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Available energy (Æ), which quantifies the maximum amount of thermal energy that
may be liberated and converted into instabilities and turbulence, has shown to be a
useful metric for predicting saturated energy fluxes in trapped-electron-mode-driven
turbulence. Here, we calculate and investigate the Æ in the analytical tokamak equilibria
introduced by Miller et al. (Phys. Plasmas, vol. 5, issue, 4, 1998, pp. 973–978). The Æ
of trapped electrons reproduces various trends also observed in experiments; negative
shear, increasing Shafranov shift, vertical elongation and negative triangularity can all
be stabilising, as indicated by a reduction in Æ, although it is strongly dependent
on the chosen equilibrium. Comparing Æ with saturated energy flux estimates from
the TGLF (trapped gyro-Landau fluid) model, we find fairly good correspondence,
showcasing that Æ can be useful to predict trends. We go on to investigate Æ and find that
negative triangularity is especially beneficial in vertically elongated configurations with
positive shear or low gradients. Furthermore, we extract a gradient-threshold-like quantity
from Æ and find that it behaves similarly to gyrokinetic gradient thresholds: it tends to
increase linearly with magnetic shear, and negative triangularity leads to an especially
high threshold. We next optimise the device geometry for minimal Æ and find that the
optimum is strongly dependent on equilibrium parameters, for example, magnetic shear
or pressure gradient. Investigating the competing effects of increasing the density gradient,
the pressure gradient, and decreasing the shear, we find regimes that have steep gradients
yet low Æ, and that such a regime is inaccessible in negative-triangularity tokamaks.

Key words: fusion plasma, plasma nonlinear phenomena, plasma instabilities

1. Introduction

Energy transport in tokamaks and stellarators is largely dominated by turbulent energy
losses, which severely degrade the energy confinement in these devices. A detailed
understanding of how various parameters characterising the plasma and the magnetic field
geometry, such as magnetic shear and the pressure gradient, affect the turbulent transport
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properties would be helpful in comprehending and mitigating this. The standard method to
assess the turbulence properties of any given tokamak is to perform nonlinear gyrokinetic
simulations. However, such simulations are computationally expensive because of the very
disparate time scales and length scales characterising the turbulence and the transport.
Thus, it would be beneficial to find a reduced model capable of predicting the level of
turbulent transport by simpler means.

In a recent publication, it was shown that the available energy (Æ) of trapped electrons
can serve as such a reduced model (Mackenbach, Proll & Helander 2022), at least for
turbulence driven by the plasma density gradient. Any plasma possesses a maximum
amount of thermal energy that can be converted into instabilities and turbulence (Gardner
1963). This ‘available’ energy can be calculated by performing a Gardner restacking of
the plasma distribution function f , in which phase-space volume elements are rearranged
in a manner that respects Liouville’s theorem (Kolmes & Fisch 2020; Kolmes, Helander
& Fisch 2020). The restacking of f that minimises the thermal energy results in a ‘ground
state’ distribution function fg, and the Æ is defined as the difference in thermal energy
between f and fg. If one imposes the additional constraint that adiabatic invariants be
conserved in the restacking process, the Æ becomes relevant to magnetically confined
plasmas (Helander 2017, 2020). In fusion plasmas, the magnetic moment μ is generally
conserved for all species, and the parallel adiabatic invariant J = ∫

mv‖ d� is conserved
for magnetically trapped electrons.

A significant portion of the electrons are trapped and can contribute to turbulence
through trapped electron modes (TEMs). The Æ of trapped electrons correlates with the
turbulent energy flux for such TEM-driven turbulence over several orders of magnitude
in saturated energy fluxes (Mackenbach et al. 2022). This correlation is expressible as a
simple power law, where the saturated energy flux, Qsat, was found to be related to the Æ,
which we denote by A in formulae, via approximately

Qsat ∝ A3/2. (1.1)

This relation was found to hold for both a tokamak and stellarators, and for various values
of the density gradient. Aside from this relationship, other links have been found by
Kolmes & Fisch (2022) where quasilinear plateauing is shown to be related to a concept
closely connected to Æ, highlighting other links to transport physics. In any case, to gain
a deeper understanding, it is of interest to derive an explicit expression of Æ in tokamak
geometry, in order to investigate the dependence of it on various geometrical and plasma
parameters.

This is our aim in the present paper, where we compute Æ for the family of
tokamak equilibria constructed by Miller et al. (1998). The starting point is the following
explicit expression for Æ in a flux tube of any omnigenous equilibrium (Helander 2020;
Mackenbach et al. 2023a), including that of a tokamak,

A = 1
2
√

π

πL�ψt�αC

B0

∫∫ ∑
wells(λ)

e−zz5/2ω̂2
αR

[
1
z
ω̂T

∗
ω̂α

− 1
]

ĝ1/2 dλ dz. (1.2)

Here, L is the total length of a field-line completing one poloidal turn, B0 is some
reference magnetic field strength, z = H/T0 is the particle energy normalised by the
temperature, λ = μB0/H is the pitch angle, and �ψt and �αC denote the size of
the flux-tube in the radial and binormal directions, respectively (we have parameterised
the radial coordinate by means of the toroidal flux ψt and the binormal by means of the
Clebsch angle αC). Furthermore, we sum over all magnetic wells with a certain value
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λ. The hatted quantities in the integrand denote normalised frequencies, with ω̂α being
the normalised bounce-averaged drift precession frequency, ω̂T

∗ the normalised electron
diamagnetic drift frequency and ĝ1/2 the normalised bounce time. They are explicitly
defined as

ω̂α ≡ −�ψt

H
∂ψtJ
∂HJ , (1.3a)

ω̂T
∗ ≡ �ψt

d ln n
dψt

(
1 + η

[
z − 3

2

])
, (1.3b)

ĝ1/2 ≡ ∂HJ
L

√
2H
m
, (1.3c)

where we have denoted the ratio between the gradients by η = (d ln T/dψt)/(d ln n/dψt).
Finally, R[x] = (x + |x|)/2 is the ramp function. Using the above expressions, we shall
find the Æ of trapped electrons in any Miller tokamak.

2. Theory
2.1. The Æ in any omnigenous system

We first note that the integral over z can be rewritten into a convenient form. We define
two functions that are independent of z, namely

c0 = �ψt

ω̂α(λ)

d ln(n)
dψt

(
1 − 3

2
η

)
, c1 = 1 − �ψt

ω̂α(λ)

d ln(n)
dψt

η. (2.1a,b)

With these functions, the integral over the normalised energy z reduces to the following
form:

Iz(c0, c1) = 8
3
√

π

∫ ∞

0
exp(−z)z3/2R [c0 − c1z] dz. (2.2)

This integral can be solved analytically, and its functional form depends on the signs of c0
and c1, resulting in four different conditions. The easiest case to evaluate is the case where
c0 < 0 and c1 > 0. In this case, the argument of the ramp function is always negative, and
hence the integral reduces to zero. The second case is when the argument of the ramp
function is always positive, which occurs whenever c0 ≥ 0 and c1 ≤ 0. The integral then
reduces to the following form:

Iz = 2c0 − 5c1. (2.3)

There are two cases left to consider. First, we inspect the case where the argument of
the ramp function is positive for low z but becomes negative for high z, that is, c0 ≥ 0
and c1 > 0. The unique point where the argument of the ramp function vanishes is the
following:

z∗ = c0

c1
. (2.4)

Thus, the integral becomes

Iz = 8
3
√

π

∫ z∗

0
exp(−z)z3/2 (c0 − c1z) dz. (2.5)
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FIGURE 1. Contour plot of Iz as a function of c0 and c1.

This integral can be expressed in terms of the error function, erf(x) = 2/
√

π
∫ x

0
exp(−t2) dt,

Iz = (2c0 − 5c1)erf
(√

c0

c1

)
+ 2

3
√

π
(4c0 + 15c1)

√
c0

c1
exp

(
−c0

c1

)
. (2.6)

The final case is that where the argument of the ramp function is negative for low z but
becomes positive for high z, that is, c0 < 0 and c1 ≤ 0. The integral then becomes

Iz = (2c0 − 5c1)

[
1 − erf

(√
c0

c1

)]
− 2

3
√

π
(4c0 + 15c1)

√
c0

c1
exp

(
−c0

c1

)
. (2.7)

Note that Iz ≥ 0, ∀(c0, c1) ∈ R
2, which can also be seen in figure 1. The Æ can now be

found by executing the integral over the remaining coordinate

A = 3
16
�ψt�αCL

B0
n0T0

∫
{λ}

dλ
∑

wells(λ)

Iz(c0, c1)ω̂
2
αĝ1/2. (2.8)

Note that this expression is completely general; no approximations have been made in
executing these integrals, aside from the preceding assumption of omnigeneity.

It is also interesting to note that from this expression one can see that there are no
tokamak configurations with vanishing Æ, at least in leading order near the axis. This
conclusion can most readily be drawn by investigating the expression for ωα from Connor,
Hastie & Martin (1983). Here, one can find that there is always a zero crossing for ωα
(with no pressure gradient), which implies that c0 and c1 must change sign. As such, the
Æ must be non-zero (as either I(c0, c1) or I(−c0,−c1) must be non-zero). Formally, this
corresponds to the fact that such a zero crossing implies that the device does not have the
so-called maximum-J property, which is required for the linear stability of TEMs (Proll
et al. 2012).1

To make further progress in solving (2.8), one requires the function ω̂α(λ), which in turn
requires a specification of the equilibrium. In this paper, we will use the local construction
of the equilibrium, employing a formalism developed by Mercier & Luc (1974).

1This correspondence between the maximum-J property and Æ is shown in Helander (2017), and can also be
understood from (2.8). A device is said to be maximum-J if ∂ψJ < 0 for all particles, which implies ω̂α > 0 for all λ.
For η < 2/3, (2.1a,b) implies that c0 < 0 for a radially decreasing density profile, and c1 > 0, thus the integrand of the
Æ reduces to zero since Iz = 0.
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2.2. Construction of local equilibria
Equilibria are constructed by finding a radially local solution to the Grad–Shafranov
equation, and this solution allows us to find ω̂α. We highlight the essential components
of this derivation, which essentially follows the steps taken by Miller et al. (1998), and a
thorough overview is given by Candy (2009).

The Mercier–Luc formalism requires the shape of the flux surface, the poloidal field
Bp on that flux surface, the gradients of the pressure p(ψ) and the toroidal field function
f (ψ) = RBφ on the flux surface, where R is the major radial coordinate, Bφ is the toroidal
component of the magnetic field and ψ is the poloidal flux. We parameterise the flux
surface as Rs = Rs(l) and Zs = Zs(l), where l measures the poloidal arclength along the
flux surface. It is also useful to define a tangential angle u, which measures the angle
between the unit vector in the major radial direction eR and the vector tangential to the flux
surface el clockwise, thus

dRs(l)
dl

= cos u, (2.9a)

dZs(l)
dl

= − sin u. (2.9b)

With this definition, the angle u can be calculated by du/dl = −1/Rc, where Rc(l) is the
radius of curvature of the poloidal cross-section, and the negative sign arises because the
poloidal arclength is measured clockwise. We go on to introduce a radial-like expansion
variable ρ which is zero on the given flux surface, in terms of which the cylindrical
coordinates become

R(ρ, l) = Rs(l)+ ρ sin u, (2.10a)

Z(ρ, l) = Zs(l)+ ρ cos u. (2.10b)

The metric tensor in these coordinates has non-zero components only on the diagonal
(which is to be expected as we ensured orthogonality in the construction),

gij = diag

[(
1 − ρ

Rc

)2

, 1,R2

]
, (2.11)

where we use the convention x1 = l, x2 = ρ, x3 = φ. The local solution is now constructed
by expanding in ρ,

ψ ≈ ψ0 + ρψ1 + ρ2

2
ψ2, (2.12a)

p′(ψ) ≈ p′(ψ0) (2.12b)

f ′(ψ) ≈ f ′(ψ0) (2.12c)

and substitute into the Grad–Shafranov equation, which to leading order reduces to

ψ2 =
(

sin(u)+ Rs

Rc

)
ψ1

Rs
− μ0R2

s p′(ψ0)− f (ψ0)f ′(ψ0). (2.13)

This allows one to find the radial variation of the poloidal magnetic field by using
(Helander & Sigmar 2005)

Bp = |∇ψ |
R

, (2.14)
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resulting in

Bp(l, ρ) = ψ1

Rs

(
1 + ρ

[
1
Rc

− μ0R2
s p′(ψ0)

ψ1
− f (ψ0)f ′(ψ0)

ψ1

])
. (2.15)

From this equation we can immediately see that ψ1/Rs = Bp,s, with Bp,s being the poloidal
field on the flux-surface as indicated by the subscript. As such, the poloidal field strength
can be written as∣∣Bp(l, ρ)

∣∣ = Bp,s

(
1 + ρ

[
1
Rc

− μ0Rsp′

Bp,s
− ff ′

RsBp,s

])
≡ Bp,s

(
1 + ρ∂ρbp

)
. (2.16)

The toroidal field is found from its definition Bφ = f (ψ)/R, resulting in

∣∣Bφ(l, ρ)∣∣ = Bφ,s

(
1 + ρ

[
f ′(ψ0)

f (ψ0)
RsBp,s − sin u

Rs

])
≡ Bφ,s

(
1 + ρ∂ρbφ

)
, (2.17)

where Bφ,s = f (ψ0)/Rs. The total magnetic field strength is also readily derived:

B =
√

B2
φ,s + B2

p,s

(
1 + ρ

[
B2
φ,s∂ρbφ + B2

p,s∂ρbp

B2
φ,s + B2

p,s

])
≡ Bs

(
1 + ρ∂ρb

)
. (2.18)

Note that the derivatives ∂ρbp, ∂ρbφ and ∂ρb are given in square brackets. The radial
variation of the poloidal line element is readily found from the metric tensor,

dl =
(

1 − ρ

Rc

)
[dl]ρ=0 . (2.19)

In these equations f ′(ψ0) is treated as a free parameter, but it is difficult to ascertain if the
chosen value of this parameter is realistic. It is more convenient, however, to specify
the magnetic shear, which is related to f ′(ψ0). This can be made explicit by investigating
the safety factor

q = f (ψ)
2π

∫
dl

R2
s Bp,s

. (2.20)

Taking the derivative of the safety factor with respect to ψ , one finds an equation
describing this relationship:

∂ψq = f ′

f
q + f

1
2π

∫
dl

R3
s B2

p,s

(
− 2

Rc
− 2 sin u

Rs
+ μ0Rsp′

Bp,s
+ ff ′

RsBp,s

)
. (2.21)

We also wish to relate the arclength along a magnetic field line to the poloidal arclength.
These quantities are related as

d� =
∣∣∣∣ B
Bp

∣∣∣∣ dl. (2.22)

Finally, the poloidal coordinate can be expressed in terms of the poloidal angle θ rather
than the poloidal arclength by

lθ ≡ dl
dθ

=
√
(∂θRs)2 + (∂θZs)2, (2.23)

and the total arclength thus becomes

L =
∮

lθ

∣∣∣∣ B
Bp

∣∣∣∣ dθ. (2.24)
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2.3. Non-dimensionalisation and Æ
We proceed to make the various functions dimensionless as in Roach, Connor & Janjua
(1995), and in doing so we will introduce various dimensionless constants which will
be useful for the remainder of the analysis. We assume that we have been given the
dependencies of the various functions in terms of the minor radial coordinate r, which
in turn relates to the major radial coordinate R0 through the inverse aspect ratio of the flux
surface in question ε = r/R0. Furthermore, we define our reference field B0 through the
relation f (ψ0) = B0R0. Let us now define various dimensionless functions of interest:

R̂s = R/R0, (2.25a)

Ẑs = Z/R0, (2.25b)

R̂c = Rc/r, (2.25c)

l̂θ = lθ/r, (2.25d)

B̂φ = Bφ/B0, (2.25e)

B̂ = B/B0. (2.25f )

One also needs to relate ψ to r, which can be done by investigating the poloidal field as in
(2.14)

Bp = ∂rψ

R0

|∇r|
R̂s

. (2.26)

We go on to identify two factors in the above expression, namely

Bp,0 ≡ ∂rψ/R0 (2.27)

and
B̂p,s ≡ |∇r| /R̂s. (2.28)

Inserting these into the equation for the safety factor (2.20), one finds

Bp,0 = γ ε

q
B0, γ ≡ 1

2π

∮
l̂θ

R̂2
s B̂p,s

dθ. (2.29a,b)

We proceed to define a dimensionless pressure gradient, analogous to the α parameter
used in s–α geometry:

α = −2μ0ε
2R2

0p′

Bp,0
= −εr

dp
dr
/

B2
p,0

2μ0
. (2.30)

Note that this dimensionless pressure gradient is not related to the Clebsch angle. The
pressure gradient can in turn be used to define a dimensionless toroidal current density:

σ =
(
μ0p′ + ff ′

R2
0

)
εR2

0

Bp,0
= q
γ

f ′R0 − α

2ε
. (2.31)

We go on to define the shear s in the following manner:

s = εR2
0Bp,0∂ψ ln q = r

q
∂q
∂r

(2.32)
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which can be substituted into (2.21) to relate the shear to f ′R0 as

s = γ ε2

q
f ′R0 − 2

γ
C1 − 2ε

γ
C2 − α

2γ ε
C3 + q

γ 2
C4f ′R0, (2.33)

where we have defined the geometric constants C1 to C4 as

C1 = 1
2π

∮
l̂θ

R̂cR̂3
s B̂2

p,s

dθ, (2.34a)

C2 = 1
2π

∮
l̂θ sin u

R̂4
s B̂2

p,s

dθ, (2.34b)

C3 = 1
2π

∮
l̂θ

R̂2
s B̂3

p,s

dθ, (2.34c)

C4 = 1
2π

∮
l̂θ

R̂4
s B̂3

p,s

dθ. (2.34d)

The radial derivatives of the magnetic field become

r∂ρbp =
(

1

R̂c

− α

2εB̂p,s

[
1

R̂s

− R̂s

]
− σ

R̂sB̂p,s

)
, (2.35a)

r∂ρbφ = ε

(
γ 2ε

q2

[
σ + α

2ε

]
R̂sB̂p,s − sin u

R̂s

)
. (2.35b)

These expressions are the same as Roach et al. (1995, (14)), where the differences in sign
arise because the sign convention for R̂c is different here and ρ has the opposite sign.
Finally, we express the total magnetic field length as

L = qξ
γ

R0, ξ ≡
∮

l̂θ B̂s

B̂p,s

dθ. (2.36a,b)

We now turn our attention to the precession frequency, which we calculate from (1.3a).
To simplify the calculation slightly, we note that the operator �ψt∂ψt ≈ �ψ∂ψ to leading
order around smallness of the radial coordinate ρ, as we can approximate�ψt ≈ �ψ∂ψψt.
Using this identity, we find the same expression as in Roach et al. (1995),

ω̂α(λ) = − �ψ

R2
0Bp,0

〈
1
ε

(
2
[
1 − λB̂

] [
r∂ρb − r∂ρbp − 1

R̂c

]
− λB̂r∂ρb

)/
B̂p,sR̂s

〉
λ

,

(2.37)
where we define the bounce averaging operator in angular brackets as

〈· · · 〉λ =

∫
dθ · · · l̂θ

B̂s

B̂p,s

/

√
1 − λB̂

∫
dθ l̂θ

B̂s

B̂p,s

/

√
1 − λB̂

. (2.38)
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We rewrite the precession frequency as

ω̂α ≡ − �ψ

R2
0Bp,0

ω̂λ. (2.39)

Next, we investigate the Jacobian ĝ1/2, which is the normalised bounce time, and find that
it is equal to

ĝ1/2 =

∫
dθ l̂θ

B̂s

B̂p,s

/

√
1 − λB̂

ξ
. (2.40)

We rescale it with a factor ε1/2 to account for the fact that in smallness of ε the integrand
of the bounce time goes as 1/

√
ε. Therefore, we define

ĝ1/2
ε ≡ ĝ1/2√ε. (2.41)

The Æ now becomes

A = 3
16
�ψt�αCL

B0
n0T0

√
ε

(
�ψ

R2
0Bp,0

)2
(

1
ε

∫
{λ}

dλ
∑

wells(λ)

Iz(c0, c1)ω̂
2
λĝ

1/2
ε

)
, (2.42)

where the prefactor 1/ε to the integral deliberately not cancelled against the
√
ε, so that

the integral in brackets is to lowest order independent of ε, as the integration range scales
as ε. With the above expression, we go on to define a dimensionless Æ. We take steps in
accordance with Mackenbach et al. (2022), and calculate the fraction of the total thermal
energy that is available. The thermal energy of a plasma in a flux tube can be calculated by
expanding around ψt = ψt,0 and αC = αC,0 and retaining only the constant terms, resulting
in

Et =
∫

3
2

nT
B

dψt dαC d� = 3
2

n0T0
�ψt�αCL

B0

1
ξ

∮
l̂θ B̂−1

p,s dθ. (2.43)

We then define the Æ as a fraction of the thermal energy as

Â = A
Et
. (2.44)

Simplifying the expression using �ψ = �r∂rψ , one finds that

Â = 1
8

(
�r
R0

)2
ξ
√
ε∮

l̂θ B̂−1
p,s dθ

· 1
ε

∫
{λ}

dλ
∑

wells(λ)

Iz(c0, c1)ω̂
2
λĝ

1/2
ε . (2.45)

Here�r measures the length scale over which energy is available, i.e. a typical length scale
over which gradients can be flattened. We take this to be proportional to the correlation
length, typically found to be the gyroradius. Therefore, let us set

�r = Crρg, (2.46)

where ρg is the gyroradius, and Cr some function of order O(ρ0
g). This function is not

known a priori, and may vary. For example, if there are large radial streamers present in
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the system Cr may be significantly increased. The dimensionless Æ now becomes

Â = 1
8

(
ρg

R0

)2 C2
r ξ

√
ε∮

l̂θ B̂−1
p,s dθ

· 1
ε

∫
{λ}

dλ
∑

wells(λ)

Iz(c0, c1)ω̂
2
λĝ

1/2
ε . (2.47)

This expression has various scalings which are of interest. First, we see that reducing the
aspect ratio for fixed ρg/R0 is beneficial since it leads to fewer trapped particles. Note that,
in the limit of a large-aspect-ratio, the trapping fraction scales as

√
ε, which is the same

dependency found here. A reduction in the expansion parameter ρg/R0 (at fixed ε) is also
found to help decrease Æ.

As a final step, we introduce the dimensionless density gradient

R2
0Bp,0∂ψ ln n = R0

n
∂n
∂r

≡ −ω̂n, (2.48)

with which c0 and c1 reduce to an especially simple form

c0 = ω̂n

ω̂λ

(
1 − 3

2
η

)
, c1 = 1 − ω̂n

ω̂λ
η. (2.49a,b)

Importantly let us make note of the fact that the radial coordinate r may have different
conventions. In previous investigations (Mackenbach et al. 2022, 2023a) the radial
coordinated was defined via the square root of the toroidal flux

reff ∝
√
ψt, (2.50)

with ψt being the toroidal flux passing through the flux surface in question. A different
choice of the radial coordinate r will influence various quantities on which Æ depends,
such as (2.46) and (2.48). More specifically, the length scale �r expressed in terms of
reff is

�r = �reff
∂r
∂reff

. (2.51)

In the aforementioned investigations �reff was chosen as �reff = ρ, resulting in a good
correlation with turbulent energy fluxes. Therefore, we choose Cr such that �reff = ρ,
which means that

Cr = ∂r
∂reff

, (2.52)

and we shall use this choice of Cr from here on.

2.4. Miller geometry
Finally, we choose our equilibrium to be of the type discussed in Miller et al. (1998). The
key step is to parameterise the flux surface as a standard D-shaped tokamak in terms of
the poloidal angle θ :

Rs(θ) = R0 + R0ε cos(θ + arcsin[δ] sin θ), (2.53a)

Zs(θ) = R0κε sin θ. (2.53b)

Here, R0(r) is the centre of the flux surface, κ(r) is the elongation and δ(r) is
the triangularity. An important feature of this parameterisation is that it is up–down
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(a) (b) (c) (d )

FIGURE 2. Cross-sections in the (R,Z)-plane of tokamaks parameterised via (2.53). The
parameters (κ, δ) vary from (a–d) as (2/3, 0.9), (2/3,−0.9), (3/2, 0.9) and (3/2,−0.9),
respectively. All plots have R0 = 1 and ε = 1/3.

symmetric, which can be seen by invariance under (Zs, θ) �→ −(Zs, θ). The poloidal
magnetic field can then be calculated by (2.26), and the equilibrium is fully specified
by the following set of nine parameters; [ε, κ, δ, sκ , sδ, ∂rR0, q, s, α], where sκ = r∂r ln κ
and sδ = r∂r arcsin(δ). Henceforth we shall refer to this set of numbers which determines
the local geometry as a ‘Miller vector’:

M = [ε, κ, δ, sκ , sδ, ∂rR0, q, s, α]. (2.54)

Cross-sections are plotted in figure 2, to serve as a reference for the various shapes
mentioned in the following sections. Furthermore, we recognise that it is possible to
calculate the toroidal flux enclosed by a poloidal cross-section, and one may retrieve
analytical expressions by expanding it around the smallness of ε,

ψt = B0πr2 2
π

∫ 0

π

Ẑs
∂θRs

rR̂s

dθ

≈ B0πr2κ

(
2J1(arcsin δ)

arcsin δ
+ J2(2 arcsin δ)

2 arcsin δ
ε + O(ε2)

)
, (2.55)

with Jn(x) being the nth Bessel function of the first kind. In terms of an effective r, we
then have

reff = r

√
2
π

∫ 0

π

Ẑs
∂θRs

rR̂s

dθ

≈ r
√
κ

√
2J1(arcsin δ)

arcsin δ

(
1 + 1

8
J2(2 arcsin δ)
J1(arcsin δ)

ε + O(ε2)

)
, (2.56)

and we find that the factor Cr becomes

Cr =
(√

2
π

∫ 0

π

Ẑs
∂θRs

rR̂s

dθ

)−1

. (2.57)

For shaped equilibria (i.e. κ �= 1, δ �= 0, or ε → 1), Cr will differ from unity and one
should keep this important caveat in mind.
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2.5. An analytical limit: large-aspect-ratio s–α tokamak
We proceed to investigate a limiting case of Miller geometries; namely that of a
large-aspect-ratio tokamak with circular flux surfaces and a steep local pressure gradient,
which we shall henceforth refer to as the s–α limit, and this calculation is equivalent
to analyses given in Connor et al. (1983) and Roach et al. (1995). This will serve as a
computationally efficient model in such geometries, and will, furthermore, be used as
a benchmark for the more general calculation of the Æ. The algebraic details of this
derivation are given in Appendix A, and here we highlight the central steps. It is convenient
to express λ as a trapping parameter k2, where the deeply trapped particles have k = 0 and
the barely trapped particles have k = 1. This mapping is given by λ = 1 + ε(1 − 2k2), so
the magnetic field may be written as

λB̂ = 1 + ε(1 − 2k2 − cos θ). (2.58)

One can now perform the bounce-averaging integrals required for (2.37) in the s–α limit,
resulting in

ω̂λ = − α

2q2
+ 2G1(k)+ 4sG2(k)− αG3(k), (2.59)

where we define

G1 = E(k)
K(k)

− 1
2
, (2.60a)

G2 = E(k)
K(k)

+ k2 − 1, (2.60b)

G3 = 2
3

[
E(k)
K(k)

(2k2 − 1)+ 1 − k2

]
, (2.60c)

where K(k) and E(k) are complete elliptic integrals of the first and second kind,
respectively. The normalised bounce time, as given in (2.41) is equal to

ĝ1/2
ε =

√
2

π
K(k). (2.61)

Finally, from (2.56) we see that Cr = 1 in this limit. The Æ now becomes a straightforward
integral of known functions over k

Â = 1

2π
√

2

(
ρg

R0

)2 √
ε

∫ 1

0
dk2Iz(c0(k), c1(k))ω̂λ(k)2K(k), (2.62)

which can efficiently be computed numerically.

3. Numerical results

Two codes have been constructed: one that computes the integral of (2.62) using
standard integration routines, and a numerical routine that computes both the precession
frequencies and the Æ as given in (2.44), both of which are computationally cheap
(fractions of a CPU second per evaluation). First, we shall verify the relationship between
Æ and turbulent transport. Next, we shall investigate the results obtained for the s–α
circular tokamak, after which we shall investigate how Æ varies in Miller geometries as a
function of various parameters. The code used to generate these results is freely available
on GitHub2. The bounce-integrals required in (2.44) are evaluated using numerical

2Install the code via https://github.com/RalfMackenbach/AE-Miller
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methods detailed in Mackenbach et al. (2023b). Finally, we take the prefactor ρg/R0 to
be unity in all plots presented below, so when converting to a real device, one should
multiply the Æ by a factor (ρg/R0)

2.

3.1. Comparison with TGLF
Our first course of action is comparing Æ with turbulent energy-flux calculations in
tokamak geometries, to verify its relation to turbulent transport in such geometries. At
the moment, nonlinear gyrokinetic simulations are computationally too expensive for
detailed parameters scans, and therefore we instead employ the quasilinear TGLF (trapped
gyro-Landau fluid) code (Staebler, Kinsey & Waltz 2007; Staebler & Kinsey 2010). Some
key differences between the two models are highlighted before any comparison is made.
The TGLF code computes the linear eigenmodes of a variety of instabilities, ion and
electron temperature gradient modes, electromagnetic kinetic ballooning modes, as well as
trapped-ion-modes and TEMs, and then applies a quasilinear saturation rule to accurately
fit the fluxes from nonlinear gyrokinetic simulations. For quasineutrality purposes, TGLF
requires the inclusion of at least one ion species. These are fundamental differences to
the formulation of the Æ described in this work, which only accounts for the Æ of
trapped electrons. Therefore, when setting up TGLF, care was taken to ensure the modelled
turbulent energy-fluxes were as much as possible due to instabilities dominated by trapped
electrons, using settings analogous to those used in recent gyrokinetic simulations in a
similar regime (Proll et al. 2022). Given the lack of collisions in this regime, the expected
dominant instabilities should be of the collisionless TEM variety. However, some other
instabilities can also arise from interactions with the ion population. Thus, to ensure
that the dominant instabilities in the TGLF simulations were as relevant as possible for
our comparison, only contributions from modes propagating in the electron-diamagnetic
direction were included, which excludes, for example, the ubiquitous mode (Coppi &
Pegoraro 1977), which propagates in the ion direction. Furthermore, we find that, for the
scenarios considered in this work, adding an equally large electron temperature gradient
to the density gradient, i.e. taking η = 1, significantly decreased the number of non-TEM
modes dominant in TGLF simulations, and as such we set η to unity for the comparison.
The recent SAT2 (Staebler et al. 2021) quasilinear saturation rule for TGLF was used, as it
includes the impact of plasma shaping on the quasilinear saturation (Staebler et al. 2020).
Although TGLF also uses a Miller parameterisation of the local equilibrium, we note that
it does not use the same normalisation as Roach et al. (1995) followed in this work, and
care has been taken to convert between the two. We finally stress that the current model for
Cr is a fairly simple model, and that prediction can be refined using a more sophisticated
model. This can, for example, be done by using some fitting function for Cr, where one
finds the best-fit parameters which minimise the error between the energy flux and the
prediction of Æ.

For the comparison we use the gyro-Bohm normalised energy fluxes computed by
TGLF,

Q̂e = Qe

QGB
, (3.1)

where Qe is the electron energy flux from TGLF, and QGB is the gyro-Bohm energy flux.
This is compared with the estimate of the gyro-Bohm normalised energy flux from Æ
(Mackenbach et al. 2022, 2023a), which is

Q̂A ≡ CQÂ 3/2, (3.2)

https://doi.org/10.1017/S0022377823001174 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001174


14 R.J.J. Mackenbach, J.H.E. Proll, G. Snoep and P. Helander

(a) (c) (e)

(b) (d ) ( f )

FIGURE 3. Comparison between codes, showing the correspondence between the estimate of
the energy flux from Æ and TGLF. Panels (a,c,e) display the energy flux from TGLF, and
panels (b,d, f ) display the corresponding estimate from Æ. One can see agreement in trends,
though some details differ. Panels (a,b) have a Miller vector [ε, κ, δ, sκ , sδ, ∂rR0, q, s, α] of
[1/3, κ, δ, 0, 0, 0, 2, 0, 0], whereas panels (c,d) have [1/3, κ, δ, 0, 0, 0, 2, 1, 0], and panels (e, f )
have a Miller vector of [1/3, 1, 1/2, 0, 0, 0, 2, s, α]. Panels (a,b) have ω̂n = 3; panels (c,d) and
(e,f ) have ω̂n = 6, and η = 1 in all panels. The white masked-out regions have a dominant
instability which is not in the electron direction, and as such we filter them out. Finally, note
that the colour bars are the same scale in each column.

where the constant of proportionality is taken from the fit presented and was found to
be CQ ≈ 1.0 × 103. With such a power law, a linear correlation between Q̂A and Q̂e
from nonlinear gyrokinetic simulations was found for pure density gradient-driven TEMs,
which is different from the current comparison in which both the electron temperature and
the density gradient drive the TEM (η = 1). The data points in the comparison are chosen
in order to verify that TGLF reproduces some trends that will be discussed in the following
sections.

A comparison in the (κ, δ) and (s, α) planes is displayed in figure 3. One can see that
there is good correspondence in trends: decreasing the magnetic shear and/or increasing
the pressure gradient helps in reducing the energy flux, as does increasing the elongation.
However, there are also differences visible between the two models for the energy flux,
which are evident in the (s, α)-plot. A clear discrepancy can be seen at high shear values
(s ≈ 3), where the TGLF energy flux drops and the Æ estimate does not, and the Æ,
furthermore, overestimates the energy flux at high shear. In the (κ, δ)-plots the trends
are well captured by Æ, with some differences. To further investigate the relationship
between the two estimates of the energy flux, all the simulation data shown in figure 3
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FIGURE 4. A scatter plot showing the relation between the two estimates of the nonlinear
energy flux. The red dashed line is shows the expected linear relationship, x = y. The plot
consists of N = 1171 points. The grey points have some transparency, and as such darker regions
arise due to a high density of points. Furthermore, we have added simulation data from the
gyrokinetic code GENE (gyrokinetic electromagnetic numerical experiment) (Jenko, Dorland &
Hammett 2001), also presented in Mackenbach et al. (2022), as blue markers.

have been combined in a scatter plot shown in figure 4. In order to check consistency with
previous findings, we have, furthermore, included the data points of Mackenbach et al.
(2022), which are nonlinear simulations in general geometries. Here, we see that there
is a linear relationship for most of the data (we have added a red line with the expected
linear relationship), although there exist data points that deviate more significantly from
the linear relationship. There are various reasons why such a discrepancy may occur.

(i) There may be other instabilities present (though not necessarily dominant) that
are not captured by the Æ of trapped electrons, such as the ubiquitous mode, or
the universal instability (Romanelli 1989; Helander & Plunk 2015; Landreman,
Antonsen & Dorland 2015; Costello et al. 2023). More generally, if there are
instabilities present that do not derive their energy from trapped electrons, the
current Æ-model is no longer expected to be an accurate measure.

(ii) The Æ length scale Cr may vary more significantly for certain choices of equilibrium
parameters and the current choice given in (2.57) may not be accurate.

(iii) Recall that Æ can be interpreted as an upper bound on the amount of energy that
can be released. If the portion of the Æ that resides in stabilising modes deviates
markedly (see, e.g. Lang, Parker & Chen 2008; Hatch et al. 2011; Pueschel et al.
2016; Duff et al. 2022), one can reasonably expect that the data deviate more from
the found relationship.

(iv) The TGLF’s quasilinear saturated fluxes in both the (κ, δ) and (s, α) planes show
occasional extreme outliers for small changes in input. The TGLF code has been
extensively verified against a wide variety of nonlinear gyrokinetic simulations
(although further validation for negative triangularity is currently being pursued),
but the regime explored in this work is not the typical input space and could require
separate verification.

(v) Although not present in the current set of simulation data, the Æ of trapped electrons
will certainly cease to be an accurate model in situations where the trapped electrons
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(b)(a)

FIGURE 5. The Æ of a large-aspect-ratio circular tokamak, as a function of magnetic shear s
and pressure gradient α. The plots have been generated using q = 2. Panel (a) has ω̂n = 3 and
η = 0, whereas (b) has a pure electron temperature gradient, i.e. ω̂n = 0 and ω̂n · η = 3.

play no role, such as in the case of a pure ion temperature gradient, and no gradients
in electron temperature or density.

We stress that the scatter does mean that predictions may be faulty if one lies within the
scatter of the fit. However, seeing that general trends are well captured by Æ, it may serve
as a useful estimate for transport and trends at low computational cost (Æ calculations are
roughly a factor 50 faster than the presented TGLF calculations).

3.2. The s–α geometry
We now shift our attention to the behaviour of Æ on the various free parameters found in
tokamak equilibria. Recalling that we have derived two Æ expressions, one for any Miller
geometry and one for the large-aspect ratio limit, let us start by investigating the latter. A
plot of the Æ calculated from (2.62) is given in figure 5 as a function of magnetic shear
and pressure gradient. We note that the ranges for s and α are not meant to represent
realistically attainable values here, instead, we are more interested in the general structure
of the Æ over the domain. There are several interesting features visible in the figure. Even
in this simplest model, the Æ exhibits rich structure over the s–α plane. More precisely, Æ
is large when s and α are comparable, s ∼ α, and is otherwise much smaller, particularly
when the absolute value of one of these quantities is large. These findings are consistent
with previous investigations (Rosenbluth & Sloan 1971; Dagazian & Paris 1982; Connor
et al. 1983; Kessel et al. 1994; Rettig et al. 1997; Strait et al. 1997; Kinsey, Waltz & Candy
2006). It is also interesting to note that the precise reduction in Æ depends on the drive: for
a pure electron temperature gradient, significant positive shear is more helpful in reducing
Æ, while Æ driven by a pure density gradient benefits more from negative shear.

Since (2.62) can be integrated numerically to high precision, it serves as a useful
benchmark for the more general Æ of (2.44). Accordingly, we have compared the Æ in
the large-aspect-ratio limit with circular flux surfaces using a code that solves (2.44). This
comparison is shown in Appendix B, and we find that the codes agree.

3.3. Miller geometry
We now leave the realm of the s–α limit and venture into shaped, finite-aspect-ratio
equilibria. Our first step is to investigate the dependence on magnetic shear and pressure
gradient for a range of different Miller vectors, and the results are shown in figure 6.
Here we see similar trends as in § 3.2: negative shear and large α tend to be especially
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(b)(a)

(c) (d )

FIGURE 6. Dependence of Æ on magnetic shear s and pressure gradient α. In (a), the Miller
vector [ε, κ, δ, sκ , sδ, ∂rR0, q, s, α] is set to [1/3, 3/2, 1/2, 0, 0, 0, 2, s, α], and other panels have
the same vector with one parameter changed. In (b) the safety factor q is reduced from 2 to 1, for
(c) the elongation κ decreases from 3/2 to 1/2, and in (d) the sign of triangularity δ is changed
from 1/2 to −1/2. All panels have ω̂n = 1 and η = 0.

stabilising for a pure density gradient. However, it is also clear that the magnitude and
precise contours depend strongly on the chosen Miller vector, as defined in (2.54). For
example, it can be seen that lowering the safety factor is stabilising, since Æ is reduced
over a large region of the s–α plane as one compares figure 6(a) with figure 6(b). In
figure 6(c) the elongation has been reduced produce a ‘comet’-type configuration (κ < 1,
i.e. a horizontally elongated tokamak, see figure 2), which can increase the magnitude of
the Æ, and the stabilising effects of s and α become less pronounced. Finally, in figure 6(d)
the sign of the triangularity has been reversed to become negative. Although the shape of
the contours remains largely unchanged, the peak in Æ is changed to higher α and lower s,
indicating that negative triangularity can be particularly beneficial in high-shear discharges
with a modest value for α. In a more general sense, when changing any of the parameters
significantly, one should expect that the precise shape and magnitude of the contours will
change.

With this important caveat in mind, let us investigate the influence of geometry on
the Æ. To do so, we display the dependence on κ and δ for various Miller vectors in
figure 7. Several interesting general trends can be observed. First, note that increasing the
elongation beyond κ = 1 generally decreases the Æ in all Miller vectors considered here,
although the precise effect depends on the triangularity. Second, we see that it is not true
in general that positive or negative triangularity is always stabilising; it depends on the
other Miller parameters. Third, we see that tokamaks with κ < 1 and δ < 0, often referred
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(b)(a)

(c) (d )

FIGURE 7. The effect of the geometry on Æ. In (a) the Miller vector [ε, κ, δ, sκ , sδ,
∂rR0, q, s, α] is set to [1/3, κ, δ, 0, 0, 0, 2, 1, 0] with ω̂n = 1 and η = 0, and all other panels
have the same Miller vector with one parameter changed. The contours shown in (b) have a
higher inverse aspect ratio as ε is increased from 1/3 to 2/3, in (c) the pressure gradient α is
increased from 0 to 1/2, and for (d) we have decreased the shear from 1 to 0.

to as (negative) comet cross-sections tokamaks (Kesner, Ramos & Gang 1995), show a
reduction in Æ in figure 7(b,d), at least for the pure density gradient considered here. This
is perhaps unsurprising, since such tokamaks are close to having the maximum-J property
as shown by Miller et al. (1989). Since Æ measures deviations from the maximum-J
property, it is thus expected that these configurations perform well in terms of Æ.

Investigating the plots in detail, in figure 7(a) one sees that negative triangularity is
beneficial for κ > 1 as can be seen by the reduction in Æ. In the following sections, we
shall see that this is a consequence of the positive magnetic shear chosen. Next, note that
doubling the inverse aspect ratio, as is done when going from figure 7(a) to figure 7(b), has
a stabilising effect. Naively, one would expect that doubling the inverse aspect ratio would
increase the Æ by roughly a factor

√
2 ≈ 1.4, due to the factor

√
ε in (2.45). However,

going from figure 7(a) to figure 7(b) we see a decrease of the maximum Æ by some
15 %. This is likely due to the fact that, in a small-aspect-ratio device, magnetic field lines
spend most of their time (or more precisely, arclength) on the inboard side of the tokamak
(Helander & Sigmar 2005). There, ωλ tends to be opposite to the drift wave and therefore
these orbits do not contribute to the Æ for a pure density gradient. It is also interesting to
note that negative triangularity no longer exhibits a reduction in Æ as the aspect ratio is
significantly decreased, in accordance with the findings of Balestri, Ball & Coda (2023).
Going from figure 7(a) to figure 7(c) the pressure gradient is increased from α = 0 to
1/2. With this introduction of pressure gradient, it can be seen that positive triangularity
shows a decrease in Æ, where negative triangularity does not. Finally, figure 7(d) has
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the magnetic shear reduced from s = 1 to s = 0 as compared with figure 7(a), which
drastically changes the picture. Most importantly, we see that the lack of this positive
magnetic shear results in negative triangularity no longer being stabilising. We find that
the results change somewhat if one instead imposes a pure electron temperature gradient
(not shown here), though the basic trends remain intact.

All in all, we conclude from these results that the Æ is very sensitive to equilibrium
parameters, including quantities not investigated here such as q, sκ and ∂rR0. This
sensitivity is perhaps reassuring: gyrokinetic turbulence has long been known to be
strongly dependent on equilibrium parameters and even slight nudges can drastically
change the picture (a sentiment perhaps best captured by the old Dutch expression wie
het kleine niet eert, is het grote niet weerd). We seem to reproduce a similar sensitivity
in this Æ-model for trapped electrons. This sensitivity becomes especially clear when
investigating the dependence of Æ on triangularity, which we shall discuss in the next
section.

3.4. When is negative triangularity beneficial?
As hinted at in the previous section, it is not possible to make a general statement about
the effect of negative triangularity on Æ; its possible benefit depends strongly on other
parameters describing the equilibrium. We can, however, find trends, and in order to do so
we define the following fraction:

Δ = Â(δ = −0.1)

Â(δ = +0.1)
, (3.3)

where δ = ±0.1 is chosen to represent a typical experimentally realisable range of
parameters. This fraction can be interpreted as the factor by which the Æ changes upon
switching from positive to negative triangularity, where Δ < 1 implies a reduction in Æ.
We present an investigation of Δ and its dependencies in figure 8. We see two clear trends
that seem to be robust for tokamaks with κ > 1. Firstly, as noted in the previous sections,
in figure 8(a,b) we see that negative triangularity tends to be especially stabilising for
configurations with significant positive shear. Similar conclusions were made by Merlo &
Jenko (2023), who found that the turbulent energy flux in gyrokinetic simulations follows
the same trend for TEM-driven turbulence: only for sufficiently high positive shear is a
decrease in energy flux found at negative triangularity. Increasing α tends to push theΔ =
1 line (in the plot this is the logΔ = 0 line) to even higher values of shear, implying that a
significant pressure gradient may make negative triangularity less desirable. Secondly, in
figure 8(c,d) we note that negative triangularity can be beneficial in situations where the
gradient is small, such as in the core. The dependence on η is non-trivial; at small density
gradients a non-zero value of η can make negative triangularity beneficial. As in the
previous sections, the results here depend on the Miller vector and are not meant to serve
as a quantitative measure for core and edge transport. However, we have found that the
presented trends tend to be robust as long as κ > 1 and thus do have qualitative value. We
finally note that a more comprehensive model of the effect of negative triangularity should
likely take collisions, impurities and global effects into account (Merlo et al. 2019, 2021).

From these results we infer that negative triangularity is expected to be especially
beneficial in the core of the plasma, where gradients are necessarily small. It is
not clear if the benefit extends to the edge: only with significant positive shear
does negative triangularity become beneficial here as well. One should also keep in
mind that Δ measures the effect of going to negative triangularity while keeping all
other parameters fixed. A more complete investigation would, for example, compare
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(b)(a)

(c) (d )

FIGURE 8. Various plots showcasing the dependencies of log(Δ), where Δ is defined as Â(δ =
−0.1)/Â(δ = +0.1), on various equilibrium parameters. Panels (a,c) and (b,d) have different
Miller vectors [ε, κ, δ, sκ , sδ, ∂rR0, q, s, α], which are meant to be representative of the edge and
the core. Panels (a,c) have a core-like Miller vector of Mcore = [1/100, 3/2, δ, 0, 0, 0, 1, s, α].
Panels (b,d) have an edge-like Miller vector of Medge = [1/3, 3/2, δ, 1/2, 0,−1/2, 3, s, α]
Finally, (a) has ω̂n = 1/2 and η = 0, (b) has ω̂n = 2 and η = 0, (c) has s = α = 0 and (d) has
s = 2 and α = 1/2.

experimental equilibria with positive and negative triangularity, or use a global
magnetohydrodynamics-equilibrium code to find consistent profiles. We do not attempt
such an investigation here, but we note that our mathematical framework would readily
allow for such a comparison. We finally remark that the above results may seem
counter-intuitive as negative triangularity is often thought to automatically imply TEM
stabilisation, since the bounce points of most trapped particles reside on the inboard side
of the torus, where the magnetic curvature should be favourable. Consequently, it is often
argued that the bounce-averaged drift is such that TEMs are stabilised. Upon calculation
of (2.37), we find no such stabilisation, however, as explained further in Appendix C.

3.5. Gradient-threshold-like behaviour
Our next step is to investigate the dependence of Æ on the gradient strength ω̂n. From
(2.8), one can show that there are two distinct scalings (Mackenbach et al. 2023a). In a
strongly driven regime, one finds that the Æ scales linearly with the gradient strength ω̂n.
For a weakly driven regime one can expand around small ω̂n, and one finds that the Æ
scales with the gradient strength as A ∝ ω̂3

n:

Â ∝
{
ω̂n if |ω̂n| � 1,
ω̂3

n if |ω̂n| � 1.
(3.4)
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(b)(a)

FIGURE 9. Example of dependence of Æ on gradient strength. Two scalings are found in (a).
In (b) we define a gradient threshold by fitting a straight line to the strongly driven regime, and
finding its ω̂n interception with the abscissa.

(b)(a)

FIGURE 10. The gradient threshold as a function of equilibrium parameters. In (a) the
Miller vector [ε, κ, δ, sκ , sδ, ∂rR0, q, s, α] is [1/3, 3/2, 1/2, 0, 0, 0, 2, s, α], and (b) has [1/3, κ,
δ, 0, 0, 0, 2, 1, 0]. In all plots η = 0.

These scalings are reminiscent of gradient-threshold (or critical gradient) type behaviour
(Dimits et al. 2000). Gradient thresholds are signified by a sudden decrease in energy flux
when decreasing the gradient below some threshold value. The aforementioned scaling
behaviour of the Æ is displayed in figure 9 which similarly shows a rapid decrease below
some threshold value. In figure 9(b) we estimate a critical-threshold-like quantity from Æ,
by fitting a straight line to the strongly driven regime, i.e. we find the best-fit parameters
a0 and a1 in the formula

Â = a0 + a1ω̂n, (3.5)

with ω̂n � 1. The gradient threshold, denoted by ω̂c, is then defined as the interception
with the abscissa, hence

ω̂c ≡ −a0

a1
. (3.6)

One could, of course, use different definitions for ω̂c, for example, one could define
the intersection point between the two straight lines on the log–log plot of figure 9
as ω̂c. However, we have found that the definition of (3.6) has several benefits: it
is computationally cheaper, less prone to numerical noise and seems to behave more
smoothly. Other attempted definitions show the same trends.
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(b) (c)(a)

FIGURE 11. Global Æ-minimising solutions as a function of s and α. Panel (a) showcases the
Æ of the optimal solution, (b) displays the elongation and (c) shows the triangularity. Generated
with a Miller vector [ε, κ, δ, sκ , sδ, ∂rR0, q, s, α] of [1/3, κ, δ, 0, 0,−1/2, 3, s, α]. In all panels
ω̂n = 1 and η = 0.

We illustrate how ω̂c varies as a function of various equilibrium parameters in figure 10.
Note that figure 10(a) has the same Miller vector as figure 6(a), and figure 10(b) has
the same Miller vector as figure 7(a). Focussing on figure 10(a), an interesting trend
is that increasing shear tends to increase ω̂c linearly, and ω̂c tends to plateau for low
shear to some value. This is similar to the findings of Jenko et al. (2001), though their
investigation focusses on electron-temperature gradient turbulence. It is also interesting
to note that, in addition to the reduction in Æ in the negative-triangularity configuration,
it also benefits from a high critical gradient, which is in line with the findings of Merlo
et al. (2015). This effect becomes even more pronounced as one increases the shear, which,
furthermore, reduces the Æ in the negative triangularity configuration. This implies that
negative triangularity may be beneficial in a different sense: since the critical gradient
estimated from Æ is higher in negative triangularity geometries, the profiles may be able
to sustain much higher gradients and thus higher core density/temperature.

3.6. Tokamak optimisation
In this section we aim to find Æ-optimised tokamaks for a certain set of equilibrium
parameters, at fixed gradients (ω̂n = 1 and η=0). To this end, we choose to optimise
over κ and δ while keeping all other parameters fixed. In order to find somewhat realistic
solutions, we restrict ourselves to a bounded optimisation space, namely

κ ∈ (1/2, 2), δ ∈ (−1/2, 1/2). (3.7a,b)

The SHGO (simplicial homology global optimization) algorithm from Endres, Sandrock
& Focke (2018) is ideally suited for finding the global minimum in this low-dimensional
bounded parameter space and is also available in SciPy. Finally, we shall vary magnetic
shear and α, and investigate its effect on the global minimum found.

The results are displayed in figure 11, where the optimal values of Æ, κ and δ values
are displayed as a function of s and α. For a visual aid of the shape of the cross-sections,
we refer to figure 2. It can be seen that both the optimal triangularity and elongation tend
to be in the corners of the optimisation domain, and hence one should expect that these
results are strongly dependent on this domain. Firstly, we see that vertically elongated
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tokamaks tend to be beneficial for all parameters considered here. It is, furthermore,
interesting to note that the negative triangularity solution tends to be optimal whenever
there is significant shear and the pressure gradient is not too large, which is consistent
with the findings of § 3.4.

From this plot, an important conclusion can be drawn: there is no such thing as a
single ‘optimal’ solution. The global minimum depends sensitively on other equilibrium
parameters, such as shear and pressure gradient, which are, in turn, determined by the
profiles of the safety factor, density and temperature. Therefore, if one is interested
in finding an Æ-optimised tokamak, one should take care when choosing the profiles.
One could also choose to let the profiles be part of the optimisation by describing
them with some number of free parameters and constraints (e.g. one could use a fixed
number of Fourier modes on top of a profile and optimise for the mode amplitudes). In
reality, the profiles are themselves set by equilibrium conditions, making a self-consistent
optimisation highly non-trivial. A more consistent investigation could perhaps solve this by
coupling the current Æ-model to a transport solver, which would calculate self-consistent
profiles.

3.7. Existence of solutions with high gradients yet low Æ
In this section, we investigate how this Æ model may relate to the suppression of TEMs
when the density gradient is increased. To do so, we note several interesting properties that
arise as one increases this gradient. First, the normalised pressure gradient α scales linearly
with the density gradient (assuming a constant ratio of the poloidal magnetic field pressure
to the thermal pressure, which, for example, occurs if one is operating at a fixed β-limit).
The shear depends on the pressure gradient, as such a gradient drives the bootstrap current,
which in turn changes the rotational transform profile. The bootstrap current density has
an off-axis maximum in realistic scenarios, and such an off-axis maximum can locally
lower the shear. This is most readily seen by inspecting the expression for shear in a
large-aspect-ratio, circular tokamak, which depends on the current density profile j(r) as

s(r) = 2
(

1 − j(r)
j̄ (r)

)
; j̄ (r) = 2

r2

∫ r

0
xj(x) dx, (3.8a,b)

where j̄ measures the average current density inside the radius r. From this expression,
it is clear that for current density profiles that peak at r = 0, the shear is always positive.
An off-axis maximum, supplied by the bootstrap current, can cause a locally lower shear.
Hence, as one raises ω̂n one simultaneously increases α and decreases s. To estimate the
magnitude of the effect of the bootstrap current on the shear, we note that the bootstrap
current is proportional to the density and temperature gradients, and thus to the pressure
gradient

jb ≈ jb,0α(r). (3.9)

This is an approximation since the different transport coefficients relating the bootstrap
current to the various gradients are not identical (Helander & Sigmar 2005), but we ignore
this minor complication. We, furthermore, write the total current density as j = jb + je,
where je is the equilibrium current, and assume jb � je = je,0ĵ (r). To first order in the
smallness of the bootstrap current, (3.7a,b) then gives

s ≈ 2 − r2ĵ (r)∫ ρ

0
xĵ (x) dx

⎛
⎜⎜⎝1 + jb,0

je,0

⎡
⎢⎢⎣α(r)ĵ (r)

−

∫ r

0
xα(x) dx∫ r

0
xĵ (x) dx

⎤
⎥⎥⎦
⎞
⎟⎟⎠ . (3.10)
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Finally, following Miyamoto (2005) we estimate the ratio jb,0/je,0 as

jb,0

je,0
≈ 0.3〈βp〉

√
ε, (3.11)

where βp is the local ratio of the thermal pressure over the poloidal magnetic field pressure,
and the angular brackets denote a volume average. We shall take jb,0/je,0 to be of the order
of 10 %, implying that the shear may change as ds/dα ∼ s/10. Finally, one can relate the
pressure gradient to ω̂n as

α = εβp (1 + η + ηi) ω̂n, (3.12)

where ηi = ∂r ln Ti/∂r ln n, with Ti(r) being the ion temperature. We assume that the factor
εβp(1 + η + ηi) ∼ 0.1, so that dω̂n/dα ∼ 10.

We illustrate the competing effects of the density gradient, pressure gradient, and shear
in figure 12. In figure 12(a,b) we see various isocontours of the Æ in (ω̂n, s, α)-space,
where figure 12(a) has positive triangularity and figure 12(b) has negative triangularity.
It is especially interesting to note that in figure 12(a) there are paths in parameter space
in which ω̂n increases but the Æ decreases. These paths generally require that, as the
density gradient increases, the pressure gradient should also increase and the shear should
decrease. As we have argued, these trends are indeed found in tokamak discharges. One
such path is indicated in figure 12(a) as a blue line. Importantly, the blue line has

s = 4
(

1 − α

8

)
, ω̂n = 10 · α (3.13a,b)

which is the correct order of magnitude for both ds/dα and dω̂n/dα. Figure 12(b) exhibits
drastically different features. Planes of constant Æ tend to lie parallel to planes of constant
ω̂n, indicating that not much stabilisation is possible by changing the shear or the pressure
gradient: the Æ rises when ω̂n is increased. In figure 12(b), we again plot a line along the
direction of increasing α and decreasing magnetic shear in red. Finally, note that for sδ we
have used the estimate from Miller et al. (1998), sδ ≈ δ/

√
1 − δ2.

In figure 12(c) we display the Æ along the blue and red lines given in figure 12(a,b)
as a function of the density gradient. Note that the positive-triangularity case exhibits a
distinct maximum, with low Æ both to the left and right of the peak. One could interpret
the existence of the latter as two distinct low-transport regimes: one with low gradients,
and one with high gradients (which also has decreased magnetic shear and increased α).
It is, furthermore, interesting to note that the negative-triangularity tokamak rises to far
higher values in terms of Æ and does not seem to drop back down to low levels along
the chosen domain. Hence one could perhaps conclude that reaching a low-transport state
with high gradients is not feasible in a negative-triangularity discharge. This is in line with
findings of Saarelma et al. (2021) and Nelson, Paz-Soldan & Saarelma (2022), where the
H-mode was found to be inaccessible in negative-triangularity tokamaks on the basis of
the ballooning instability, though the physical reason is of course different. This rise in
Æ in negative triangularity is perhaps unsurprising given that we have found that negative
triangularity is stabilising in cases with significant positive shear, a weak pressure gradient,
and a slight density gradient, exemplified in figures 8 and 11. Since, along the chosen
path shear decreases and α increases with increasing density gradient, which is opposite
to what is stabilising for negative-triangularity tokamaks, we see a sharp increase in Æ.
It may be feasible, however, to have a significant reduction in transport by tailoring the
q-profile in such a way that negative triangularity becomes favourable, which likely implies
significant positive shear. With such a reduction in Æ, one could perhaps enjoy much
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(b)

(a)

(c)

FIGURE 12. Panels (a,b) showcase isocontours of the Æ as a function of (ω̂n, α, s), where (a,b)
have positive and negative triangularity,respectively. In both (a,b) a straight line is drawn which
has increasing α and decreasing s with increasing ω̂n, and the projection of the line onto the
grid-planes is shown as a dashed line. In (c), the Æ along both the blue line of (a) and the
red line of (b) is plotted as a function ω̂n. These plots were generated with a Miller vector
[ε, κ, δ, sκ , sδ, ∂rR0, q, s, α] of [1/3, 3/2, δ, 1/2, δ/

√
1 − δ2,−1/2, 3, s, α], and η = 0.

improved transport whilst staying in an L-mode-like regime. The parameters described in
Marinoni et al. (2019) do seem to meet such requirements, especially near the edge where
the reduction in transport seems greatest as compared with the positive triangularity case.

A more comprehensive investigation, which shall be undertaken in a future publication,
would self-consistently calculate the bootstrap current which would give precise paths in
(ω̂n, α, s)-space. However, given the nature of the isocontours in this three-dimensional
space, we expect the observed trends to be robust, as long as the path has the correct
general dependencies (i.e. decreasing shear and increasing α with increasing density
gradient).
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4. Conclusions

We have shown that it is possible to simplify the analytical expression for the Æ of
trapped electrons in the case of an omnigenous system, which speeds up calculations. If
one, furthermore, employs an analytical local solution to the Grad–Shafranov equation,
explicit expression of various quantities needed in the calculation of the Æ (e.g.
bounce-averaged drifts, bounce times) can be found as in Roach et al. (1995). Making use
of an equilibrium parameterisation proposed by Miller et al. (1998), we go on to investigate
how Æ depends on these equilibrium parameters. Using this set-up, we observe several
interesting features of the Æ.

(i) A comparison is made between Æ and TGLF. We observe a fairly good correlation
between energy flux and A3/2, indicating that Æ can be a useful measure for tokamak
transport.

(ii) Increasing the magnitude of the magnetic shear or increasing the Shafranov shift
tends to be stabilising as indicated by a reduction in the Æ, and these trends hold
for many different choices of geometry. Especially negative shear reduces the Æ
substantially for pure density gradients.

(iii) Vertical elongation tends to be stabilising, as indicated by a reduction in Æ. Negative
triangularity can be stabilising, particularly in configurations with significant
positive shear or small gradients, but not always.

(iv) The Æ has different scalings with respect to the gradient strength in weakly
and strongly driven regimes. We employ this difference in scaling to estimate
a gradient-threshold-like quantity, and we find that it has similar behaviours as
found in the critical-gradient literature: an increase in shear tends to increase
this gradient-threshold and negative triangularity benefits from an especially high
gradient-threshold.

(v) Using Æ for shape-optimisation we show that the optimal solution is strongly
dependent on pressure gradients and magnetic shear, implying that the optimisation
is sensitive to the density, pressure and q-profiles.

(vi) An investigation is presented on how Æ varies as the density and pressure gradient
increase consistently, while shear decreases. We find that in such scenarios one can
find solutions with large gradients yet low Æ. Such solutions tend to exist for positive
triangularity tokamaks but not for negative-triangularity tokamaks.

The results suggest that various observed trends regarding turbulent transport in
tokamaks may partly be understood in terms of Æ, which has a simple physical
interpretation and is cheap to compute. The analytical framework can readily be extended
to account for an equilibrium model which allows for other shaping and plasma parameters
such as plasma rotation (Hameiri 1983; Miller et al. 1995), squareness (Turnbull et al.
1999) and up–down asymmetry (Rodrigues & Coroado 2018), though no such investigation
is presented here.
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Appendix A. Details of bounce-averaging integrals in the s–α limit

In the large-aspect ratio limit with circular flux surfaces, we find that

γ = 1, (A1a)

C1 = −1, (A1b)

C2 = 0, (A1c)

C3 = 1, (A1d)

C4 = 1, (A1e)

ξ = 2π, (A1f )∮
l̂θ B̂−1

p,s = 2π. (A1g)

The equation for shear simplifies to σ = s − 2. Next, we investigate the radial derivatives
of the magnetic field components in this limit and find that these become

r∂ρbp = 1 − s + α cos θ, (A2a)

r∂ρb = ε

(
α

2q2
− cos θ

)
. (A2b)

We express λ in terms of the trapping parameter k2, where the deeply trapped particles
have k = 0 and the barely trapped particles have k = 1. This mapping is given by λ =
1 + ε(1 − 2k2), so that the magnetic field may be written as

λB̂ = 1 + ε(1 − 2k2 − cos θ). (A3)

We can now express the argument of the bounce-averaging operator of (2.37), and expand
it around the smallness of ε. This gives us the leading-order result

ω̂λ =
〈
− α

2q2
+ cos θ + 2(2k2 + cos θ − 1)(s − α cos θ)

〉
λ

. (A4)

In order to evaluate the integral, we first consider the general problem of evaluating

I =
∫

bounce

f (θ) dθ√
ε
√

2k2 + cos θ − 1
, (A5)

where the region of integration is set by the region where the argument of the square root
is positive. Using the double angle identity cos(θ) = 1 − 2 sin2(θ/2), and setting θ̃ = θ/2
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gives

I =
√

2
ε

∫
bounce

f (2θ̃ ) dθ̃√
k2 − sin2 θ̃

. (A6)

Next, one uses the u-substitution sin θ̃ = k sinϑ , which has

dθ̃ =
√

k2 − k2 sin2 ϑ√
1 − k2 sinϑ

dϑ, (A7)

so that the integral becomes

I =
√

2
ε

∫ π/2

−π/2

f (2 arcsin[k sinϑ]) dϑ√
1 − k2 sin2 ϑ

, (A8)

where have recognised the limits of integration satisfy ϑ = ±π/2. The integral is now
in standard form, and may be related to elliptic integrals of the first and second kind,
depending on the functional form of f . For any constant function f (θ) = f0, one simply
has

I = f0

√
2
ε

∫ π/2

−π/2

dϑ√
1 − k2 sin2 ϑ

= 2f0K(k)

√
2
ε
, (A9)

where the elliptic integral of the first kind is K(k) = ∫ π/2
0 dϑ/

√
1 − k2 sinϑ . Next, we

require the integral with f (θ) = cos θ = 1 − 2k2 sin2 ϑ . This becomes

I = 2

√
2
ε

∫ π/2

π/2

1 − 2k2 sin2 ϑ√
1 − k2 sin2 ϑ

dϑ = 2

√
2
ε
(2E(k)− K(k)) , (A10)

where E(k) = ∫ π/2
0 dϑ

√
1 − k2 sinϑ is the elliptic integral of the first kind. We finally

require the integral with f (θ) = cos2 θ , which reduces to

I = 2
3

√
2
ε

([
4 − 8k2]E(k)+ [

4k2 − 1
]

K(k)
)
. (A11)

The bounce-average of the large-aspect ratio tokamak may now be evaluated, and one finds
the result given in (2.59), equivalent to the result of Connor et al. (1983). A plot of all
these functions may be found in figure 13. As a final step, we calculate the dimensionless
bounce-time, given (2.40). We find that it reduces to

ĝ1/2
ε =

√
2

π
K(k). (A12)

Inserting the found results into (2.47) gives the result given in (2.62).

Appendix B. Benchmark of circular tokamak and Miller code and asymptotic limits

Here we show that the two codes that calculate the Æ in both the circular s–α tokamak,
for which the equation is given in (2.62), and a Miller tokamak, as given in (2.45), indeed
yield the same results in the limit of a large-aspect-ratio circular tokamak. For a proper
comparison, we set the Miller parameters such that one approaches the s–α limit. As such,
we choose ε = 10−6, q = 2 and all other Miller components of the Miller vector as given
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FIGURE 13. The functions G1, G2 and G3 as a function of the trapping parameter k2.

(b)(a) (c)

FIGURE 14. Comparison of the Æ as calculated with two different codes. Panel (a) is calculated
using a code that calculates Æ in the s–α limit, and (b) is calculated using the Miller code. The
plots are visually indistinguishable. Calculated using q = 2, ε = 10−6, ω̂n = 3 and η = 1. All
other parameters for Miller are set to zero, as required in the limit of the s–α tokamak. Panel
(c) presents the relative error, where it can be seen that the relative error is very small for large
regions of s–α space. Note that the colour bar scale in (c) is logarithmic.

in (2.54) are set to zero. There is one numerical parameter of interest in the Miller code,
the number of θ points which are used to evaluate the bounce integrals of (2.37) using a
generalised trapezoidal method (Mackenbach et al. 2023b). In the comparison presented
here we use 103 equidistant nodes for θ . The integral over the pitch angle is done using
quadrature methods.

The comparison is shown in figure 14. In this figure, three different contour plots are
shown: figure 14(a) is the Æ as calculated from (2.62); figure 14(b) shows the result as
calculated from (2.45); figure 14(c) shows the relative error between the two codes (more
precisely, it is the difference between figure 14a,b, divided by figure 14a). It can be seen
that the error is typically quite small, with a maximal value of 1 % and a mean value of
0.004 %. If different parameters are chosen (safety factor, density gradient, or η), the error
remains similarly small.

All plots presented in the current publication are generated using the same or even more
refined numerical parameters as used here, so that we have a high degree of confidence that
the presented trends are indeed physical and not numerical. Further convergence checks
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(b)(a)

FIGURE 15. The Æ as a function of the elongation κ for a very weak density gradient in
(a) (ω̂n = 1/100 at κ = 1), and a very strong density gradient in (b) (ω̂n = 100 at κ = 1).

(increasing the resolution of θ and adjusting the tolerances of the quadrature methods) do
not alter the plots presented in this publication in a visually discernible manner.

As an additional check, we highlight that a recent publication has evaluated the Æ of
trapped electrons in quasisymmetric systems (which includes tokamaks) in two asymptotic
limits: those of a very strong and a very weak density gradient (Rodriguez & Mackenbach
2023). It was found that the Æ scales with elongation as Â ∝ κ1/4 if the density gradient is
sufficiently small, and Â ∝ κ−3/4 if the density gradient is sufficiently large. Importantly,
this analysis assumed fixed ∂n/∂reff and reff/R0, instead of fixed ∂rn and r/R0. If one
properly accounts for this different definition of the radial coordinate, we find that the
code reproduces the correct scaling behaviours, as may be seen in figure 15. We also note
that in the aforementioned investigation it was found that at zero shear, more negative
triangularity is found to increase the Æ if the gradient is sufficiently strong and κ > 1. If
the density gradient is sufficiently strong and κ < 1, the Æ decreases with more negative
triangularity. These trends are reproduced and can be found in figure 7(d).

Appendix C. Negative triangularity and trapped particle precession

In this section, we investigate the difference in trapped particle orbits in positive
and negative triangularity tokamaks. To this end, we investigate the dependence
of (2.37) on δ, and we set the other components of the Miller vector equal
to [ε, κ, δ, sκ , sδ, ∂rR0, q, s, α] = [1/3, 2, δ, 0, 0, 0, 2, 0, 0]. The result for a positive
triangularity tokamak (δ = 0.5) is plotted in figure 16, where we have plotted ωλ as a
function of its bounce points θ , which satisfy

1 − λB̂(θ) = 0. (C1)

Furthermore, we have shown the Æ per λ, called Âλ, which is the integrand of (2.45). This
is done by colouring a line of constant λ (which corresponds to constant B) according to
its Aλ. Finally, we also display ωλ as a function of the trapping parameter k2 which maps
λ �→ [0, 1] according to

k2 = B̂max − λB̂maxB̂min

B̂max − B̂min

, (C2)

where the subscripts max and min refer to the maximal and minimal values of the
functions, respectively. With this convention, k2 = 0 corresponds to the most deeply
trapped particles and k2 = 1 to the most shallowly trapped particles. We have, furthermore,
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FIGURE 16. The precession frequency and Æ distribution for a positive triangularity tokamak.

included a red dashed line, which delineates where ωλ changes sign, which determines
stability in a purely density-gradient-driven TEM. In the figure, ωλ > 0 corresponds to
instability (and associated Æ). It can be seen that this positive triangularity tokamak is
unstable up to roughly k2 = 1/2, and the magnetic well is relatively narrow.

The same information is displayed for a tokamak which has δ = −0.5 in figure 17. It
can be seen that the precession frequencies are unstable for a broader range of values for
k2. The Æ is, furthermore, weighted by the bounce-time of a particle, which can become
very large at the bottom of a magnetic well in a negative triangularity tokamak. As such,
the negative triangularity case (with the Miller vectors as chosen here) has higher Æ than
the positive triangularity case.

We have tried various numerical experiments to assess the origin of this difference.
From (2.37), we note that the term involving 1 − λB̂ ∝ v2

‖ , and hence we identify this term
as the curvature component of the drift. The term involving λB̂ ∝ v2

⊥ on the other hand we
identify as the gradient drift. Setting the term involving the parallel velocities equal to zero
results in the found trends inverting, showcasing that this drive plays an important part in
determining the precession. The poloidal curvature, R−1

c , furthermore, plays an important
part. By setting this term equal to unity in (2.37), we also find that negative triangularity
is preferred over positive triangularity. Therefore, we postulate that this curvature drift
plays an important part in determining stability. Importantly, the particles that experience
curvature drive in negative-triangularity tokamaks are the deeply trapped particles, which
tend to be most unstable against the TEM with a density gradient. This is in contrast to
positive-triangularity tokamaks, where the most shallowly trapped particles experience
significant curvature drive. These shallowly trapped particles, however, are stabilised by
the fact that they experience an averaged drift, and as such the curvature drive here is less
deleterious.
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FIGURE 17. The precession frequency and Æ distribution for a negative triangularity tokamak.
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