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Introduction

A necessary and sufficient condition for a homogeneous left invariant partial
differential operator P on a nilpotent Lie group G to be hypoelliptic is that n(P) be
injective in Sfn for every nontrivial irreducible unitary representation % of G. This was
conjectured by Rockland in [18], where it was also proved in the case of the Heisenberg
group. The necessity of the condition in the general case was proved by Beals [2] and
the sufficiency by Helffer and Nourrigat [4]. In this paper we present a microlocal
version of this theorem when G is step two nilpotent. The operator may be homo-
geneous with respect to any family of dilations on G, not just the natural dilations. We
may also consider pseudodifferential operators as well as partial differential operators.

Throughout the paper G is assumed to be a connected, simply connected nilpotent
Lie group and is step two nilpotent unless otherwise stated. Let <& be the Lie algebra of
G, let ^* be the dual of 0 and <$* = <$*-{$}. If Q is an open subset of G, a
pseudodifferential operator P on fi is said to be microhypoelliptic (or microlocally
hypoelliptic) at (#,<i;)eftx#* if (g,£)eWF{Pu) for every ue^'(fi) for which
(g, £) e WF(u). In this paper, for the most part, rather than considering the usual wave
front set, WF(u), we will consider a variant of the wave front set, WFs(u), based on sets
which are conic with respect to some family 6 = {dr:r>0} of dilations on G, and the
corresponding notion of <5-microhypoellipticity. On W similar types of wave front have
been considered by Lascar [8] and Parenti and Rodino [15], among others. On a Lie
group the definitions need to be modified somewhat to take into account the action of
G on &*. Details are in Section 2.

Given <^e^* let 6i be the orbit of £, under the coadjoint action of G on 'S* and let ni

be the irreducible unitary representation corresponding to £ in the Kirillov theory. Let
#* be the set of <!; e ̂ * for which dim (S^ is maximal. #* is an open dense subset of &*.
If 5 is a family of dilations on G, a subset F of ^* is said to be a <5-cone if it is invariant
under 3. Yc<g* is said to be G-invariant if it is invariant under the coadjoint action of
G on &*, i.e. if F is a union of orbits. Let F^ be the smallest G-invariant <5-cone
containing !;.

If P is a left invariant operator which is homogeneous with respect to the dilations 6,
then the injectivity of n^P) implies the injectivity of n^P) for all J/GF^. One might
therefore expect that the injectivity of n^P) is related to <5-microhypoellipticity on F .̂
Rather than considering just F{ it is helpful to consider Tt = (closure of F4) —{0}. We
note (Proposition 3.2) that ar4 = r 4 - F 4 c [ ^ , ^ ] x , (for standard dilations dr( = R$,
where R4 is the radical of the bilinear form associated with <!;), and hence nn is a one
dimensional representation for rjedF^ The following two theorems are the main results
of the paper. In both G is a step two group with a family of dilations S.
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26 K. G. MILLER

Theorem. Let P be a left invariant pseudodifferential operator on G which is
homogeneous with respect to 3. If P is 5-microhypoelliptic at (e, n) for every n e T^, then

is injective in S?n.

Theorem. Let P be a pseudodifferential operator on Q <= G. Let P° be the principal part
of the invariant operator Pg obtained by "freezing the coefficients" of P at g. Let F be an
open S-conic subset ofClx§*. If, for every (g, £)eF, nn(Pg) is injective for all net,., then
P is 5-microhypoelliptic on F.

The first theorem is proved in Section 3, the second is stated more precisely and
proved in Section 4. These results were announced in slightly less generality in [14].

The second result can be improved somewhat when the dilations are natural dilations
on G, i.e. when Srx = r2x for x e [ ^ , ? ] and (5,_>c = rx for x in some supplement ^ x of
[^ ,^ ] . In Corollary 4.5 it is shown that for natural dilations in order to prove 5-
microhypoellipticity near (g0, £0) it is not necessary to assume injectivity of n^P®) for all
(g, E) in a (5-conic neighborhood of (g0, £0), but simply to assume the injectivity of ^(Pg0)
for all r\ e T^. This generalizes a result proved by Grigis [3] for operators of order 2.
Corollary 4.6 gives sufficient conditions for microhypoellipticity with respect to standard
conic sets.

At least for partial differential operators the parametrix construction of Melin [10]
shows that if P is left invariant and homogeneous on a nilpotent Lie group G (with no
restriction on the nilpotence step) and if n(P) is injective for all nontrivial irreducible
unitary representations n of G, then P is globally microhypoelliptic in the standard sense,
i.e. microhypoelliptic at (g,£) for all geG and <^e#*. The parametrix construction in
[10] makes use of global a priori estimates proved by Helffer and Nourrigat [4] under
the assumption of the injectivity of n(P) for all nontrivial n. In order to construct a
microlocal parametrix under the weaker hypotheses stated above, we use a different
method. The construction, which is a refinement of that used in [13], makes use of the
fact that the calculus for invariant operators on a step two group "fibres" over the
orbits and the orbit level calculus is the Weyl calculus [12]. This allows us to construct
the parametrix on the orbits individually in terms of the symbols of the inverses of the
operators n(P).

1. Dilations and pseudodifferential operators

A family of dilations on 0 is a continuous one parameter family 8 = {dr:r>0} of
simultaneously diagonalizable automorphisms of ^ with positive eigenvalues such that
5r5s = drs for all r,s>0 and such that Iimr_0<5r*=0 for all x e ^ . For each r define
<5r:G->G by <5rg=exp<5,.logg and define <5r:^*->^* to be the transpose ofdr:$->y.

If 38 = {eu...,en) is a basis of eigenvectors for {8/.r>0}, then there are fij>0 such
that

8*j = r"ej. (1.1)

Without loss of generality we may assume that min/i,= l. Let fi = max fij. It can be
easily shown (Lemma 1.2 of [11]) that there is a set S = {eu...,eN} of linearly
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independent eigenvectors for {dr:r>0} which generate 'S and such that ^ , =spanS
intersects 0 2 = [^»^] trivially. Let {eN+1,...,en} be a basis for 0 2 chosen so that each
ek,k>N, is a multiple of [e,,e,] for some i<j^N. Since {(5r:r>0} is a family of
automorphisms, each ek,k>N, is also an eigenvector for Sr. If the numbers y^ are
defined by

(1-2)

and if the numbers Hj are defined by (1.1), then

y ^ O implies n^ fi} = nk. (1.3)

For x e ^ let |x| = (xJ + --- + x;J)1/2, where (xu...,xn) are the coordinates of x with respect
to the basis {eu...,en}. By replacing each ek, N<k^n, by ce* for sufficiently large c we
may assume that

|[x,)>]|^|x||y|, for all x and y in <§. (1.4)

We fix a basis 3& = {el,...,en} for ̂  having the properties just described. Coordinates
and norms on <§ and G* will always be with respect to this basis or its dual {ef,...,e*}.
If a is a multi-index, let /ia = £ /*/*,••

For £ e # * - { 0 } , define [£] by [£ | = r if | 5 r " ^ | = l. Note that in terms of the chosen
coordinate system

Let ^:^*->R be a smooth function such that *(<!;)«[<!;] + 1 .

Definition. Let «5 be a family of dilations on # and let m e U. Sm{&*, S) is the set of
such that for every multi-index a. there is a Ca such that

"a (1-6)

for all £ e ^ * . If fi is an open subset of G,Sm(Q x <$*,$) is the set of peC^Q x <S*) such
that for every compact K<=Q1=logQ and all multi-indices a and /? there is a C^K such
that

'", for all (x,QeKxSF*.

*,^), define the left invariant operator P = Op(p) by

Pu = u*F^p, ue^(G), (1.7)

where * denotes convolution on G and F1"
1p = F"1polog, F:y*(^)-»^*(^*) the
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28 K. G. MILLER

Euclidean Fourier transform. If p e Sm(il x IS*, S) define

(0)-»tf(n) by

) = Op(pg)u(g),

where pg(£) = p(g, £) and Op(pg) is defined by (1.7).
Note that if p e C°°(^*) is homogeneous of degree m with respect to 6 for large <!;, i.e.

/>(<5r£) = r"7>(£) for |£|^C, then p e Sm(0*, <5).
There are two asymptotic expansions which are important in the parametrix

construction given in Section 4. The first is for the symbol p\l\q = F1(Filp*Fiiq) of a
product Op(p)Op(g) where peSmi(<$*,d), qeSm2(<g*,5). Given £e<?* let <T = £|»2 and let

HQ = Ka?\- (1-8)

Following Melin [9], given meU and fc^O we define Sm'k(&*,5) to be the set of
such that

(1.9)

Define the higher order brackets {p,q}j as in [12]. The following theorem can be proved
using the Weyl Calculus of Hormander [6] as in [12].

Theorem 1.1. Let peSmukl{<$*,§), qeSm2-k2(<0*,5). For any integer J^O,

where rjeSmi+mi'kl+k2+J(^*,d).

The second asymptotic expansion, due to Michael Taylor [19], is for the symbol p # q
of the product Op(p)Op(q) where p e Sm(£l x ^*, <5), qeS\Clx<g*,5). If a is a multi-index
let tJJE) = ?, C being defined in terms of the chosen coordinate system, and let
r a = Op(fJ- If peSm(Clx<&*,8), let T\p refer to the function obtained by applying T' to
p as a function on Q as £ is held fixed. Define p t ] q(g, £) = (pg \Z\ qg)(Q-

Theorem 1.2 ([19]). Let peSm{nx&*,d), qeSk(£lx&*,S) with Op(q) properly sup-
ported. Then

P#1= I (i'l^D^T^q + rj

where rjeSm+k"J(Qx^*,d).

Let £, e ̂ *, let V be a subspace of <8 maximally subordinate to £, V a supplement to
V in ^, and let n = niiVif be the irreducible unitary representation of G on L2(V) as
defined in [4] or [13]. Let &„ be the orbit of the coadjoint action corresponding to n in
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the Kirillov theory. Let ipn be the symplectomorphism from V x V* onto On defined in
[12]. (\lin will sometimes be denoted t//^. If p e Sm{<&*, 5) and P = Op(p), define n(P) to be
the pseudodifferential operator on V with Weyl symbol pn where

P«=P°<Pn- (1.10)

It was shown in [12] that (a) n(PQ) = n{P)n(Q); (b) n{P) agrees with the usual definition
of n(P) when P is an invariant differential operator and (c) if pe5"(^*) then

n{P) = n(FlP). (1.11)

Given £e^f let d=d(C) be the rank of the bilinear from Bc(x,y) = <C,[x,j']> on <S x<0.
As shown in [4] and [11], the irreducible unitary representations of G can be
parametrized by Ce^J a°d peUN~2d, 7V = dim^1: Every irreducible unitary represen-
tation of ^ is equivalent to exactly one of the representations npi as defined in [11].
Given a family of dilations it is convenient to replace 7rp? for (=/=() by npio°6r where
r = [C] and £0 = Kl(> f°r w e t n e n n a v e

KTW) (1-12)

if P is homogeneous with respect to 5. We will let ppC = pn and 0P? = Gn where n = rtp?.

2. Microlocal analysis on G

If keU and geG, define /cgeG by fcg=exp(/clogg). For aeG, define Xa:G^G
by A"g = a~1g. We identify the tangent bundle TG with G x ̂ . If G is step two nilpotent,
then for any a and b in G, (dX"\ = kA{—\a):<S-^'S• If <j>:M-*N is a diffeomorphism let
0# denote the naturally induced map 4>m:T*M-*T*N. Since G is step two nilpotent,
if aeG, geG and £e#*, then

since (Ad —\a)~l = k&\a.
Let #* = #*-{0}. Let {5r:r>0} be a family of dilations on ^. A subset T of ^* is

called a (5-cone if E, e F implies 5r<̂  e F for all r > 0. If F is a <5-cone, then T will denote
(closure F)-{0}. The notation F ^ c F 2 for 5-cones means ri<=F2.

Definition. A set F c G x ^ * is 5-conic if for every geG, {(Ad^)*^:(g,^)eF} is a 6-
cone. In other words, F is 5-conic if and only if for all geG, AJ,(Fg) is a 5-cone in
T*G^^*, where Fg is the fibre of F over g.

Note that if F<=Gx^* is 5-conic and aeG, then A°F is also 5-conic. It should also
be noted that if F c # * is a 5-cone and aeG, then (Ada)*F is not usually a 5-cone—
even in the case of the natural dilations on the Heisenberg group. That is why we did
not define a set F c G x ̂ * to be 5-conic if F9 is a 5-cone for every g.

If aczG and F ' c ^ * is a 5-cone, let co*V = {{g, £,): g ea> and (Ad£g)*£eF'}. If geG, let

https://doi.org/10.1017/S0013091500006544 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006544


30 K. G. MILLER

g*F' = {£:(Ad|g)*£eF'}. Note that if F c G x # * is an open 5-conic set and (g0 ,(o)er ,
then there is an open neighborhood a of g0 and an open 5-cone F containing

*£o s u c n that oi*T'ciT. Let F1« = F(u°exp) where F is the Fourier transform.

Definition. Let Q be an open subset of G, let pr2 :Qx^*-»#* be the projection and
let u e 2>'(Q). Define WF,(u) c fl x ^ * by (a, n) $ WFg(u) if there is a (5-conic neighborhood F
of (a, f/) and a 0 e C^O), 0 = 1 in some neighborhood of a, such that F^u) is rapidly
decreasing in pr2F, i.e. for every N

\^\)-N, for

Definition. Let p E Sm(Q x ^*, 5). P = Op(p) is said to be regularizing on an open 5-
conic set F if given (a, n) e F, there is a ^ as in the preceding definition and an open 6-
cone F' with r\ e a*V c Fa such that

for all ^eF ' . The complement of the union of all 5-conic open sets on which P is
regularizing is denoted microsupp^(P).

If P is left invariant we sometimes refer to {£:(e, ̂ )Emicrosupp,j(P)}c:^* as simply
microsuppa(P).

Definition. Let P e OpSm(Q x 0*, 8). Let F be a 5-conic subset of £1 x 0*. P is said to
be S-microhypoelliptic on F if WFd(u) n F cz WFa(P«) n F for every u e <&'(Q). Let
(g, <J) e Q x #*. P is said to be 5-microhypoelliptic at (g, £) if it is <5-microhypoelliptic on
the smallest 5-conic set containing (g, £,). P is said to be 5-microhypoelliptic near (g, £) if
it is 5-microhypoelliptic on a 5-conic neighborhood of (g, £).

If aeG and PeOp5m(A°n x ^*,5) define P°eOpSm(Cl x ^*,5) by PaM = P(uoAa"1)o^a-
Then Pa = Op(p") where P

a{g^) = p{kag,^).

Proposition 2.1. Let aeG,ue@'(Q) and PeOpSm(A"fi x ^*,5). T/ien

(a) A;WF,(uoA") = WF,(M);

(b) A° microsupp^P") = microsuppd(P);

(c) For any 5-conic set F, P° is d-microhypoelliptic on F i/ and t>n/_y if P is 5-
microhypoelliptic on A° F.

Proof. Since

F^u o Aa)(̂ ) = e-'<«-lo«o>F1u(Adia*a (2.1)

it follows that F^wk") is rapidly decreasing in pr2F if and only if Ft{4>u) is rapidly
decreasing in pr2A° F. This implies (a). The proof of (b) is trivial and (c) follows from (a).

Corollary 2.2. If PeOpSm(^*,5) and P is 5-microhypoelliptic at {near) (e,0 for all
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, where $<=#* is some orbit, then P is 8-microhypoelliptic at (near) (g,£) for all geG
and all

Corollary 23. If Pe Op Sm(^*, 8) is d-microhypoelliptic at (near) (g,£) for all geG,
then P is 8-microhypoelliptic at (near) (g,rj) for all geG and all ne0^.

Proposition 2.4. Let fi be an open subset of G and T an open 8-conic subset o/ftx <$*.
Let PjeOpSmi(£lxy*,5) for j=l,2, with Px and P2 either both properly supported or
both left invariant. If microsuppa Pl n microsuppa P2 n F = <p, then PtP2 is regularizing
on F.

Proof. First consider the case when P t and P2 are left invariant. Then F and
microsuppPj may be regarded as (5-cones in IS*. Let pj be the symbol of Py If

), then

Pit\p2(i)= H ei<"-^>»•»

= JJ e><'-<-'>Pl(tl-ad$x*t,)p2(QdxdZ. (2.2)

We shall show that there exist CN such that

K P i t l P i X ^ C a O + H-") forallf/eF, (2.3)

where C^ = ||p1||||p2|| for appropriate seminorms on Sm'C&*,8).
For y = 1,2 there exist open 5-cones Fj,F},T] and a c>0 such that microsupp^PjcFj;

microsuppa Pi n V) = </>, F^ u T) = #*, F'; u F'̂  = F and if ^ e F,-, n e V], then [£ - n] ^ c[f/].
If >; e F'i we apply integration by parts to the first formula in (2.2) to obtain

(2.4)

for all M>0, where <x> = (l + |x|2)1/2. For sufficiently large M, (2.4) is valid for all
PjeSm'(<g*,8), ./=1,2. Note that <f/ + adx*f/>^C<x><>;>. Hence if M is sufficiently large

(2.5)

for rjeT'l. We estimate this integral over F t and F\ separately. Since Pt is regularizing
on F|, it follows from Peetre's inequality that

I

!, then <f,-O^c(l + [iJ-«])^c(l + [i;])^c<i,>1» and

\ M 2 M \ < r i - O - 2 M + {mi1. (2.6)
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Thus

if M is sufficiently large. Since r , u F , =^*, (2.3) is verified for neY'i To prove (2.3) for
neY2 apply a similar argument using the second formula in (2.2). By using (4.1) below,
it follows that

(l + |f/|"w) for neYx,

which proves the proposition when Pt and P2 are left invariant.
For general Px and P2 the preceding argument shows that for every

a,Op(£>|p11] T*p2) is regularizing on F. By Theorem 1.2 PXP2 is regularizing on F if Px

and P2 are properly supported.
Propositions 2.5 and 2.6 now follow by standard arguments.

Proposition 2.5. Let Q be an open subset of G, ue@'{Q). Then (a,rj)£ WFd(u) if and
only if there is a 8-conic neighborhood Y of (a,tj) such that PueCco(Q) for every properly
supported PeOpSm(Q x <S*,8) for which microsupp^P<zT.

Proposition 2.6. / / Q e Op Sm(il x <S*, 8) and u e @'(fi), then

WFs(Qu) c H^Fa(«) n microsupp^g.

3. A necessary condition for d-microhypoellipticity

If ^e^* = ̂ *-{0}, let Ti be the smallest G-invariant <5-cone containing t,. Let F{ =
(closure of F4) —{0}, and SY^T^ — Y^. Later in this section an algebraic description
of dYi will be given, but our primary concern is the following necessary condition for 6-
microhypoellipticity on F{.

Theorem 3.1. Let G be a step two nilpotent Lie group with a family of dilations <5. Let
p e C°°(^*) be homogeneous of degree m with respect to 5 for large I;. Let t, e #*. / /
P = Op(p) is S-microhypoelliptic at (e,n)for every neTit then n£P) is injective in £?„ .

Proof. Suppose there is a c e ^ , , v=£Q, such that n(P)v = 0, where K = K(. Define the
function u(g)=(n(g)v,v) where (,) denotes the L2 inner product. For all r>0 let
ur = u°Sr)nr = K°8r and let Or be the orbit corresponding to nr. Then uj[g)=(nr(g)v,v) for
al l r>0. Vpe$>{<$*), then

= J nr(g)nr(h)F1(P)(h)v{t)v{t) dh dt
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by (1.11). By an approximation argument Pur(g) = (nAP)v,nr(g~l)v) for all peSm(<&*,S).
By redefining p on a set with compact support we may assume that p{Srri) = rmp(ri) for
all rje&s and all r ^ l . It follows that nXP) = rmn{P) for all r ^ l . Therefore Pur = 0
fo ra l l r ^ l .

Let rj=> =>T2 =>=>... be a sequence of open <5-cones containing F^ such that n r , = r{,
and let {$,} be a sequence of functions in CQ{G) such that eesupp^>J+1c= csupp^- and
(Pj^O. Let C°(G) denote the space of continuous bounded functions on G with the
supremum norm. Let Rj = {ueC°(G):F1(u(l)j) is rapidly decreasing on FJ . Rj is a Frechet
space with the seminorms

ak](u) = sup {<»7>*|F1(^«)(i7)|: r\ e r ,} ,

together with the C°(G) norm. It follows from the proof of Lemma 8.1.1 of [5] that
RjdRj+i and that the inclusion is continuous. Thus /?(!*,;) = u.R, can be given the
corresponding LF topology.

Since P is (5-microhypoelliptic at {e,r\) for every point of T4 and since {rjeTf 1^ = 1}
is compact, it follows that {ueC°(G):Pu = O}czR(ri). The closed graph theorem implies
that the inclusion is continuous. The set {ur:r^l} is a bounded subset of (weC°(G):
Pu = 0} and hence is a bounded subset of £(1^). Thus there is a j such that {ur:r^l}
is contained and bounded in Rj. Let <j> = <j>}. Then for every k > 0, there is a Ck such that

(3.1)

for all rjer( and all r ^ 1.
Given rie<&* define eneCx{G) by c,(expx) = c"'<">JC>. Note that

Jri(<R)('7) = (j e " "x0(exp x)7tr(exp x)v dx, v) = (nr(e,<t>)v, v).

By (1.11), if <peCg(G), then 7r(0) is a pseudodifferential operator on Rd with Weyl
symbol F^WoiP*. Since Ff1(

For fixed t,s and T, as r\ varies over 6n,[j/n((t + s)/2,z) — ri varies over T0n, the linear
space parallel to &n. Thus by the Plancherel Theorem

J (n(e,ct>)v, v) dr, = ||t>||2 ^ Ff

where ||i;|| is the L2 norm of v. Assuming that the value of $(expx) depends only on |x|,
Lemma 3.3 below implies

}= J <p{expx)dx = c
R(tr4)

where c>0 is independent of r, since the subspaces R{dr^) have the same dimension for
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all r > 0 . Thus \tsFl(<l)ur){ri)dn = c is independent of r and positive. But by (3.1),

^C j <>;>-*dn->0 as r-»oo,

if /c is sufficiently large. This contradiction implies that n^P) is injective in

We now give a more explicit description of dT^. Let R(^) = {xe^l:^,\_x,y]} = 0 for
all y e ^ } . Let 2d(^) be the codimension of R(£) in # t . If 5 is a family of dilations, then
d(dr£) = d(£) for all r>0. For fixed £ e # * , the map <t>:r-+R(Sr£) is an algebraic function
from (0, oo) into the Grassmann manifold GR2J^l) of subspaces of # j of codimension
2d = 2d(£). Since GR2J{§^) is compact and </> is an algebraic function of one variable,
4> extends to a continuous function </>:[0, oo)-+GR2J$i). Let i?0(<J) =

i.e.

Proposition 3.2. Let G be a step two nilpotent Lie group with a family of dilations 5. If
*, then d r 4 = R o (£) x -{0}. In particular, d

Lemma 3.3. Define <pi:
l&l^>'8X by ^ (x ) = adx*<J. Let Vc<&1 be a subspace such that

V ® R(£) = &i- Then </»? is a bijection of V onto K(^)1. Consequently the linear space Wi

parallel to 04 is R{£,)L.

Proof. Clearly, the range of </>̂  is contained in /?(£)1^K*. Also <f>^v is injective,
therefore by a dimension argument the range of (p( equals R(£)L. The last statement
follows from the observations that TOi = {adx*<J:xe'Sj}.

Proof of Proposition 3.2. Write £ = n + £, where ne^X and C G ^ * - I f C = 0, then
ri = (f> = R0{0±-{0}, so we may assume

Suppose i^jGr^ and l i m ^ = ^0. Then

where 8r.n+ dr.adxft^e^X a n d 5rjCe^J. Since ^rjC converges, r,- must converge to r o ^ 0 .
S ^ 0 Th ^ d J C ' ^ d h d*"C d j f £ 5 ~ V L t K d jSuppose ro^=0. Then ^ r jadxJC^' / 'e^i> and hence adx*"C = adxjf£-><5r~ V . Let K and <j>i

be as in Lemma 3.3. Since adxf£eR(t;)x, we may assume that Xje V. Since #4 is a linear
bijection, the convergence of <p£xj) implies that Xj-*xoeV. Thus £o = 5ro£,+
^ a d x J ^ e T ^ . Hence if <Joe5r?, then ro = 0. We may also write £} = 5rfi + a.dy*{br£),
where adyf{drjZ)eR{8r£)x. If foeSFj, then r,->0, and hence i?(<5r.0-R0(^). Since
<5r.£->(), it follows that ^0eRoiQ1-

Conversely, if r(eK0(£)x> ^ '^O. choose ^ e J ? ) ^ ) 1 such that ^r-»fj' as r^O. Then
0a 4c=r4 . Hence f/'eT^. Since 0

Definition. If G is a step two nilpotent Lie group a family of dilations {<5r:r>0} is
called natural if drx = r2x for all x e ^ 2

 anc* <5r>c = rx for all

Corollary 3.4. / / G is a step two nilpotent group with natural dilations, or more
generally, ifnj = fifor all j>N = d\m&1, then drt = R{Z)L-{0}.
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Proof. Let C = {|,2. If Hj = fi for all j>N, then 5£ = r% and R{dr£) = R(Z) for all r>0 .
Hence R0(Q

Note that for any family of dilations, given £ such that £' = £\92j=0, there is a unique
s > 0 such that £" = limr_or~

s<5,.(!;' exists and is non-zero. In fact s=min {/*,-: j>N and
£,. + 0}. Since R ( r - ^ r O = R(8r£), Rotf) <= K(<T) in all cases. If </(£") = d(Q, then Ko(£) = K(£")

Let G satisfy the condition d(Z)=d($) for all ££#? , i.e. #* = ̂ * \ ^ ? . Such groups
were said to be typed H in [13]. Then R0(£,) = R(l;") as in the preceding paragraph. One
might expect that Ro(£) would depend continuously on £ e ^ * in such a case. However,
there are examples of dilations on the free step two nilpotent group on three generators
(a six dimensional group of type H), where Ro(£.) does not depend continuously on

4. A sufficient condition for microhypoellipticity

Let p e Sm(Cl x &*, S), where Cl is an open subset of G. If p can be written in the form
p = p° + p1 where p1 eSm~e(Clx^*,8) for some e>0 and p° is homogeneous of degree m
with respect to 5 in the <J variables, for large <!;, then p° is called the principal symbol
of p.

Theorem 4.1. Let G be a step two nilpotent Lie group with dilations 5. Let il be an
open subset of G and let peSm(£lx'&*,b') have principal symbol p°. Let P = Op(p) and
P° = Op(p°) for ge£l. Let V be an open d-conic subset o / f i x # * . Assume that there is a
C such that if (g, Q e F and [<!;] ^ C, then the following holds: n£P°) is injective on £fn and

° for all rjedr^, [f/]^C. Then P is b-microhypoelliptic on T.

Proof. The theorem will be proved first under the assumption that peSm(0*,<5), i.e.
that P is left invariant. In that case, by Corollary 2.2 we need only consider
microhypoellipticity over the identity element e of G and may consider F to be a
subset of eS*. Let £oer and let Fj be an open <5-cone containing <̂ 0, F ^ c F . Let

. Define h(Q by (1.8).

Lemma 4.2. If peSmC&*,§) satisfies the hypotheses of Theorem 4.1 then there exist C
andoO such that |p(£)|^cx(£)m for all £ e F ' such that [ £ ] ^ C and

Proof. Since p°(n)j=0 for nedF^ ^ e T , , n large, there exist C, and c , > 0 such that if
= Cj and \£,'\^cu then |p°(£)|^C l . As before, <T = £|»2- There is a C2 such that

| | £ | for all £,€<$*. Let c = c,/max{C2,C7}. Given £ e F such that [<J]^C! and
^ c, let r = C;! K] and Zo = 5;% Then [^] = C1 and K J J ^ C ^ ^ C ^ O ^ c , . Thus

| ° | The lemma follows by choosing C large enough that

A special type of cut-off function, as described in the next lemma, will be needed in
dealing with open G-invariant <5-cones r ^ r ^ ^ * . Note that for such F! and F2=/=0 it
is impossible to have F ^ s F , , since r 2 n^*^</> by Proposition 3.2.
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Definition. Given a G-invariant <5-cone F s # * , let ir = {(p,QeRN~2dx9*:&pic:r
and [C] = 1}, $„{ defined as at the end of Section 1. If F, and F2

 a r e open G-invariant <5-
cones such that r2^rlQ<&* and (JT2)~ is a compact subset of iTu then we write
r 2 £ r j properly.

Definition. SQO(^*,3) is the set of functions p for which estimate (1.6) is required
only for derivatives in directions parallel to the orbits of the coadjoint action (see [12]).
S"S(^*,S) is the set of p such that D'p e S"S0(&*, 3) for all a such that a' = (<xN+1 an) = 0.
If F is an open subset of IS*, Sm(T, 6) is the set of p e C°°(r) such that p has an extension
in SM{<$*,3) for some M and such that (1.6) holds for £eF.

Lemma 4.3. Let Fj and F2 be open G-invariant 8-cones such that F j S ^ * and F 2 £ r !
properly. Given c 1 >c 2 ^0, there is a q>eS°0{^*,3) such that supp^cF^ <p(£)=l i
and m^C!, (p(Q = 0 if

Proof. If F is a G-invariant 5-cone and (9pCk<=.T, then OPtiwicT for all r>0. Thus one
can find a function (p0eC'x'(RN~2dx^*) such that <po(p,O = 0 if Cp?nF1 = </>, (po(p,Q = 0
if [C]^c2, 9o(P,0 = l if Q*^i and[C]^Cl) <po(p,«) = <Po(p,0 if K ] ^ and r £ l and

P ,0 |^C a on U " - M x « J . Define veC-(Sr*) so that <p(O = (po(p,Q if 7t< = 7rp{>
= 0 if ^ F j . Since q> is constant on orbits it follows that q> e S%C&*, S).

Note that if £er1s@* with Fj an open G-invariant (5-cone, then there is an open G-
invariant 5-cone F2 such that ^eF 2 and F 2 s F 1 properly. To simplify notation we will,
without specific mention, occasionally replace the G-invariant 5-cone F', chosen before
Lemma 4.2, by a properly contained G-invariant 5-cone, also written F', still containing
^0. If c>0, then Fj = {<^eF':[^']>c}. The constant c may also change from statement to
statement.

Lemma 4.4. / / p e Sm(^*, 3) satisfies the hypotheses of Theorem 4.1, then there exist
beSoom(^*,5) and c>0 such that b t ) p - 1 and p t | 6 - 1 are in SgiftF;,<5) /or a// fc.

Proof. Let c and C be as in Lemma 4.2 and <p as in Lemma 4.3. Let FeC™{R)
satisfy F(r) = l if r ^ 2 and F(r) = 0 if r ^ l . Define 6o(0 = P(0*1(C~1Kl)F(cfli(O~1)l>(£r1-
Then boeS-m(<0*,5) and l-(iotlP)eS<>b1(r2c,S) by Theorem 1.1. The desired symbol
b is now constructed by the standard parametrix method.

Returning to the proof of Theorem 4.1, the injectivity of n£P°) on £?(Rd) implies, by
Theorem 7.7 of [1], that n£P°) has an inverse which is a pseudodifferential operator.
There is a c>0 such that if [<J]>c, ^ef, then n^P) also has an inverse which is a
pseudodifferential operator, the Weyl symbol of which we denote by qf. Define q on F̂
by q\o =Qf°llf{1> where \pi:R

i y.Ri-*6i is the symplectomorphism described in
Section 1. Using Lemma 4.4 it follows by arguments given in [13] that q 6 S ô

m(F ,̂ 3).
Replace q by <pq for q> as in Lemma 4.3. Then qeSo™C&*,3) and q t | p = 1 on F'c.

In order to obtain estimates for derivatives transverse the orbits we will look at
difference quotients. Given T E ^ * and peS™0C&*,5), define pt(<̂ ) = p(^ + T). If ze^*, then
(P t ] q)x = Pz t | <Zr For general t and for peSo(^*,5), qeSk

0{^*,3) we use formula (2.2)
and Taylor's Theorem to find that

(P b] q\ = px b) qMtoT'BpiPr, q<) + Up, q) (4.1)
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where

and where limt_o|T|~1J?t(p,g) = 0 uniformly on compact subsets of <&*. By (1.2) the jth
component of ady*t is ^yyTjj;,, and consequently by (2.2)

(4.2)

Given ^eTJ there is a t o >0 s u c n that if r = te{, where ef is one of the chosen basis
vectors for 'S* and |t|<to> then

1, then

Without loss of generality we may assume that n^Q) is a two sided inverse for n^P), for
if not P can be multiplied on the left by its adjoint. Therefore, qT — q = — q \z\ (pt — p) t ] qt

and hence Dkq= — q\l\Dkp \z\qeSo™~*k(r'c,8). Proceeding by induction on |a|, we find
that DaqsSo"~'"'(r<:,d) for all a such that a' = 0. Multiplying q by a cut-off function as
in Lemma 4.3 we may also assume that <7eSom(#*,<5).

Similarly, for k>N we use (4.1) to find that Dkq(£) exists for £,eT'c and

), (4.3)

where B^ =B^ for r = ef. By (1.3), (4.2) and (4.3) we find that

By an inductive argument q e S " m ( r ^ ) . Multiplying q by a cut-off function (peS°(g*,S)
which is 1 on a <5-cone containing t,0, the proof of Theorem 4.1 for left invariant P now
follows from Propositions 2.4 and 2.6.

Turning to the proof of the theorem for non-invariant P, let (g0, ^0) e F. As noted in
Section 2 there is a neighborhood ojj of g0

 a°d an open <5-cone Ft containing
^1=Ad^f5^0 such that coJTjcr. If r]eT1 and gecOi, then >; = A d i g * ^ e ^ for some
£ such that (g .^eT and therefore 7t,(P°)sn^P°) is injective and;i,-(P°)^0 for all
rjedr,l = dri, [>/]^C. The theorem having been proved in the invariant case, for each
g e a ^ there is a q° such that q°\Z\pg=\ for all rieT1 such that [f/]^C. Define
Q°(g, <J) = <Pte)4»(̂ ) where <p 6 0^(0)!), (p = 1 on a neighborhood co2 of g0- Let r = 1 - q° t | p.
Then <20eS~m(fix#*,<5) and reS~M(co2 x T ^ ) for all M, the appropriate estimates for
derivatives along G being established by the same methods as above. For positive
integers k define

qk=-
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and chooses qeS'm(ilx^*,8) such that g~X*Lo<?*- Using Theorem 1.2 it follows by
standard arguments that q#p— 1 eS~M(a>2 xr\,<5) for all M. Thus P is <5-
microhypoelliptic in a neighborhood of (g0, | 0 ) .

Corollary 4.5. Let S = {(5r: r > 0} be natural dilations on a step two nilpotent Lie group
G, i.e. (5,jc = r2x for xef2 , 8rx = rx for x e ^ . Let peSm(£l *.<&*,5) have principal symbol
p°. Let teo,£o)efix#*. / / 7iio(P°J is injective and *,(/*) ^ 0 for all neR$o such that

'^.C, then P is 5-microhypoelliptic in a S-conic neighborhood qf(go,£o).

Proof. For £ e ^ * let Xt = X°^i^i as is Section 1, and let H^(Rd) be the Sobolev
space as defined in [1] corresponding to the weight functions O = x$ <p = 1 and order
"iloSZf If £ ^ n e a r £o> then Xs~Xs0 and hence H" = H"Q. By using the Mean Value
Theorem and a simple perturbation argument one sees that there is a neighborhood U
of (go,£o) such that Tti(P°):H™(Rd)-+L2(R'') is injective for all (g,£)eU. Furthermore,
since the subspace R^ depends continuously on £ for £e@*, there is a neighborhood U
of (go.fo) such that TC,(P°)^0 for all (g,/j)eU, neRf, M ^ C . Hence the corollary
follows from Theorem 4.1 and Corollary 3.4.

The proof of the corollary breaks down for arbitrary dilations since X( 1S n o t

necessarily equivalent to %io for £, near £0. Furthermore, BT^ does not necessarily depend
continuously on ^ e #*, as mentioned at the end of Section 3.

The next corollary gives a sufficient condition for microhypoellipticity in the standard
sense. For simplicity the result will be stated for left invariant operators only. A subset
A c ^ * is a cone if £, e A implies rt;eA for all r>0. Define the standard wave front set
WF(u) of a distribution as in [5] or [20] and define microhypoellipticity analogously. If
PeOpSm(^*,<5) and n^P0) is injective for all £eA, then nn(P°) is automatically injective
for all n in the smallest G-invariant <5-cone V containing A. In order to apply the
parametrix construction of Theorem 4.1 we will need to assume injectivity on a 5-cone
F containing F" properly.

Corollary 4.6. Let p e Sm(^*, 5) have principal symbol p°. Let F e #* be a G-invariant
3-cone such that for £ e F and all n e F,*, nn(P°) is injective. Let A be an open standard
cone such that A s f where F' is a G-invariant 5-cone with F ' c F properly. Then P is
microhypoelliptic on A.

Proof. By the construction in the proof of Theorem 4.1 we obtain
qeS~m(rc,5)nSom(y*,8) with qt]p=l on F^. There is a Ct such that if l;e\ and
|£|2>Cl5 then [<!;'] =^C. Given £oeA there is a function tpeC0^*) and a conic
neighborhood Aj of <f;0 such that <p(£,) = l if ^e\t and |<J|^2Cl5 suppipcFc,
<p(r£) = <p(£) if I f l ^ C i and r ^ l . Let q' = (pq. Then Q'eOpS~f-p with p = 1//I, and
Q'P — I is regularizing on At. Since QeOpS^™_p, it follows from Theorem VI.1.6 of
[20] that WF(Q'Pu) £ WF(Pu). Thus P is microhypoelliptic on A.

As a simple example, let 'S be the Heisenberg algebra with basis vectors satisfying
\_ej,eJ+n]=e2n+l if ygn. Let A = r = F = {^2B + 1 >0} . Let {0 = (0,...,0,l). If ^O(P°) is
injective and nn(P°)^0 for all »/E^*, then P is microhypoelliptic on A. For example, if
p(£) = <M + " • + ^L + ^2n+i> then Op(p) is microhypoelliptic on A, but is not hypoelliptic
on G.
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