx + (2− N )
∫
�

|∇u�|
2 dx . (5.2)

But the Green formula gives∫
�

(x · ∇u�) dx =−N
∫
�

u� =−N
∫
�

|∇u�|
2 dx .

We then obtain the identity∫
∂�

(x · ν)|∇u�|
2 dσ = (2+ N )

∫
�

u� dx . (5.3)

By the Compatibility Condition of the Neumann Problem (CCNP), there exists a w
solution of

−4w = u� in � and −
∂w

∂ν
=

1
N + 2

(x · ν)|∇u�|
2 on ∂�.

Put h = v� − w. Then 4h = 0 in � and

∂h

∂ν
=
∂v�

∂ν
+

1
N + 2

(x · ν)|∇u�|
2 on ∂�. (5.4)

Multiplying (5.4) by ∂u�/∂ν and using −∂u�/∂ν = |∇u�|, we obtain

∂h

∂ν

∂u�
∂ν
=
∂v�

∂ν

∂u�
∂ν
−

1
N + 2

(x · ν)|∇u�|
3 on ∂�. (5.5)

Now (x · ν)|∇u�|3 = c(N + 2) on ∂�, so (5.5) becomes

∂h

∂ν

∂u�
∂ν
=
∂v�

∂ν

∂u�
∂ν
− c on ∂�. (5.6)

Since ∂u�/∂ν =−|∇u�|< 0, (i) or (ii) implies that ∂h/∂ν has a constant sign on ∂�.
But h is harmonic in � so by the Green formula

∫
∂�
(∂h/∂ν)= 0. It then follows that

∂h/∂ν = 0 and so (∂v�/∂ν)(∂u�/∂ν)= c on ∂�, that is � is a solution of P(c) and
so it is a ball with radius 4

√
N 3(N + 2)c. 2
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For the following theorems we recall that u� (respectively v�) is the solution of
P(�) (respectively Q(�)).

THEOREM 5.2. Suppose that |∇u�||∇v�| = c(x · ν) on ∂�. If (a) |∇u�| ≤
3
√

c(N + 2) on ∂� or if (b) |∇u�| ≥ 3
√

c(N + 2) on ∂� then � is a solution of
S( 3
√

c(N + 2)). As a consequence � is a ball of radius N 3
√

c(N + 2).

PROOF. If |∇u�||∇v�| = c(x · ν) on ∂� then (5.5) becomes

∂h

∂ν

∂u�
∂ν
= (x · ν)

[
c −

1
N + 2

|∇u�|
3
]

on ∂�. (5.7)

Since x · ν > 0, (5.7) with (a) or with (b) implies that ∂h/∂ν = 0 on ∂� and so

|∇u�| =
3
√

c(N + 2) on ∂�.

Therefore � is a solution of S( 3
√

c(N + 2)), that is � is a ball with radius
N 3
√

c(N + 2). 2

THEOREM 5.3. Suppose that (H1) |∇u�||∇v�| = (c3/(N + 2))r4(∂r/∂ν) on ∂�. If
(1) |∇u�| ≤ cr on ∂� or if (2) |∇u�| ≥ cr on ∂� then |∇u�| = cr on ∂�. As a
consequence � is a ball.

PROOF. Let r = |x |, then 4r2
= 2N . An integration by parts gives

− 2N
∫
�

u�(x) dx =
∫
�

∇(r2) · ∇u� = 2
∫
�

r
∂u�
∂r

. (5.8)

But 4(r(∂u�/∂r))=−2, so by the Green formula we obtain∫
�

2u� − r
∂u�
∂r
=

∫
�

−u�4

(
r
∂u�
∂r

)
+ r

∂u�
∂ν
4u� =

∫
∂�

r
∂u�
∂r

∂u�
∂ν

dσ.

By (5.8) we get the identity

(N + 2)
∫
�

u� =
∫
∂�

r
∂r

∂ν
|∇u�|

2 dσ. (5.9)

Now, as in the proof of Theorem 5.1, the CCNP implies the existence of a function
w solution of the following Neumann problem:

−4w = u� in � and −
∂w

∂ν
=

1
N + 2

r
∂r

∂ν
|∇u�|

2 on ∂�.

As above, if h = v� − w then h is harmonic in � and

∂h

∂ν

∂u�
∂ν
=
∂v�

∂ν

∂u�
∂ν
−

1
N + 2

r
∂r

∂ν
|∇u�|

3 on ∂�. (5.10)
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or again using (H1),

∂h

∂ν

∂u�
∂ν
=

1
N + 2

r
∂r

∂ν
[(cr)3 − |∇u�|

3
] on ∂�. (5.11)

Now arguing as above, (1) (or (2)) allows us to get ∂h/∂ν = 0 on ∂�. It then follows
that |∇u�| = cr on ∂� and so � is some ball [2]. 2

THEOREM 5.4. Suppose (H2) (N + 2)(x · ν)2|∇u�||∇v�| = (C0r2
+ C1)

3 on ∂�.
If (3) (x · ν)|∇u�| ≤ C0r2

+ C1 or if (4) (x · ν)|∇u�| ≥ C0r2
+ C1 on ∂� then

(x · ν)|∇u�| = C0r2
+ C1 on ∂�. As a consequence � is a ball if 2(NC0 − 1) is

not a negative integer while it is an ellipsoid if C0 = 0.

PROOF. Applying (H2) to (5.5), we obtain

(N + 2)(x .ν)2
∂h

∂ν

∂u�
∂ν
= (C0r2

+ C1)
3
− (x · ν)3|∇u�|

3 on ∂�. (5.12)

Arguing as above, (3) (or (4)) implies that ∂h/∂ν = 0 on ∂�. Then

(x · ν)|∇u�| = C0r2
+ C1 on ∂�,

which gives the conclusion [15]. 2

REMARK 5.5. Suppose that u� is the solution of P(�). If |∇u�| = cr on ∂� then
one can prove that � is a ball. In fact, replacing |∇u�| by cr in (5.9), one can obtain

c2(N + 2)
∫
�

r2
=

c2

4

∫
�

4(r4)=
c2

4

∫
∂�

∂(r4)

∂ν
= c2

∫
∂�

r3 ∂r

∂ν
= (N + 2)

∫
�

u�.

So ∫
�

u� = c2
∫
�

r2.

Put u = u� and φ = ui ui − c2r2. A simple calculation [2] shows that 4φ ≥ 0 in �
and

∫
�
φ =

∫
�

u� − c2
∫
�

r2
= 0. Then the maximum principle gives φ ≡ 0 in �.

One can derive that u is radially symmetric and � is a ball.

REMARK 5.6. Because of the use of the compatibility condition of the Neumann
problem, Theorems 5.1, 5.2, 5.3 and 5.4 can be extended to the divergence operator
div(a(x)Du(x)) [14].
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