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Abstract. AC-operators generalise normal operators on Hilbert space in the
context of well-boundedness. In this paper we study AC-operators T ¼ Uþ iV; where
U and V are commuting well-bounded operators with decomposition of the identity of
bounded variation. We also explore some properties of AC-operators by applying the
theory of (Foiaçcs) decomposable operators.
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1. Introduction. The class of well-bounded operators on a Banach space was
introduced by Smart [14] as a natural analogue of selfadjoint operators on Hilbert
space, and was first studied by Smart and Ringrose ([12], [13], [14]). Well-bounded
operators are defined as those which possess a functional calculus for absolutely
continuous functions on some compact interval ½a; b� of the real line. Smart and
Ringrose [12] proved that on a reflexive Banach space a well-bounded operator can
always be written as an integral with respect to a spectral family of projections.
Ringrose showed that the dual of a well-bounded operator always admits an integral
representation with respect to a family of projections. This family of projections was
called a decomposition of the identity (a definition will be given in section 2). Well-
bounded operators of type (B) were characterised by Berkson and Dowson [2] and
by Spain [15] as being those for which the absolutely continuous functional calculus
is weakly compact. Berkson and Dowson [2] introduced the class of well-bounded
operators with decomposition of the identity of bounded variation. They showed
that there exists a well-bounded operator with decomposition of the identity of
bounded variation which is not ‘‘decomposable in X’’ in that the projections in the
decomposition of the identity are not the adjoints of projections on X:

In [4] Berkson and Gillespie introduced the concept of an AC-operator as an
operator which possesses a functional calculus for the absolutely continuous func-
tions on some rectangle in C (more detailed definitions will be given in section 3).
Berkson and Gillespie showed that these operators can be characterised by the fact
that they possess a splitting into real and imaginary parts, T ¼ Uþ iV; where U and
V are commuting well-bounded operators. They showed [4] that if U and V are well-
bounded of type (B) this splitting is unique, and that if S 2 LðXÞ commutes with
Uþ iV then S commutes with U and V: Berkson, Doust and Gillespie later showed
that neither result is guaranteed if the type (B) hypothesis is omitted [3].
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In Section 3 we study operators Uþ iV; where U and V are commuting well-
bounded with decomposition of the identity of bounded variation. In this case also, if
S 2 LðXÞ commutes with Uþ iV then S commutes with U and V. It is shown if T ¼
Uþ iV; where U and V are commuting well-bounded operators with decomposition
of the identity of bounded variation, and if either X does not contain a copy of c0; or
if U and V are type (A) then such a representation is unique. An important tool is
the fact that if S0 2 LðX0Þ is a scalar-type operator of class X then S 2 LðXÞ is
strongly normal-equivalent ([9, Theorem 2.4]). In Section 4, by applying the theory
of (Foiaçcs) decomposable operators, we explore some properties of AC-operators
T ¼ Uþ iV where U;V are type (B) well-bounded operators or well-bounded
operators with decomposition of the identity of bounded variation.

2. Well-bounded operators. Let X be a complex Banach space with dual space
X0. The Banach algebra of all bounded linear operators on X is denoted by LðXÞ:
Given T 2 LðXÞ; let T0 2 LðX0Þ be its adjoint, and let

jjTjj ¼ sup jjTxjj : x 2 X; jjxjj 
 1f g:

The theory of well-bounded operators is given in more detail in [8]. We shall give
some of the basic definitions regarding well-bounded operators.

Definition 2.1. An operator T 2 LðXÞ is said to be well-bounded if there exist a
constant K and a closed interval J ¼ ½a; b�  R such that

jjpðTÞjj 
 K jpðaÞj þ

Z b

a

jp0ðtÞj dt

� �

for all complex polynomials p:

Definition 2.2. A decomposition of the identity for X (on J) is a family

fEðsÞ : s 2 Rg

of projections on X0 such that
(1) EðsÞ ¼ 0 for s < a and EðsÞ ¼ I for s � b;
(2) EðsÞEðtÞ ¼ EðtÞEðsÞ ¼ EðsÞ for s 
 t,
(3) there is a real constant K such that jjEðsÞjj 
 K for s 2 R,
(4) the function s 7!hx;EðsÞyi is Lebesgue measurable for x 2 X, and y 2 X0,
(5) for each x 2 X, the map y 7!hx;EðsÞyi from X0 into L1½a; b� is continuous

when X0 and L1½a; b� are given their weak� topologies as the duals of X and L1½a; b�
respectively,

(6) if x 2 X, y 2 X0, s 2 ½a; bÞ; and if the function t7!
R t
ahx;EðuÞyi du is right

differentiable at s, then the right derivative at s is hx;EðsÞyi.
Given a decomposition of the identity fEðsÞ : s 2 Rg there exists a unique well-

bounded operator T 2 LðXÞ such that

hTx; yi ¼ bhx; yi �

Z b

a

hx;EðuÞyi du:
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Every well-bounded operator has such a representation, but in general the
decomposition of the identity is not uniquely determined by T.

Definition 2.3. Let T be a well-bounded operator and let fEðsÞ : s 2 Rg be a
decomposition of the identity for T. Then T is well-bounded of type (A) if there exists
a family of projections FðsÞ on X such that FðsÞ0 ¼ EðsÞ for all s 2 R:

This definition is equivalent to Definition 16.7 of [8], by ([5, Theorem 3.2]).

Definition 2.4. T is said to be of type (B) if T is of type (A) and, in addition,
for each real s, limt!s� FðtÞx exists for every x 2 X.

Definition 2.5. Let T 2 LðXÞ be a well-bounded operator on X. A decomposi-
tion of the identity fEðsÞ : s 2 Rg for T is said to be of bounded variation if the
function s 7!hx;EðsÞy0i is of bounded variation on R for every x 2 X and y0 2 X0:

Let T 2 Lð‘2Þ denote the well-bounded operator constructed in ([10, Lemma 1]).
T is a well-bounded operator of type (B) which is not a well-bounded operator with
decomposition of the identity of bounded variation. ([8, Example 16.19]) shows that
there exists a well-bounded operator of type (A) with decomposition of the identity
of bounded variation which is not well-bounded of type (B). This shows that neither
of the classes of well-bounded operators with decomposition of the identity of
bounded variation and of well-bounded operators of type (B) includes the other.

Definition 2.6. An operator T 2 LðXÞ is hermitian if

kexpðitTÞk ¼ 1 ðt 2 RÞ:

Definition 2.7. An operator R 2 LðXÞ is hermitian-equivalent if and only if
there exists an equivalent norm on X with respect to which R is hermitian.

Equivalently, R is hermitian-equivalent if and only if there is anM ð� 1Þ such that

kexpðitRÞk 
M ðt 2 RÞ:

If this condition is satisfied, then

jxj ¼ sup kexpðitRÞxk : t 2 R
� �

defines a norm on X, equivalent to k � k; with respect to which R is hermitian.
More generally, a set �  LðXÞ is hermitian-equivalent if and only if there is an

equivalent norm on X with respect to which every operator in � is hermitian. It is
known ([8, Theorem 4.17]) that when � is a commutative subset of LðXÞ; then � is
hermitian-equivalent if and only if each operator in the closed real linear span of � is
hermitian-equivalent.

Definition 2.8. The operator T ¼ Rþ iJ is normal-equivalent if RJ ¼ JR and
the set fR; Jg is hermitian-equivalent.

If T 2 LðXÞ is normal-equivalent then T can be expressed uniquely in the form
Rþ iJ; where RJ ¼ JR and the set R; Jf g is hermitian-equivalent ([9, Lemma 1.10]).

Theorem 2.9. If T is a well-bounded operator with decomposition of the identity of
bounded variation then the set fTn : n ¼ 0; 1; 2; � � �g is hermitian-equivalent.
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Proof. If T is a well-bounded operator with decomposition of the identity of
bounded variation, then, by [8, Theorem 16.15], T 0 is real scalar-type of class X with
resolution of the identity Eð�Þ: Then by [9, Theorem 2.5] there are operators
H;K 2 LðXÞ such that fHnKm : n;m ¼ 0; 1; 2; � � �g is hermitian-equivalent and
H0 ¼

R
�ðT0Þ RelEðdlÞ and K0 ¼

R
�ðT 0Þ ImlEðdlÞ: Note that �ðTÞ  R so that �ðT 0Þ

 R : then K0 ¼ 0: so that T ¼ H: &

Definition 2.10. An operator T 2 LðXÞ is said to have the single-valued exten-
sion property if whenever f : Df ! X is analytic in an open set Df  C and satisfies

ðlI� TÞ f ðlÞ ¼ 0; ðl 2 DfÞ

it follows that f ¼ 0 in Df:
Let T 2 LðXÞ have the single-valued extension property. Given x 2 X we denote

by %TðxÞ the set of elements � 2 C such that there exists an X-valued function xðlÞ
analytic in a neighbourhood V� of �; such that

ðlI� TÞxðlÞ ¼ x ðl 2 V�Þ:

In particular, %ðTÞ  %TðxÞ: The complement �TðxÞ ¼ Cn%TðxÞ is the local spectrum
of T at x; it is a compact subset of �ðTÞ; and is non-empty for x 6¼ 0:

For F  C; let XTðFÞ ¼ fx 2 X : �TðxÞ  Fg: This is a T-invariant manifold.

Lemma 2.11. Let U and U1 be commuting well-bounded operators on X; where U
is well-bounded of type (A) and U�U1 is quasinilpotent. Then U ¼ U1:

Proof. Let fEðsÞ : s 2 Rg be the family of projections on X whose adjoints form a
decomposition of the identity of U. By [8, Theorem 15.19 (iii) and 16.3] there exist a
decomposition of the identity fFðsÞ : s 2 Rg for U1 such that EðsÞ0FðsÞ ¼
FðsÞEðsÞ0ðs 2 RÞ. Observe that U0 and U01 have the single valued extension property
([8, Proposition 5.28]). Given x0 2 X0 denote by �U1

0 ðx0Þ the local spectrum of x0 relative
toU1

0. SinceU�U1 is quasinilpotent, so also isU0 �U01:Hence �U1
0 ðx0Þ is equal to the

local spectrum x0 relative to U0 by [6, Theorem 1.2.4]. Hence by ([2, Theorem 5.6]) the
projections EðsÞ0 and FðsÞ have the same range, and hence are equal, since they com-
mute. This is true for all s 2 R; and so U ¼ U1: &

Corollary 2.12. If U is a quasinilpotent well-bounded operator, then U ¼ 0.

3. AC-operators One of the major complications one encounters when trying to
extend this theory to operators with complex spectra is deciding upon the correct
concept of an absolutely continuous function of two variables to use. In the discus-
sion that follows we shall identify the subsets of R2 with subsets of C in the usual
way. Let m denote Lebesgue measure on R2: Let J ¼ ½a; b� and K ¼ ½c; d� be two
compact intervals in R: Let � be a rectangular partition of J� K :

a ¼ s0 < s1 < � � � < sn ¼ b; c ¼ t0 < t1 < � � � < tm ¼ d:
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For a function f : J� K! C; define

V�ð f Þ ¼
Xn
i¼1

Xm
j¼1

j f ðsi; tjÞ � f ðsi; tj�1Þ � f ðsi�1; tjÞ þ f ðsi�1; tj�1Þj:

The variation of f is defined to be

varJ�Kð f Þ ¼ supfV�ð f Þ : � is a rectangular partition of J �Kg:

We shall say that the function f is of bounded variation if varJ�K f, varJ f ð�; dÞ and
varK f ðb; �Þ are all finite. The set BVðJ� KÞ of all functions f : J� K! C of bounded
variation is a Banach algebra under the norm

kj f kj ¼ jfðb; dÞj þ varJ f ð�; dÞ þ varK f ðb; �Þ þ varJ�K f:

A function f : J� K! C is said to be absolutely continuous if
(1) for all � > 0; there exists 
 > 0 such that

X
R2R

varR f < �

whenever R is a finite collection of non-overlapping subrectangles of J� K withP
R2RmðRÞ < 
;
(2) The marginal functions f ð�; dÞ and f ðb; �Þ are absolutely continuous functions

on J and K respectively.
The set ACðJ� KÞ of all absolutely continuous functions f : J� K! C is a Banach
subalgebra of BVðJ� KÞ; and is the closure in BVðJ� KÞ of the polynomials in two
real variables on J� K: Equivalently, one can consider ACðJ� KÞ to be the closure
of the polynomial functions pðz; �zzÞ on J� K  C:

Define the functions u; v 2 ACðJ� KÞ by uðx; yÞ ¼ x and vðx; yÞ ¼ y:

Definition 3.1. An operator T 2 LðXÞ is said to be an AC-operator if there
exists a continuous unital Banach algebra homomorphism � : ACðJ �K Þ ! LðXÞ
for which �ðu þ ivÞ ¼ T :

Berkson and Gillespie ([4, Theorem 5]) proved that this is equivalent to the
condition that T can be written as T ¼ Uþ iV where U and V are commuting well-
bounded operators on X: They showed that if U and V are well-bounded of type (B)
the representation in the form T ¼ Uþ iV is unique and if S 2 LðXÞ commutes with
T then S commutes with U and V: We generalise this result in section 4. However,
neither result is guaranteed if the type (B) hypothesis is omitted as is shown by [3,
Examples 3.1 and 3.4].

Theorem 3.2. Let U and V be commuting well-bounded operators with decom-
positions of the identity of bounded variation on X and let S 2 LðXÞ commute with
Uþ iV: Then S commutes with U and V:

Proof. By Theorem 2.9 the operators U;V are hermitian-equivalent. Since
UV ¼ VU it follows that Uþ iV is normal-equivalent. By [8, Theorem 4.22] we
have SU ¼ US; SV ¼ VS: &
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By applying the theory of (Foiaçcs) decomposable operators we generalise Theorem
3.2 in Section 4.

Theorem 3.3. Let

T ¼ Uþ iV ¼ U1 þ iV1;

where
(1) U and V are commuting well-bounded operators of type (A) with decom-

positions of the identity of bounded variation;
(2) U1 and V1 are commuting well-bounded operators on X:
Then U ¼ U1 and V ¼ V1:

Proof. U1 commutes with U1 þ iV1 and hence U1 commutes with Uþ iV: By
Theorem 3.2, U1 commutes with U and V: Similarly V1 commutes with U and V:
Hence the set fU;V;U1;V1g is commutative. Since well-bounded operators have real
spectra, we can apply standard Gelfand theory to deduce that U�U1 and V� V1

are quasinilpotent. Now, by Lemma 2.11, U ¼ U1 and V ¼ V1: &

When X does not contain a copy of c0 we need not assume that the real and
imaginary parts are decomposable in X:

Theorem 3.4. Suppose that X does not contain a copy of c0: Let

T ¼ Uþ iV ¼ U1 þ iV1;

where
(1) U and V are commuting well-bounded operators on X with decomposition of

the identity of bounded variation,
(2) U1 and V1 are commuting well-bounded operators on X:
Then U ¼ U1 and V ¼ V1:

Proof. U and V are real scalar-type spectral operators ([7, Theorem 2]). Now by
[8, Theorem 16.17] U and V are type (A) well-bounded operators. The result follows
from Theorem 3.3. &

4. AC-operators and (Foiaçcs) decomposable operators.

Definition 4.1. Let X be a Banach space and T 2 LðXÞ. A closed linear sub-
space Y of X is called a spectral maximal space of T if

(1) Y is invariant under T;
(2) if Z is another closed linear subspace of X; invariant under T; such that

�ðTjZÞ  �ðTjYÞ; then Z  Y:
A spectral maximal space of T 2 LðXÞ is ultra-invariant under T; that is it is

invariant under any operator commuting with T:

Definition 4.2. An operator T 2 LðXÞ is called decomposable if any open cover
C ¼ G1 [ G2 of the complex plane C by two sets G1 and G2 yields a splitting of the
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spectrum �ðTÞ and of the space X in the sense that there exist closed T-invariant
linear subspaces Y and Z of X for which �ðTjYÞ  G1; �ðTjYÞ  G2 and X ¼ Yþ Z:

The definition of decomposability has been simplified considerably since
Colojoarǎ and Foiaçcs wrote their book [6]. The original definition of a decomposable
operator as developed by Foiaçcs was somewhat complicated and involved the notion
of a spectral maximal space. See [11], [6] and [16] for an account of the classical
theory of decomposable operators.

Let � be a subset of the complex plane. An algebra A of complex functions
defined on � is called normal if for every open finite covering fGig1
i
n of ��� there
exist functions fi 2 A such that

(1) fið�Þ  0; 1½ �; ð1 
 i 
 nÞ;
(2) suppð fi Þ  Gi; ð1 
 i 
 nÞ where supp ð fi Þ ¼ fl 2 �jf ðl 6¼ 0Þg
(4)

Pn
i¼1 fi ¼ 1 on �:

Definition 4.3. Let A be an algebra of complex functions defined on the closed
set �  C: A will be called topologically admissible if

(1) l 2 A, 1 2 A (where l is the function fðlÞ ¼ l; and 1 is the function
fðlÞ ¼ 1),

(2) A is normal,
(3) A is endowed with a locally convex topology � such that if ffng  A is a

Cauchy sequence in � and fnðlÞ ! 0 for every l 2 �; then fn ! 0 in �;
(4) for every f 2 A and every � =2 suppð f Þ; the function

f�ðlÞ ¼

f ðlÞ
� � l

if l2�nf �g ,

0 if l2�\f �g

8><
>:

belongs to A, and the mapping �! f� of Cnsuppð f Þ into A is continuous.

Lemma 4.4. Let J ¼ a; b½ �, K ¼ c; d½ �, and � ¼ J �K; let A ¼ ACð�Þ and f 2 A
and let f� be as in Definition 4.3. Then

(1) f� 2 ACðJ� KÞ;
(2) the mapping �! f� of Cnsuppð f Þ into A is continuous.

Proof. Let � =2 suppð f Þ: We can find a C1 function �f;� and a closed disc
D� containing � such that �f;�jsuppð f Þ ¼ 1 and �f;�jD�

¼ 0; then

l 7!
�f;�
� � l

2 C1 and f�ðlÞ ¼
fðlÞ�f;�ðlÞ
� � l

; so is in ACðJ� KÞ:

The mapping � 7!f� is clearly continuous. &

Corollary 4.5. ACðJÞ and ACðJ� KÞ are topologically admissible algebras.

Definition 4.6 Let A be a topologically admissible algebra. A mapping
� : A! LðXÞ is called a continuous A-spectral function if

(1) � : A! LðXÞ is an algebraic homomorphism, and �ð1Þ ¼ I ;
(2) � : A! LðXÞ is continuous ([6, Definition 3.5.3]).
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Remark 4.7. By [6, Theorem 3.5.4] every continuous A-spectral function is an
A-spectral function in the sense of [6, Definition 3.1.3].

Definition 4.8. An operator S 2 LðXÞ is called A-scalar if there exists an
A-spectral function � such as �ðlÞ ¼ S. Such an A-spectral function will be called
an A-spectral function of S.

By Corollary 4.5 well-bounded operators are A-scalar and hence by [6, Theorem
3.1.16] they are decomposable operators. If T 2 LðXÞ is a decomposable operator
then for any closed subset F of �ðTÞ the subspace XTðFÞ is a spectral maximal space
of T [6, Theorem 2.1.5].

Theorem 4.9. Let T 2 LðXÞ be a well-bounded operator, x0 2 X and
limn!1 kT

nx0k
1=n ¼ 0. Then Tx0 ¼ 0:

Proof. T is decomposable. Hence XTðf0gÞ is a closed subspace of X which is
invariant for T and satisfies �ðTjXTðf0gÞÞ ¼ f0g \ �ðTÞ ([6, Theorem 2.1.5]). There-
fore, TjXTðf0gÞ is a quasinilpotent well-bounded operator. Hence, by Corollary 2.12,
TjXTðf0g ¼ 0: Now by [6, Lemma 4.4.4] we have XTðf0gÞ ¼ fx 2 X : limn!1

kT nxk1=n ¼ 0g: Thus x0 2 XTðf0gÞ and Tx0 ¼ 0: &

Corollary 4.10. Let T ¼ Uþ iV where U;V are commuting well-bounded
operators. If limn!1 kT

nxk1=n ¼ 0 for some x 2 X; then Ux ¼ Vx ¼ 0:

Proof. There is a continuous homomorphism � : ACðJ� KÞ ! LðXÞ such that
�ðuÞ ¼ U ; �ðvÞ ¼ V and �ðuþ ivÞ ¼ Uþ iV:

lim
n!1

kT nxk1=n ¼ 0:

Hence x 2 XTðf0gÞ ([6, Lemma 4.4.4]). This gives

x 2 XTðf0gÞ  XTðu
�1ðf0gÞ ¼ X�ðuÞðf0gÞ ¼ XUðf0gÞ;

where the inclusion is by [6, Theorem 1.1.2] and the first equality is by [6, Theorem
3.2.4]. Hence

lim
n!1

kUnxk1=n ¼ 0:

By Theorem 4.9, Ux ¼ 0: Similarly we can show that Vx ¼ 0: &

Lemma 4.11 is due to Gillespie (private communication).

Lemma 4.11. Let T ¼ Uþ iV, where U;V are commuting type (B) well-bounded
operators on a Banach space X: Fix a; b 2 R with a < b and let F ¼ fz 2 C : a 

Rez 
 bg: Then

XTðFÞ ¼ EðbÞ � Eða�Þ½ �X;

where Eð�Þ is the spectral family of U.
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Proof. Standard Gelfand theory shows that the spectrum of the restriction of T
to EðbÞ � Eða�Þ½ �X is contained in F: Hence EðbÞ � Eða�Þ½ �X  XTðFÞ: Now U and V
commute with T; and hence XTðFÞ is invariant under both U and V ([6, Theorem
2.3.3]). Again, standard Gelfand theory implies that the spectrum of the restriction
of U to XTðFÞ is contained in a; b½ �: It now follows from [8, Theorem 19.3] that

XTðFÞ  EðbÞ � Eða�Þ½ �X:

Let X and Y be two Banach spaces. LðX;YÞ will denote the collection of all
bounded linear mappings of X into Y: For T 2 LðXÞ and S 2 LðYÞ we define

LðSÞ;RðTÞ;CðS;TÞ : LðX;YÞ ! LðX;YÞ

by LðSÞA ¼ SA; RðTÞA ¼ AT (where A 2 LðX;YÞ) and CðT;SÞ ¼ LðSÞ � RðTÞ;
respectively.

We can now prove the following theorem, which generalises that of Berkson and
Gillespie ([4, Lemma 4]).

Theorem 4.12. Suppose X and Y are Banach spaces. Let T1 ¼ U1 þ iV1 2 LðXÞ
and T2 ¼ U2 þ iV2 2 LðYÞ be AC-operators where Ui;Vi; ði ¼ 1; 2Þ are type (B) well-
bounded operators. Let S 2 LðX;YÞ be an operator such that

lim
n!1

kCðT2;T1Þ
nSk1=n ¼ 0:

Then U2S ¼ SU1; V2S ¼ SV1 and T2S ¼ ST1:

Proof. It is sufficient to show that E2ðaÞS ¼ SE1ðaÞ; ða 2 RÞ, where fE1ðsÞ :
s 2 Rg and fE2ðsÞ : s 2 Rg are the spectral families of U1 and U2 respectively. Let
a; b 2 R; a < b and F ¼ fz 2 C : a 
 Rez 
 bg: By [6, Theorem 2.3.3] we have
SXT1

ðFÞ  YT2
ðFÞ and hence S E1ðbÞ � E1ða

�Þ½ �X  E2ðbÞ � E2ða
�Þ½ �Y (Lemma 4.11).

If fang is a sequence decreasing to a; then EiðanÞ ! EiðaÞ ði ¼ 1; 2Þ strongly and
S E1ðbÞ � E1ðan

�Þ½ �X  E2ðbÞ � E2ðan
�Þ½ �Y then gives that

S E1ðbÞ � E1ðaÞ½ �X  E2ðbÞ � E2ðaÞ½ �Y:

Taking b sufficiently large and positive we get S I� E1ðaÞ½ �X  I� E2ðaÞ½ �Y and
taking a sufficiently large and negative we get that SE1ðbÞX  E2ðbÞY: Hence for
a 2 R we have SE1ðaÞX  E2ðaÞY; S I� E1ðaÞ½ �X  I� E2ðaÞ½ �Y and therefore
E2ðaÞS ¼ SE1ðaÞ: &

Recall that two operators T;S 2 LðXÞ are said to be quasinilpotent equivalent,
T  

q
S ([6, Definition 1.21]), if and only if

lim
n!1

kCðT;SÞnIk1=n ¼ 0 ¼ lim
n!1

kCðS;TÞnIk1=n ¼ 0:

Corollary 4.13. Suppose X and Y are Banach spaces. Let T1 ¼ U1 þ iV1 2 LðXÞ
and T2 ¼ U2 þ iV2 2 LðXÞ be AC-operators where Ui;Vi; ði ¼ 1; 2Þ are type (B) well-
bounded operators. Suppose T1  

q
T2: Then U1 ¼ U2; V1 ¼ V2 and T1 ¼ T2:
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Proof. With Y ¼ X and S ¼ I in Theorem 4.12 we obtain U1 ¼ U2; V1 ¼ V2

and T1 ¼ T2: &

The following results are immediate corollaries of Theorem 2.9 and [1,
Theorem 1].

Corollary 4.14. Suppose X and Y are Banach spaces. Let T1 ¼ U1þ iV1 2 LðXÞ
and T2 ¼ U2 þ iV2 2 LðYÞ be AC-operators, where Ui;Vi ði ¼ 1; 2Þ are commuting
well-bounded operators with decompositions of the identity of bounded variation on
X;Y: Suppose further that

lim
n!1

kCðT2;T1Þ
nSk1=n ¼ 0:

Then U2S ¼ SU2; V2S ¼ SV1; and T2S ¼ ST1:

Corollary 4.15. Let X be a Banach space and let Ti ¼ U1þ iV1 2 LðXÞ
ði ¼ 1; 2Þ be AC-operators with Ui;Vi; ði ¼ 1; 2Þ commuting well-bounded operators
with decompositions of the identity of bounded variation. Suppose T1  

q
T2: Then

U1 ¼ U2; V1 ¼ V2 and T1 ¼ T2:
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