On the Summation of 1 + 2" + 3" +...+mr,

By J. A. DoxnaLDsoN.
(Read 14th Februrry 1913. Received 18th February 1913.)

We shall use the notation Zn"'=1"+2"4+...4n" Mr A. J.
Gray suggcested to me that n(n + 1) is always a factor of Zw', and
that, in addition, 2n + 1 is a factor when r is even.

~

§1. That n(n+1) is a factor of Zn" is proved in Chrystal’s
Algebra L., chap. XX, §9, but the following proof seems somewhat
simpler :—

Let Zn"=/f(n).

We know that f(n) is an integral algebraic function of n.

When n=0, Zn=0; t.e f(n)=0; therefore f(n) contains
the factor n.

Hence f(n+ 1) contains the factor (n+ 1).

Now Z(rn+1)=f(n)+(r+1)=f(rn+1),
and f(n+1) and (» +1)" both contain the factor (n+1);

.. f(n) contains the factor (n+1);
i.e. Zn” contains the factor n(n +1).

§2. To prove that (2n+1) is a factor when r is even, we must
attempt to calculate the even sums without making use of the odd
ones. In the identity

Z+1y-(x-1)=2re '+ 2,0+ ... + 2,027 + 2,
which bolds when r is odd, put successively x=n, x=n-1, .. .2=2,
x=1, and we have
(n+1)y—(n=-1)y=2rn""+......... +2,Cn®+ 2
w—(n-2y=2r(n-1y"1+...+2C(n-1)"+2
(=1 - (n=38)=2r(n-2y"1+..+2Cn-2)"+2

..................................................................
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If we add these equations together, we have
(R+1)y+0-1=23n""1+ ... + 2,020 + 20 ;
e (m+1)y+n —2n+1)=2rZn"""+ ... +2,C,2n%
When we put n= -4}, the left-hand side of this last equation
vanishes ; hence, since Zn? is divisible by 2rn+1, we can prove
successively that Zn', Zn®, .. Zn* are all divisible by 2n + 1.

§3. When examining the above, I worked out the sums as far
as 2n” and factorised them. The expressions for Zn% =nf and 2n’
contained the factor n’(n + 1)* and suggested »*(n +1)* as a factor
of Zn" when r is odd, except in the case of r=1.

To prove this we have the identity

(+1y—(x-1)=2rz""+2,Coax*+ ... +2,C®+ 2rz,
which holds when r 18 even. :

When we give = the values »,n-1, ... 2,1, and add the
resulting identities, we have

(m+ 1)y +n—1=20Zn"+.. ... +2,C2n+ 2rZn
e. (m+ly+n -1l-rn(n+1)=2rEn""+ .. +2,C2Zn
. When we expand the left-hand side in powers of n, the terms
below n? are absent ; therefore n?is a factor of the left-hand side.
Also when we put 7+ 1=m in the left side and expand in powers
of m, the terms below m® are absent ; 7.e. m® or (n+ 1) is a factor
of the left side.

Now n*(n+ 1) is a factor of Zn®; hence we can show successively
that it is a factor of 2n® Zn’ .. Zn¥*.,

Hence we have proved that:—

Zn" contains the factor n(n+1)(2n+1) when r is even, and the
Sactor n¥(n + 1) when r 18 odd and greater than 1.

§4. Expression of 2Zn" in powers of n.

From the section in Chrystal’s Algebra, referred to above, we
learn that Sn” is an integral function of = of the (r+1)® degree,
say

= an™ o + a0 + L+ 0, 0P+ am. L

Hence we have

O an L+ ant(n+ 1)y =Z(n+ 1)
=an+ 1Y+ a(n+ 1y +... +,8(n+1). IL.
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IT. is an identity and true for all positive integral values of =,
and so we may equate coefficients of like powers of = giving :—

n' BeX,nCi=1 (1)
nl X enCat,a; %, 0 =Gy oo, (2)
n? Ay % o 1Cat 0, x Ot 0, %, 10 =,C, oo 3)
n* o X 1O +,0, x,C+ o+ 8, %, 10 = C,y L (s+1)
n (r+Da+ra+(r—1)a,+...+2,8,_,=7 ...cccooviiin.. (r)
constant @, +,8, 4,8, + ... +,8, ,+,8,=1. o (r+1)

The (r+ 1) equation is also the expression of the fact that the

identity I. holds when n=1.

These equations enable us to calculate ,ay, ,a,, ...,a, successively

in terms of 7.

Evidently ,a,,, is always equal to zero, since Zn" is always.
divisible by n. We shall see that the equations (1)...(r + 1) give us

no information as to ,a,,;.

From (1), ,a,=

't
From (2), ;-_*1_—1 (r—;}l +ra, =1
giving =13
From (3), ril (r+ 1?!@ -, 5'('2‘! Dy r=1)a,=
which, except when r =1, gives ,a2=};%.

r(r—-1)
T

When r=1, ,a, is the

term ,a,,,, and this shows how these equations give us no infor-

mation about ,a,,.

From (4), /5 i 2T 3y 12
+("2)raa=

r(r-1)

which reduces to ,a;=0 x 37
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1 (r+1) (r=8)  ,r(r=3) 1 (-1)..(-3)

From (5 - 5 YTt s
r..(r-3
+r-9)a,=7029),
which, except when r = 3, gives
Lrr=1)(r -
W=~ 30 ( 1!

From the above sample of calculation, and the form of equations,
(1)...(r + 1), it is obvious that ,a, is of the form
« rir-1){r-2)..(r—s+2)

8!

where the constant a, depends on s only.

If we go back now to equation I., when =3, ,a,=0 since Zn’
contains the factor n”
r(r3—1 1), and when » = 3, r(r3—! D
therefore a,=0, as we saw above by calculation.

For the same reason, viz., that Zn is divisible by n* when » is
odd and greater than 1, a,=a,=ey=...=0,

Values of a are given below up to G

¢ ]

Now ,a;=0a;%

does not vanish ;

] a,

2 1/6

4 | -1/80

6 1/42

8 | -1/30
10 5/66
12 | -691/3730
14 7/6
16 | —3617/510
18 43867/798

The values of @, given above were not all calculated from the
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equations (1)...(r +1) as before, but by giving » a particular value
in a way which the following example will make clear :—
Zn® = gan® + g0 n® + ga,n® + ga,md 4 gagnt +gant IIT.
Our object is to calculate ag, knowing the others up to a,.
Equation (r + 1) shows, when we put r=9, that
9% + o + o0y +9a,'+9a,+,a,= 1.

Now o+ + ... +as=75+3+3-FH+3=33;

ol = — 5.
Also gy 1) (1= 6)
81!
9.8...3 3 .
9as=asT = -39
whence 0= — 5.

We might also get o, by starting with Z»® for, putting =8,
Zn® = gan® + a4, n + g’ + 0,10 + aen® + sagn,
and 3o + 01 + 8@ + gy + s + 4@ = L.

In general to get a,, make r equal to 2s or 25+ 1, and it some-
times happens that one value will give simpler calculafions than
the other.

§5. As we have not used the fact that Zn is divisible by (n +1)
in §4, we may use these coefficients to show that Zn is divisible by
(n+ 1) always, and by (n+1)* when » is odd and greater than 1.

Leaving out left-hand suffixes,
Zn=am ' +an +an " +an 3 +...+an (r even),
Zn" =t + an” +an ™ +an ™ + ... +a,_m° (r odd).
(1) reven. By (r+1), aj+a,+a,+...a,=1;
G+ 0+ ...a,=1-a=3.
Now L Zn"=a,-(a+a.+...0,)=0;

n=—]

Zn is divisible by (n + 1) when r is even.
2 x
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(2) r odd. Just as in the case of r even, we show that Zn" is
divisible by = + 1.
Equation (r) is
(T+ 1)a0+ra'l+(r— 1)“2+ ...2(1’._1:7' :

e (’r+1)ao+(’r—l)a2+...+2a,_l='r—al»r=ér;
L.e. (r+)ag—ray + (r— Dag+ .. +2a,,=0;

. d . .

,.!*_I(d—f" )-0 (r 0dd) ;

te. Zn contains the factor (n+1)* when » is odd and greater
than 1 (for equation (r) does not involve a, when r=1).

§ 6. Proof of Bernoulli’s Theorem.

I had reached this stage when Professor Whittaker pointed out
to me Bernoulli’s expansion (see Chrystal’'s Algebra II., §7,
Chap. XXVIII.). We can demonstrate this expansion from the
above as follows :—

The tabulated values of a, are simply Bernoulli’s numbers with
alternating signs.

From what we have proved in §4, we can assume

nt! B B , B: o B 7
s 20y B B s B O B s
where £,= |ay|;
) B
.€ #g = ( )"1 é_s‘-rcﬁ—l

When we substitute for the a’s in (r + 1), we have
(1) when r is even, =2p say,

Ao+ Oy + 0+, F . +ra‘r=1 )

B, 2p-1

,32 - Be_y_ -
“oOrp e+ PO = e =ty
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(2) When ris odd, =2p+1 say,
ra'0+ra'l+ra‘2+“'+ ar—l=1.

ie. +;+ﬁ‘C BZC+

i.e. zp+101§1 - 2,,+,C,% +.o (=) 2,,+102,,_1§;f
S W S
2p+2 2p+2
When we multiply IV. by (-)'(2p+1), we get, since
2C1 X 2’)7-:1 = 441020

2p+102p ﬁp - 2p+102p—2 Bp—l +...+ ( - )p—] zp+102,81 = ( - )P_l( p- %)
' Iv:

Similarly, when we multiply V. by (- )>7'(2p + 2), we get
2p+2C2p /81: 2p+2 2p—2 IBP—I -+ ( - )p_l‘_‘p+202 :81 = ( - )p_lp- v
We can calculate the f’s from IV.! or V.! by giving p the

values 1, 2, 3... successively. (f. Calculation of a4, in end of § 4, by
putting »=8 or 9 in equation (r+1).

These alternative recurrence formulae for 8 are the same as
those for Bernoulli’s numbers (see Chrystal’s Algebra II.,
Equations (10) and (11'), § 6, Chap. XX VIIL.).

Hence the numbers @, B, ete, are Bernoulli’s numbers

B, B, etc.
Hence
nH B B, . B B .
InT = 1 +in"+ —glrn"’ - —4—,03 4 f,C,n'_"’ - —é—",C,n"’ Feny

the last term being (- }(-2B,n or L( — )i -3 By, _1yn® according
as r is even or odd (Bernoulli’s Theorem).

The proof seems rather complicated, as I have taken trouble to
make every step clear, but it depends on very simple principles,
and does not involve even an infinite series.

§7. To show how intimately connected the simple factors of
2Zn" are with the Bernoullian expansions given in that section of
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Chrystal referred to in §6 of this paper, we will give a formula for
calculating the Bernoullian -numbers, deduced from the fact that
2n + 1 is a factor of Zn%.

Since Zn* contains the factor 2»+ 1, we have, putting n= -1
in the expression for Zn?,

1 B B
2P+1_1+22?12p 2‘_4—2‘:1103'*'-'-'*'( )P_lmp £ 3Cop1 = 0.

1 . . .
i.e. taking ——— —1 to the right-hand side of the equation and
Zp+1

multiplying up by 2p + 1,
2B, ,1:.Ca ~ 2By 5, 1:C, + 2By 5,1:C. .
+(=)12%B, 4,0y = 2p. VI

B B

e’+e"_ B 22‘ 4+6

———=14 ’°°r2—
Now Ly

3’)6

Multiply up by e*-- ¢, expand both sides, and write down the
condition that the coefficient of «%*!is the same on both sides,
and we get equation VL
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