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A ring R is said to be a P-ancestral ring if all proper non-zero sub-rings of R
have property P. If/1 is the property that every proper non-zero sub-ring of R
is a (two-sided) ideal then the ring Z of rational integers furnishes an example of
a P-ancestral ring.

If 5 is a sub-ring of R we define the left-idealizer of S, written I{S), by
I(S) = {xeR: xs e S for s e S}. Clearly I(S) is the largest sub-ring of R in
which S is a left ideal and I(S) = R if and only if S is a left ideal of R. With
obvious changes we may consider right-idealizer and (two-sided) idealizer. We
assume R has a unit denoted by 1.

Our theorems relate conditions of P-ancestral types to conditions of left-
idealizers.

Let 5 and T be sub-rings of a ring R. Then the following results are
immediate:

0) 16/(5), (ii) S£J(S),

(iii) 7(5) s 7(7(5)), (iv) I(S)nl(T)£I(SnT),

(v) I(TuS)£l(T)uI(S), (vi) 7(S)ci7(S2).

Let D be the ring of all two by two matrices over Z and let

H(oo) -

T = U o y)-x>
Then K<= S and I(K) <= I(S) properly. Now S2 £ S always and by (vi) I(S) £7(52).
These observations show that knowing the relation between the sub-rings we
may still not conclude the direction in which the inclusion relation will go for
the left-idealizers. Also in D, 7(r)n7(/<:)c7(rn^) properly and

properly. This shows that (iv) and (v) are the best possible results.

Lemma. Let S be a non-zero sub-ring of R. Then I(S) = S if and only if
leS.

Proof. In general 1 el(S) and SsI(S). Thus I(S) = S implies 1 e S.
Conversely if 1 e S andifxe I(S) then x = xl e Sand so 7(S)c£, thus 7(S) = S.
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Theorem 1. The following assertions about a ring R are equivalent.

(1) For all non-zero sub-rings S of R, 7(5) = S.
(2) R and all non-zero sub-rings of R are division rings.
(3) R and all non-zero sub-rings of R are division rings and R has prime

characteristic.
(4) R is afield in which every element has finite order and which is an algebraic

extension of the prime field.

Proof. (l)=*-(2). Let S be a non-zero sub-ring of R. Since 7(S) = S it
follows from the Lemma that 1 e S. Let L be a non-zero left ideal of S. Then
L = F(L)sS and hence L — S. Thus S has a unit and no proper left ideals.
Thus S is a division ring.

(2)=>(3). If R has characteristic zero then R has a proper sub-field iso-
morphic to the rational field Q and thus R has a proper sub-ring isomorphic to
Z. Since Z is not a division ring we obtain a contradiction and so R has prime
characteristic.

(3)=>(4). Let S be a non-zero sub-ring of R. Since S is a division sub-ring
1 e S. In particular if S is the sub-ring generated by a non-zero element a e R,
S consists of polynomials in a over the prime field of R. Since a~1 e S, a~x is
a polynomial in a. Thus a satisfies an algebraic equation over the prime field
of R. Hence S is a finite field. Thus a"(fl) = a where n(a) is the number of
elements in S and thus by Jacobson [(1), theorem 1, p. 217] R is commutative.
Hence R is a field and, as shown above, R is an algebraic extension of the prime
field.

(4)=>(1). Let S be a non-zero sub-ring of R. Let xs7(S) and let seS,
s # 0. Then xs = s' e S. But 5 has finite order and so for some integer
p>0, s" = 1. Then x = xl = xs" = xss"'1 = s's"'1 e 5.

Hence 7(S)sS and thus I(S) = S.
We should remark that if we omit the assumption that R has a unit then R

need not be a division ring for (1) to hold. Consider the ring A where

A~ ' \ 0 0 / ' \Q

matrix addition and multiplication being performed modulo 2. Then A is
non-zero and for the only non-zero sub-ring of A, namely A itself, I(A) = A
trivially.

We should also observe that even if every proper non-zero sub-ring of a ring
R is a division ring 7? need not be a division ring. A counter-example is provided
by the ring

B ={(0,0), (1,0), (0,1), (1,1)}

with componentwise addition and multiplication modulo 2.
Having dealt with the case of 7(S) = S for all S we now consider the opposite

situation.
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Theorem 2. The following assertions about a ring R are equivalent.

(1) R is a homomorphic image of Z.
(2) Every sub-ring S of R is a left ideal.
(3) For every proper non-zero sub-ring S of R, I(S) # 5.

Proof. (1)=>(2). Every sub-ring of Z is a left ideal and this property is
preserved under homomorphism.

(2)=>(3). This is obvious.
(3)=>(1). L e t S = {«l: neZ}. Then S is a non-zero sub-ring of R. Let

xel(S). Then x = xl e S which implies that I(S)^S and hence I(S) = S.
This is only possible if S = R and then R is a homomorphic image of Z.

Theorem 3. Let R be a ring. Then for every proper non-zero sub-ring S of R
there exists an integer n, depending on S, such that 7(S") = R if and only if for
every proper non-zero sub-ring S of R 7(5) # S.

Proof. Let S be a proper non-zero sub-ring of R such that 7(5") = R for
some integer n. If 7(S) = S we should have I e 5 and thus S" = S. Hence
S = 7(S) = 7(S") = 7? which is false. Thus 7(S) # S.

Conversely if 7(S) ^ 5 for every proper non-zero sub-ring S of 7?, by
Theorem 2, every sub-ring is a left ideal and so 7(S) = 7?.

The author is grateful to the referee for many helpful suggestions.
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