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Abstract. We discuss the characteristics of global oscillation modes in 
Be disks and review recent studies related to the disk oscillation model. 
Since the m = 1 modes are present only in near Keplerian disks and the 
mode confinement occurs only in the region in which the radial flow is 
subsonic, the model of global disk oscillation strongly prefers the viscous 
decretion disk scenario proposed by Lee et al. (1991), whereas it is incom
patible with the wind-compressed disk scenario of Bjorkman & Cassinelli 
(1993), which predicts angular-momentum conserving disks with super
sonic radial flow. Based on the viscous decretion disk scenario, we discuss 
transonic solutions of decretion and examine the effect of viscosity on the 
global one-armed modes. 

1. Introduction 

Extensive studies have revealed that a Be star has a two-component extended 
atmosphere, a polar wind region and a cool equatorial disk. The polar wind 
region consists of a low-density, fast outflow emitting UV radiation. The wind 
structure is well explained by the radiation-driven wind model, in which the 
radiative acceleration results from the scattering of the stellar radiation in an 
ensemble of spectral lines. 

In contrast to the polar wind region, the equatorial disk consists of a high-
density plasma with small radial velocity. The optical emission lines and the IR 
excess arise from the disk. Unfortunately, the nature of the disk, e.g., the origin, 
the structure and dynamics, and the evolution, is little understood, despite that 
large theoretical and observational efforts have been devoted to the study of Be 
stars. 

Many Be stars exhibit long-term variations of the relative intensities of the 
violet and red components in double-peaked emission-line profiles. The period 
of the variation ranges from years to decades, which is 103~4 times as long 
as the rotation period of the central stars. In addition, the variation is always 
accompanied by the profile shift: the profile as a whole shifts blueward (redward) 
when the red (violet) component is stronger (McLaughlin 1961; Hubert et al. 
1987). 

The bizarre phenomenon of the long-term V/R variation, which is a key to 
understanding of the structure and dynamics of Be disks, had been a longstand
ing enigma. In 1980's the promising candidate was the elongated disk model 
with apsidal motion (e.g., Hirata &; Kogure 1984; Ballereau & Chauville 1989). 
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According to this model, the period of the long-term V/R variation is the pe
riod of the apsidal motion of a disk. The elongated disk model is capable of 
explaining the typical features of the long-term V/R variations. However, it 
was not a dynamical but, rather, a geometrical model, so it was quite difficult 
to understand why and how such low-frequency apsidal motion of a disk can 
continue for several decades. 

A breakthrough came when Kato (1983) found that there exist global, 
m = 1 low-frequency oscillation modes in near Keplerian disks, where m is 
the azimuthal wave number. He estimated the period of the lowest order m = 1 
mode to be about 10 yr in Be disks, which is in agreement with the observed 
periods of V/R variations. Applying Kato's theory, Okazaki (1991) constructed 
a global disk oscillation (GDO) model for Be stars and found that the character
istics of the global m = 1 eigenmodes are consistent with the observed properties 
of the long-term V/R variation. Since then, observational evidences supporting 
the GDO model have been accumulated (e.g., Hummel and Hanuschik 1997; 
Vakili et al. 1998). 

In this paper we discuss the characteristics of global oscillation modes in 
Be disks and review recent studies related to the GDO model. For this purpose, 
we first consider possible modes of global oscillations in gaseous disks. We also 
consider the confinement of the global modes in Be disks. Based on the viscous 
decretion disk model proposed by Lee et al. (1991), we then discuss the steady 
disk structure and examine the effect of viscosity on the characteristics of GDOs. 

2. Possible Global Oscillations in Cool Disks 

Since the temperature of Be disks is of the order of 104 K, the pressure gradient 
force in the radial direction is much weaker than the gravitational force of the 
central star. Moreover, all observations imply that the radial flow is smaller than 
a few k m s - 1 , at least within ~ 10 stellar radii (Hanuschick 1994, 2000; Waters 
& Marlborough 1994). Therefore, the Be disk must be rotationally supported in 
the radial direction. The rotation velocity of the disk is then nearly Keplerian. 

Let us consider an oscillation in the form of the normal mode which varies 
as exp[i(u>t — m4>)\ with LJ being the oscillation frequency. Then, the frequency 
of oscillation seen from an observer corotating with the disk matter at radius r 
is u — mQ(r), where fi is the angular frequency of disk rotation. If the oscillation 
is global, the variation of the pressure gradient force caused by this oscillation is 
necessarily much smaller than the variation of the Coriolis force. If seen from an 
observer corotating with the disk, the frequency of oscillation due to the Coriolis 
force is the epicyclic frequency /c(r), which is given by K = [2Q(2Cl+rdU/dr)^2. 
Hence, in order for an oscillation to be global, the relation [w — mfi(r)]2 ~ /c2(r) 
must be met over a wide region of the disk. Any oscillations breaking the 
condition must have very short wavelengths in the radial direction to compensate 
for the frequency difference by the pressure-restoring force. 

We should note, however, that no oscillations satisfy the above condition in 
general, because two frequencies, w — mfi and K, depend on r separately. Hence, 
in general, no global persistent oscillations are present in cool disks in which the 
sound speed is much smaller than the rotation velocity. However, there is an 
exception. The epicyclic frequency, K, in a near-Keplerian disk remains close to 
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the angular frequency Q, at any radius. This indicates that only oscillations with 
m = 1 and ui ~ CI — K (<§C 0) satisfy the above condition for global oscillations. 
Therefore, we conclude that possible global oscillations in near-Keplerian disks 
are very low-frequency (w -c f2), m = 1 oscillations alone. Note that no global 
axisymmetric modes, such as radial pulsations, can exist in disks around Be 
stars. 

Short 
waves 
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Q ( ~ K ) 
Qr-yJm 
(m*l) 

Trappedwav^7777 Q ~* 

Running waves 

Figure 1. Propagation diagram for a near Keplerian disk. Waves 
can propagate in the region where (u> — mfi)2 > K2, but all oscillations 
with m ^ l have very short wavelengths. Only possible global waves 
are m = 1 waves that can propagate in the region where u> < CI — K 
(hatched region). Prograde (a> > 0) m = 1 waves can be confined to 
the inner part of the disk, whereas retrograde (u> < 0) m = 1 waves are 
running waves and not confined to any part of the disk unless the disk 
is truncated, e.g., by the presence of a companion in a binary system. 

Figure 1 shows the propagation diagram for a near Keplerian disk. Since 
the pressure always acts so as to increase the restoring force of oscillation, waves 
can propagate in the region where (uj — mfl)'2 > K2 (see Kato 1983). Waves with 
m ^ 1, however, have very short wavelengths by the reason mentioned above, so 
they will dissipate in time. Only possible global waves are very, low-frequency 
m = 1 waves that can propagate in the region where UJ < fl — K. 

It is important to note that only prograde (w > 0) m = 1 waves can be 
confined to an inner disk, as shown in Figure 1. Since Be disks are not truncated 
except in binary systems, all observable m = 1 density waves should prograde, 
as pointed out by Papaloizou et al. (1992). 

The presence of the prograde m = 1 density waves in Be disks has been 
confirmed observationally. Analysing the line-profile variability, Telting et al. 
(1994) showed the evidence for a prograde m = 1 density wave in the disk 
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of (31 Mon. Recently, Vakili et al. (1998) presented a direct interferometric 
evidence for a prograde m = 1 wave in the disk of £ Tau. 

Finally, we derive a condition for the confinement of global density waves in 
a disk with nonzero radial flow. The local dispersion relation for an oscillation 
which varies as exp[i(wt — krr — m<f>)] is written as 

(u-mSl- kTVrf -K2 = c2k2, (1) 

where Vr is the radial velocity and cs is the sound speed (e.g., Negueruela & 
Okazaki 2000). From equation (1), we note that waves can propagate in the 
region where c2[(u> — mtl)2 — K2] + V2n2 > 0 for which kr is a real number, 
while they are evanescent in the region where C2[(UJ — mQ)2 — K2] + V2K2 < 0. 
As shown in Figure 1, the confinement of any wave needs an evanescent region 
outside the propagation region. Since (w — mSl)2 — K2 «C K2 for global waves, 
the evanescent region is present only in disks with 

|K| < i^-mn)2-*2!1/2
 <K L (2) 

Cs K 

Therefore, global density waves can be confined to an inner disk only if the radial 
velocity is much smaller than the sound speed. 

3. Global m = 1 Oscillations in Inviscid Disks 

3.1. Unperturbed Disk Model 

We take a geometrically thin, axisymmetric disk as an unperturbed equilibrium 
disk. For simplicity, we assume the disk to be isothermal. We use vertically 
integrated or averaged quantities to describe the disk. Neither the radial advec-
tive motion nor the viscous effect is taken into account in the unperturbed disk 
model discussed in this section. We will take them into account in later sections. 

Following Papaloizou et al. (1992), we take into account the effect of ro
tation by including the quadrupole contribution to the potential around the 
rotationally-distorted central star. The external potential of the star of mass M 
and radius R is then approximated as 

GM i+^£ (f); (3) 

(Papaloizou et al. 1992), where &2 is the apsidal motion constant and / is the 
rotation parameter defined by the ratio of the rotation velocity of the star to the 
Keplerian velocity at the stellar surface. According to Kogure & Hirata (1982), 
0-2 £ / £ °-6 for B0-type Be stars and 0.5 £ / £ 1.0 for B5-type Be stars. 
The value of k% for rapidly rotating stars is not well known. Theoretically, k-i 
for non-rotating main-sequence stars has a maximum value of ~ 10~2 at a mass 
between 7 and 10M@ (Stothers 1974). 

As mentioned previously, the radial flow in a Be disk is smaller than a few 
k m s - 1 , at least within ~ 10 stellar radii. In such a flow with very small velocity 
gradient, the radiative force would arise not from the optically-thick strong 
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lines but from an ensemble of optically-thin weak lines (Lamers 1986; Chen & 
Marlborough 1994). As the radiative force due to an ensemble of optically-thin 
weak lines, we adopt the parametric form proposed by Chen & Marlborough 
(1994): 

FxaA * - ^ y , (4) 

where we neglected the Eddington factor, which is as small as ~ 0.03 for a BOV 
star and ~ 0.003 for a B5V star. 

Since the density profiles of Be disks are not well determined, we adopt a 
simple power-law form for the surface density S, 

s (r )ocG?)~"' (5) 

where the index n is a constant. 

3.2. Linear m = 1 Eigenmodes 

A linear m = 1 perturbation which varies as exp[i(o> — (/>)] is superposed on the 
unperturbed disk described above. We assume the perturbation to be isother
mal, because in Be disks the thermal timescale is much shorter than the dy
namical one. Since the eigenmode of interest is the mode confined to the inner 
part of the disk, we adopt ur = 0 at some large radius as the outer boundary 
condition. As the inner boundary condition, we impose ur = 0 at the star/disk 
interface. 

We show the fundamental m = 1 mode in an inviscid disk with n = 2 
in Figure 2a and the disk perturbed by the mode in Figure 2b. The period 
of the mode is 4.7yr. Note that the perturbed disk becomes eccentric. Note 
also that the azimuthal component of the velocity perturbation anticorrelates 
with the density perturbation, except in an innermost narrow part of the disk. 
This property has been shown to cause the profile shift observed for the long-
term V/R variations (Hummel & Hanuschik 1994, 1997; Hanuschik et al. 1995; 
Okazaki 1996; see also Hummel 2000). The global m = 1 oscillation model 
naturally explains both of the observed periodicities and the profile shift of the 
long-term V/R variations. 

4. Viscous Decretion Disk Model 

In this section, we consider an unperturbed disk model more realistic than in 
the previous section. Although there is no widely-accepted model as to how to 
form a near-Keplerian disk around a Be star, the viscous decretion disk model 
proposed by Lee et al. (1991) seems promising (see Porter 1999). In this model, 
the matter supplied from the equatorial surface of the star drifts outward by the 
viscous effect and forms the disk. Basic equations for viscous decretion disks 
are the same as those for viscous accretion disks, except that the sign of M 
(mass decretion/accretion rate) is opposite. Thus, viscous decretion is expected 
to produce a geometrically thin, near Keplerian disk around a Be star. 

Adopting the Shakura-Sunyaev viscosity prescription, Okazaki (2000) showed 
that the equations which determine the velocity field in an isothermal decretion 
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Figure 2. Fundamental m = 1 mode in a disk around a Be star: (a) 
the linear perturbation pattern and (b) the surface density and the 
line-of-sight velocity in the perturbed disk viewed equator-on. The pe
riod of the mode is 4.7 yr. Both disk and wave rotate counterclockwise. 
The central star is a BOV star with M = 17.8M0, R = 7A1RQ, 

and Teff = 2.80 x 104 (Allen 1973). We adopted the density pro
file with n = 2 and the disk temperature of §Teff. The rotation 
and radiative parameters adopted are (£2,/) = (6 x 10_3,0.4) and 
(7/, e) = (5 x 10~2,0.1), respectively. In panel (a), contours, which are 
separated by 0.1, denote the density perturbation, while arrows denote 
the perturbed velocity vectors normalized by the local angular veloc
ity r n . In panel (b) a nonlinear perturbation pattern similar to the 
linear one shown in panel (a) is assumed; for illustrative purposes, we 
normalized the amplitude of the perturbation so that the maximum 
value of the perturbed density is 50% of the unperturbed density. The 
density contours in panel (b) are separated by a factor of 101/2, while 
the velocity contours are separated by 50kms_ 1. 

disk can be reduced to 

Vr- Vr 

dVr 

dr 
GM „ e2 5cs

2 

and 
I = 1{R) + ctc2

a 
R 

Vr{R) 

(6) 

(7) 

where a is the viscosity parameter, I = rV$ is the specific angular momentum, 
and Vr and V̂ , are the radial and azimuthal components of the vertically averaged 
velocity, respectively. Equations (6) and (7) show that the viscous decretion 
disk is a thermal wind in the equatorial region, in which the material is slowly 
accelerated outward by the pressure force. 

Figure 3 shows some transonic solutions for viscous decretion disks. Neither 
the rotational distortion of the star nor the radiative force due to an ensemble 
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Figure 3. Structure of the viscous transonic decretion disks with dif
ferent values of (a) a and (b) the disk temperature T<i/Teg. Solid, 
dashed, and dash-dotted lines denote Vr/cs, Vlj)/(GM/R)1^2, and 
E/S(i?), respectively. The central star is a BO main-sequence star. 
Neither the rotational deformation of the star nor the radiative force 
is taken into account. In panel (a) the disk temperature is fixed to be 
Ta = ^Teff. In panel (b) the value of a is fixed to be 0.1 

of optically thin lines is taken into account, because their contribution to the 
steady disk structure is negligible as long as 77 -C 1. In Figure 3, solid, dashed, 
and dash-dotted lines denote Vr/cs, V<f,/(GM/R)1^2, and S/E(i?), respectively. 
For comparison purposes, we show transonic solutions for a = 1 (thick lines), 
a = 0.1 (lines with intermediate thickness), and a = 0.01 (thin lines) in Figure 3a 
and those for Td/Teff = 1 (thick lines), 1/2 (lines with intermediate thickness), 
and 1/10 (thin lines) in Figure 3b. In Figure 3a, Td/Tea is fixed to be \, and 
in Figure 3b a is fixed to be 0.1. From Figure 3, we find that the sonic point is 
located far from the star and the outflow is highly subsonic for r <C 102 R. This 
is because it is basically the pressure force which accelerates the flow up to a 
supersonic speed, and the pressure force does not work effectively in the region 
where it is much weaker than the effective gravity. 

We also find that, in the subsonic part of the disk, Vr increases as r and £ 
decreases as r~2. In the inner subsonic region, V^ decreases as r - 1 / 2 (Keplerian), 
while in the outer subsonic region and in the supersonic region it decreases as 
r _ 1 (angular momentum conserving). 

The topology of the sonic point is nodal for a ^ 0.95, while it is a saddle-
type for a £ 0.9 (Okazaki 2000). According to the theory of accretion, the sonic 
point in the former case is unstable, whereas in the latter case it is stable (e.g., 
Abramowicz and Kato 1989). 

In this section, we have discussed the steady structure of disks formed by 
viscous decretion. Disks around some Be stars, however, are always transient. 
For example, y. Cen has exhibited outbursts followed by the formation of a 
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transient disk (e.g., Hanuschick et al. 1993; see also Rivinius et al. 1998). 
Using a 3D Smoothed Particle Hydrodynamics approach, Kroll &c Hanuschik 
(1997) successfully simulated the formation and decay of a near Keplerian disk 
by viscous effect during an outburst. Their results are in good agreement with 
the observations of ft Cen. 
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Figure 4. One-armed fundamental mode confined to the inner part of 
the transonic decretion disk for: (a) a = 0.4, (b) a = 0.2, (c) a = 0.1, 
and (d) a = 0.01. The central star is a B0 main-sequence star, the disk 
temperature is Td/Teff = 2/3, and the radiative parameters are (rj, e) = 
(5 • 10-2,0.1). The effect of rapid rotation is neglected. In each panel, 
contours, which are separated by 0.1, denote the density perturbation, 
while arrows denote the perturbed velocity vectors normalized by the 
local angular velocity V$. 
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5. Global Disk Oscillations in Viscous Decretion Disks 

Kato et al. (1988) found that, in accretion disks, the pulsational (i.e., axisym-
metric) modes, which are neutral when the disk is inviscid, become overstable 
when the viscous effect is taken into account. Using a similar analysis to nonax-
isymmetric modes in decretion disks, one can easily show that the m = 1 modes, 
which are neutral in inviscid disks, become overstable when the viscous effect 
is taken into account (see Negueruela & Okazaki 2000 for details). The growth 
rate is given by 

Im{w} ~ aQ(krH)2, (8) 

where kT is the radial wave number and H is the scale-height of the disk. For 
the lowest order m = 1 mode, for which kr ~ n/r with r being the radius of the 
propagation region, the growth rate is ~ a£l(irH/r)2. 

We have solved the equations for linear m = 1 perturbations in viscous 
transonic decretion disks. Some eigenmodes are given in Figure 4. They are 
for (a) a = 0.4, (b) a = 0.2, (c) a = 0.1, and (d) a = 0.01. From Figure 4, 
we observe that the characteristics of the modes are basically the same as those 
of the neutral modes discussed in section 3. Besides those characteristics, we 
note that the perturbation pattern of the overstable m = 1 modes is a leading, 
one-armed spiral. The spiral pattern becomes looser with increases in a. In 
other words, the propagation region of a one-armed spiral wave becomes larger 
with increasing a. 
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Figure 5. Oscillation period (solid line) and growth time (dashed 
line) of the one-armed fundamental mode confined to the inner part of 
the viscous transonic decretion disk. The stellar and disk parameters 
adopted are the same as those for Figure 4. Note that the period and 
the growth time become comparable for a ~ 0.3. 
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The period and growth time of the one-armed spiral mode is shown in 
Figure 5. We find that the growth time obtained numerically agrees well with 
the analytical one given above. Note that the timescale of the growth of the 
V/R variation is a measure of a. Thus, long-term V/R variation, in principle, 
enables us to probe the viscosity parameter in Be disks. 

6. Disk Warping — Another Globed Mode 

In general, there can exist two types of m = 1 modes in near Keplerian disks. 
One is the so-called eccentric modes, in which the density perturbation and the 
horizontal component of the velocity perturbation are symmetric with respect 
to the equatorial plane. The modes we have discussed in the previous sections 
are eccentric modes. 

The other type of m = 1 modes are z-antisymmetric modes, in which the 
density perturbation and the horizontal component of the velocity perturbation 
are antisymmetric with respect to the equatorial plane. The lowest order mode 
of this type is called a warping mode. If the disk has an optically thick part to 
the radiation from the central star, the warping mode can be excited (Pringle 
1996). Porter (1998) showed that this is indeed the case in Be disks: the Be 
disks are optically thick in the IR and thus become unstable to warping. 

Possible observational evidence for the warping mode in Be disks is the spec
tacular emission line variations in 7 Cas and 59 Cyg (Hummel 1998). Both stars 
have shown two successive shell events associated with a synchronous quasi-cyclic 
variation of the line widths in all emission lines. Hummel (1998) interpreted the 
spectacular variation to be due to a tilted circumstellar disk with precessing 
nodal line, which is likely a warped inner disk (Porter 1998). The precession 
timescale of warped disks around early Be stars is about several hundreds of 
days (Porter 1998), which is roughly consistent with the observationally derived 
timescale of ~ 1000 days for the spectacular variation of 7 Cas (Hummel 1998). 

7. Summary 

It is well established that a Be star has a two-component extended atmosphere, 
a polar wind region and a cool equatorial disk. In contrast to the polar wind 
region explained well by the radiation-driven wind model, the nature of the 
equatorial disk, e.g., the origin, the structure and dynamics, and the evolution, 
is little understood. Understanding even one of these aspects of the nature of 
Be disks is highly desirable. 

In this paper, we have focused on the Be-disk structure and global disk 
oscillations (GDOs). Disks around Be stars are considered to be geometrically 
thin and near Keplerian. We have shown that the only possible global oscillations 
in such disks are very low-frequency, m = 1 oscillations. The m = 1 oscillations 
can be confined to an inner disk only if the radial flow in this part of the disk 
is very subsonic. Observationally, many Be stars exhibit long-term variations 
of the relative intensities of the violet and red components in double-peaked 
emission-line profiles. This long-term V/R variation has been considered to be a 
key to understanding of the structure and dynamics of Be disks. We have shown 
many features of the long-term V/R variation are naturally explained by even 
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a simplest version of the GDO model, in which neither the radial advection nor 
the viscous effect is taken into account. 

Next, we have considered the steady disk structure around Be stars, based 
on the viscous decretion disk scenario proposed by Lee et al. (1991). We have 
found that there is a transonic solution of decretion for any value of a, the 
viscosity parameter. The outflow, which is very subsonic near the star, is ac
celerated by pressure and becomes supersonic far from the star. The disk is 
near-Keplerian in the inner subsonic part, while it is angular-momentum con
serving in the outer subsonic part and in the supersonic part. The transonic 
solution of viscous decretion is in good agreement with the observed properties 
of Be disks. 

Then, we have examined the effects of viscosity on the GDO characteris
tics, solving equations for linear m = 1 perturbations on unperturbed transonic 
decretion disks. The characteristics of the m = 1 eigenmodes are basically the 
same as those in inviscid disks. Besides those characteristics, we have noted 
that the modes are overstable with the growth rate proportional to a. We have 
also noted that the perturbation pattern is a leading one-armed spiral, and the 
spiral pattern becomes looser with increasing a. 

The GDO model based on the viscous decretion disk scenario agrees well 
with the observed disk structure and the characteristics of the long-term V/R 
variation. The current model, however, lacks knowledge about some important 
issues in order for the model to be a total theory of Be disks. The most important 
issue to tackle is the mass supply mechanism from the star. For many years, 
we have failed to find how material with the Keplerian angular momentum at 
the stellar surface can be supplied from the star. It is no doubt that finding it 
will become a great step toward understanding of the Be phenomenon. Another 
issue to explore is the evolution of the Be disks. Since the current model is based 
on the linear perturbation analysis, it can tell us little about how disks evolve. 
Nonlinear simulations of Be disks are therefore highly desirable. 
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Discussion 

P . Hcirmanec: You made a very clear presentation of what are the conditions 
under which V/R variations in Be star disks can occur. I believe this once 
more exposed the main unanswered problem we have here for decades: what is 
the ultimate cause of the Be phenomenon. Consider the case of £ Tau, a B2e 
star in a 133 d binary. As I have shown in my review here, the radius of the 
Be star must be something like 5 — 6RQ. Unless its mass is very anomalous, 
the Keplerian rotation near equator must be about 600kms_ 1. The observed 
v sin i of 320kms_ 1 must be close to the true equatorial velocity since the Ha 
photometry (Pavlovski et al. 1997, A&AS) shows that the star is observed nearly 
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equator-on. Any scenario assuming a mass outflow from the star must, therefore, 
address the question where to take the energy needed to accelerate the material 
to about twice higher rotation rate! Note that a Keplerian disk is formed in a 
very natural way if the disk is formed instead by a gas stream inflowing from a 
secondary star in a binary system (either via Roche-lobe overflow or via strong 
stellar wind). 
A. Okazaki: I agree with you that we have a great difficulty to construct a 
model to supply material from the central star, and it is a severe weakness in 
the current viscous decretion disk model. Although a Keplerian disk is naturally 
formed by accretion, there are many Be stars which show no signature of binarity 
or have compact companions. I prefer to consider mechanisms that work to both 
isolated and binary Be stars. 
L. Balona: You have, quite naturally, not considered the effect of even a very 
weak magnetic field on the ionized disk. To what extent will your analysis be 
effective by the presence of such a field? 
A. Okazaki: Since one-armed oscillation modes are very sensitive to the devia
tion of the disk rotation from the Keplerian rotation, the presence of a magnetic 
field can affect mode characteristics significantly. If Be stars have a global mag
netic field > 100 Gauss, the analysis I have made above will break down. 
S. Owocki: The viscous decretion disk is a nearly continuous diffusion process. 
Yet it seems many observers tend to favor a picture in which there is an inner 
"hole" in the disk. It seems that requires a more direct propulsion of material 
into a disk by a moment arm, e.g., by a magnetic field. I thus encourage observers 
to focus on the question of whether there really must be such an inner hole, to 
guide theorist on which kind of scenario to further explore. 
J . Cassinelli: Is there a minimal disk mass required for the one arm instability, 
i.e., is self-gravity important? You say that the instability grows along with the 
growth on mass increase of the disk. So should we expect V/R effects to occur 
after some time after disk growth is initiated? 
A. Okazaki: No, there isn't. The one-armed instability discussed above is 
driven by viscosity, and the self-gravity of Be disks is negligible. Since the 
growth time is roughly comparable with the drift timescale, V/R variation should 
become observable after some time after the disk formation process begins. 
H. Henrichs: What can you say about the dependence of the V/R timescale 
on the spectral type of the central star? 
A. Okazaki: The spectral dependence of the V/R timescale is complicated. 
There is no simple correlation between the V/R timescale and the spectral type 
of the star, because the timescale depends on many stellar and disk parameters. 
For example, higher temperature makes the V/R timescale longer, while stronger 
radiative force or faster rotation makes the timescale shorter. Moreover, the 
radiative force seems important in early Be stars, whereas the rapid rotation is 
much more important than the radiative force in late Be stars. As a result, the 
V/R variation seems to show no strong spectral dependence. 
W. Hummel: You described how viscosity affects GDO. Can you comment on 
how GDO affects the viscosity and the transport of angular momentum? 
A. Okazaki: Since the one-armed density wave in viscous decretion disks is a 
leading spiral, the angular momentum is transported from the wave to the disk 
matter. This means GDO acts to increase the effective viscosity. 
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