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A ring R is said to be a P-ancestral ring if all proper non-zero sub-rings of R
have property P. If P is the property that every proper non-zero sub-ring of R
is a (two-sided) ideal then the ring Z of rational integers furnishes an example of
a P-ancestral ring.

If S is a sub-ring of R we define the left-idealizer of S, written I(S), by
I(S)={xeR: xseS for seS}. Clearly I(S) is the largest sub-ring of R in
which S is a left ideal and I(S) = R if and only if S is a left ideal of R. With
obvious changes we may consider right-idealizer and (two-sided) idealizer. We
assume R has a unit denoted by 1.

Our theorems relate conditions of P-ancestral types to conditions of left-

idealizers.
Let S and T be sub-rings of a ring R. Then the following results are
immediate :
() 1eI(S), (i) S<I(S),
(iii) I(S)< I(I(S)), (iv) I(S)nI(T)<I(SNT),
V) I(TuS)= I(T)VI(S), (vi) I(S)sI(S?).

Let D be the ring of all two by two matrices over Z and let

{5 roee]. = [ 8)-oee]
-y 9 noes].

Then K< S and I(K) < I(S) properly. Now S?< S always and by (vi) I(S) S I(S?).
These observations show that knowing the relation between the sub-rings we
may still not conclude the direction in which the inclusion relation will go for
the left-idealizers. Also in D, I(T)nI(K)< (T K) properly and

KTuS)cI(T)VI(S)
properly. This shows that (iv) and (v) are the best possible results,

Lemma, Let S be a non-zero sub-ring of R. Then I(S) = S if and only if
l1eSs.

Proof. In general 1eI(S) and S<I(S). Thus I(S) = S implies 1€ S.
Conversely if 1 € S and if x € I(S)then x = x1 € Sand so I(S)< S, thus I(S) = S.
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Theorem 1. The following assertions about a ring R are equivalent.

(1) For all non-zero sub-rings S of R, I(S) = S.

(2) R and all non-zero sub-rings of R are division rings.

(3) R and all non-zero sub-rings of R are division rings and R has prime
characteristic.

(4) Ris afield in which every element has finite order and which is an algebraic

extension of the prime field.

Proof. (1)=(2). Let S be a non-zero sub-ring of R. Since I(S) = § it
follows from the Lemma that 1 € S. Let L be a non-zero left ideal of S. Then
L = I(L)=S and hence L = §. Thus S has a unit and no proper left ideals.
Thus S is a division ring.

(2)=>(3). If R has characteristic zero then R has a proper sub-field iso-
morphic to the rational field Q and thus R has a proper sub-ring isomorphic to
Z. Since Z is not a division ring we obtain a contradiction and so R has prime
characteristic. ‘

(3)=(4). Let S be a non-zero sub-ring of R. Since S is a division sub-ring
1€ S. In particular if S is the sub-ring generated by a non-zero element a € R,
S consists of polynomials in a over the prime field of R. Sincea™'€ S, a™ ' is
a polynomial in @. Thus a satisfies an algebraic equation over the prime field
of R. Hence S is a finite field. Thus a"® = a where n(a) is the number of
elements in S and thus by Jacobson [(1), theorem 1, p. 217] R is commutative.
Hence R is a field and, as shown above, R is an algebraic extension of the prime
field.

(4)=(1). Let S be a non-zero sub-ring of R. Let xe I(S) and let s S,
s #0. Then xs =s"e S. But s has finite order and so for some integer

p>0,5" = 1. Thenx = x1 = xs* = xss*~! = 5's* ' € §S.

Hence I(S)< S and thus I(S) = S.
We should remark that if we omit the assumption that R has a unit then R

need not be a division ring for (1) to hold., Consider the ring A where

00 01
A= {(o 0)’ (o 0)}
matrix addition and multiplication being performed modulo 2. Then A4 is

non-zero and for the only non-zero sub-ring of A4, namely A itself, I(4) = 4

trivially.
We should also observe that even if every proper non-zero sub-ring of a ring
R is a division ring R need not be a division ring. A counter-example is provided

by the ring
B = {(0, 0),(1, 0), (0, 1), (1, D)}
with componentwise addition and multiplication modulo 2,
Having dealt with the case of I(S) = S for all S we now consider the epposite
situation.
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Theorem 2. The following assertions about a ring R are equivalent.

(1) R is a homomorphic image of Z.

(2) Every sub-ring S of R is a left ideal.

(3) For every proper non-zero sub-ring S of R, I(S) # S.

Proof. (1)=>(2). Every sub-ring of Z is a left ideal and this property is
preserved under homomorphism.

(2)=>(3). This is obvious.

(3)=(1). Let S ={nl: ne Z}. Then S is a non-zero sub-ring of R. Let
xeI(S). Then x = x1 €S which implies that I(S)= S and hence I(S) = S.
This is only possible if S = R and then R is a homomorphic image of Z.

Theorem 3. Let R be aring. Then for every proper non-zero sub-ring S of R
there exists an integer n, depending on S, such that I(S") = R if and only if for
every proper non-zero sub-ring S of R I(S) # S.

Proof. Let S be a proper non-zero sub-ring of R such that I(S") = R for
some integer n. If I(S) = S we should have 1 € S and thus S" = S. Hence
S = I(S) = I(S™) = R which is false. Thus I(S) # S.

Conversely if I(S) # S for every proper non-zero sub-ring S of R, by
Theorem 2, every sub-ring is a left ideal and so I(S) = R.

The author is grateful to the referee for many helpful suggestions.
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