
On the Summation of 1' + 2r + 3r +...+W.

By J . A. DONALDSON.

(Bead l^th February 1913. Received 18th February 1913.)

We shall use the notation 1nr= lr + 2r+ ... + nr. Mr A. J.
Gray suggested to me that n(n+ 1) is always a factor of 2rtr, and
that, in addition, 2ra + 1 is a factor when r is even.

§1. That n(n + \) is a factor of 1nr is proved in Chrystal's
Algebra I., chap. XX., §9, but the following proof seems somewhat
simpler:—

Let ~Znr=f(n).
We know that f{n) is an integral algebraic function of n.
When n = 0,2wr = 0; i.e. J(n) = 0; therefore f(n) contains

the factor n.
Hence f(n +1) contains the factor (n + 1).
Now 2 (n+ l ) r = / (n ) + (n + l ) r = / ( n + l ) ,

and f(n+ 1) and (n + l) r both contain the factor (n+\)\
.-. f(n) contains the factor (n+ 1) ;
i.e. 2nr contains the factor n(n + l).

§2. To prove that (2n+ 1) is a factor when r is even, we must
attempt to calculate the even sums without making use of the odd
ones. In the identity

(x + 1 )r - (x - 1 )r = -2rxr-' + 2rC3x-3 + ... + 2rC,ar + 2,
which holds when r is odd, put successively x = n, x = n-l, ...x=2,

x=l, and we have

(n + l)r - (n - l) r = 2rnr- '+ + 2rCU2 + 2

nr - (n - 2)r = 2r(n - I)—1 + ... + 2rC2(w - I)2 + 2

(„ _ l ) ' _ („ - 3)' = 2r(n - 2) '-1 + ... + 2rC2(™ - 2)2 + 2

— J, ^ £ii JZi ~p • • • • • * r w—V^o^ i ^

2 '_0 = 2rlr~' + + 2rCsl
2+2.

2

https://doi.org/10.1017/S001309150003412X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003412X


10

If we add these equations together, we have

(n + 1)'+ nr - 1 = 2r2n-1 + ... + 2rC22ns + 2n ;
i.e. (n + l) r + nr - (2n + 1) = 2rZnr-1 +... + 2rC2J,n\

When we put n= -\, the left-hand side of this last equation
vanishes; hence, since 2n2 is divisible by 2n + l, we can prove
successively that 2w4, 2n6, .. Sn2* are all divisible by 2w+ 1.

§3. When examining the above, I worked out the sums as far
as 2w7 and factorised them. The expressions for 2w3, 2n5, and 2W7

contained the factor n2(w + I)2 and suggested rit(n + I)2 as a factor
of 2r»p when r is odd, except in the case of r = 1.

To prove this we have the identity
(x + 1)' - (* - 1)' = 2rxr'1 + 2A.T1-3 + ... + 2 r ( V + 2rx,

which holds when r is even.
When we give x the values n, n - 1, ... 2, 1, and add the

resulting identities, we have

When we expand the left-hand side in powers of n, the terms
below n2 are absent; therefore «2 is a factor of the left-hand side.
Also when we put n + 1 = m in the left side and expand in powers
of m, the terms below TO2 are absent; i.e. m? or (n+ I)2 is a factor
of the left side.

Now 7i2(ra + I)2 is a factor of 2n3; hence we can show successively
that it is a factor of 2n5, 2n7.. Sn2^1.

Hence we have proved that:—
2nr contains the /actor n(n + l)(2n + 1) when r is even, and the

Jactor n\n + I)2 when r is odd and greater than 1.

§ 4. Expression of 2w' in powers of n.
From the section in Chrystal's Algebra, referred to above, we

learn that *2nr is an integral function of n of the (r + I)"1 degree,
say

2wr = raon
r+1 + ra,nr + ^ r j ' " 1 + .. + rar_jtf + rarn. I.

Hence we have
^nr+l + r«iMr + • • • + rarn + (n + 1)' = 2(n + 1 )r

= ra0(« + I)r+1 + ra1(n+ l)r+ ... +rar(n+ 1). I I .
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IT. is an identity and true for all positive integral values of n,
and so we may equate coefficients of like powers of n giving :—
n' r«0><r+A= !» (1)
n'-1

 ra0xr+1O, + ^iXrC1=rC1, (2)

nr-2 Ax f + A+,«i>< A + r«2 x r - A = A . (3)

ro0 x r + A + 1 + r«i x rC, + ... + ra, x r _ + A = A , (*+!)

l = r, (r)

constant ra0 + P«i4-ra2 + ... + rar_x + pa r= 1 (r+ 1)

The (r + l)tb equation is also the expression of the fact that the
identity I. holds when n= 1. *•

These equations enable us to calculate ram ,#„ ...rar successively
in terms of r.

Evidently rar+l is always equal to zero, since 2np is always
divisible by n. We shall see that the equations(1 )...(»•+ 1) give us
no information as to rar+1.

From (1), r«o = ^rj7j-

(2),

which, except when r = 1, gives ra2 = £—. "When r = l, /ij is the

term ,«r+1, and this shows how these equations give us no infor-
mation about rar+v

which reduces to ra3 = 0 x

+ (r-2) ra3 =

• - 1 )
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From (5), - ^
4! 3!

4!
which, except when r = 3, gives

4!
From the above sample of calculation, and the form of equations,

(l)...(r + 1), it is obvious that /x,, is of the form

where the constant a, depends on s only.
If we go back now to equation I., when r = 3, 3a3 = 0 since 2w3

contains the factor n2.
r ( r - 1) rlr — 1)

Now ra3 = a3 x , and when r = 3, —r—- does not vanish ;
o ! O ]

therefore a3 = 0, as we saw above by calculation.
For the same reason, viz., that 2wr is divisible by n2 when r is

odd and greater than 1, a5 = a7 = a 9 = . . .=0 .
Values of o are given below up to a18.

8

2

4

6

8

10

12

14

16

18

a.

1/6

-1/30

1/42

-1/30

5/66

- 691/2730

7/6

-3617/510

43867/798

The values of a, given above were not all calculated from the
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equations ( l) . . . (r + 1) as before, but by giving r a particular value
in a way which the following example will make clear :—

2n9 = ,aow
10 + 9ai»i9 + 9a2n

8 + ga47te + 9a6»t4 + 9a8n
2. III.

Our object is to calculate a8, knowing the others up to a6.

Equation (r + 1) shows, when we put r = 9, that

9<*o + 9»i + 9a2 + 9a4 + 9a, + 9 a , = 1.

Now 1 J t V i M

Also ,a8 =

9 .8 . . .3

whence ag = - ^ .

We might also get o8 by starting with 2rc8 for, putt ing r = 8,

2rt8 = 8a0

and 8a

In general to get a^, make r equal to 2s or 2s + 1 , and it some-
times happens that one value will give simpler calculations than
the other.

§ 5. As we have not used the fact that 2n r is divisible by (n + 1)

in §4, we may use these coefficients to show tha t 2n r is divisible by

( n + 1) always, and by (n+lf when r is odd and greater than 1.

Leaving out left-hand suffixes,

2?ir = aon
r+l + a1w

r + a^w'"1 + a4nr"3 + ... + arn (r even),

2« r = aon
r+1 + a^rC + a^nr~l + atn

r~3 + ...+ ar_jn2 (r odd).

(1) r even. By(r+1), a^ + ai -HOj-l- ...ar= 1;

. . . a r = l - a, = £.

Now L 2nr = a,

.-. 2wr is divisible by (n + 1) when r is even.
2 *
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(2) r odd. Just as in the case of r even, we show that 1nr is
divisible by n + 1.

Equation (r.) is

i.e. (r + l)ao + (r- l)<h+ ••• + 2ar_1 = r-a1r = \r;

i.e. (r + l)a0 -raj + (r- l)a2 + .. + 2a_, = 0 ;

i.e. L i-z-'2nT) = 0 (r odd);

i.e. 2wr contains the factor (n + 1 f when r is odd and greater
than 1 (for equation (r) does not involve at when r = 1).

§6. Proof of Bernoulli's Theorem.

I had reached this stage when Professor Whittaker pointed out
to me Bernoulli's expansion (see Chrystal's Algebra II., §7,
Chap. XXVIII.). We can demonstrate this expansion from the
above as follows :—

The tabulated values of a, are simply Bernoulli's numbers with
alternating signs.

From what we have proved in § 4, we can assume

+ K + f™-1 - ̂ c x - + §
where /?,=

When we substitute for the a's in (r+ 1), we have

(1) when r is even, = 2p say,

r«o + rai + ro2 + ra4 + ... + rar = 1 ;

IV.
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(2) When r is odd, = 2p + 1 say,

r«0 + rffll + r<*2 + • • • + r°r- l = 1 5

J _ + i + A C - A ' c + = i -
r + l 5 2 r ' 4 r 3

P A p A , , / \-_i p A

i
2 2p + 2

When we multiply IV. by ( - y~l(2p +1), we get, since
2p + l _

l2>-lX 2« *+1 *"

Similarly, when we multiply V. by ( - )p~'i(2p + 2), we get

V.1

We can calculate the fi's from IV.1 or V.1 by giving p the
values 1, 2, 3... successively. C/. Calculation of a8, in end of § 4, by
putting r = 8 or 9 in equation (r + 1).

These alternative recurrence formulae for /3 are the same as
those for Bernoulli's numbers (see Chrystal's Algebra II.,
Equations (10') and (11'), § 6, Chap. XXVIII.).

Hence the numbers /?„ /£,, etc., are Bernoulli's numbers
B^ B,, etc.

Hence

the last term being ( - )Hr-2)Bjr»t or | ( - )K»"-3V Bj(r_ijn2 according
as r is even or odd (Bernoulli's Theorem).

The proof seems rather complicated, as I have taken trouble to
make every step clear, but it depends on very simple principles,
and does not involve even an infinite series.

§ 7. To show how intimately connected the simple factors of
2np are with the Bernoullian expansions given in that section of
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Chrystal referred to in § 6 of this paper, we will give a formula for
calculating the Bernoullian-numbers, deduced from the fact that
2n + 1 is a factor of 2n2p.2n + 1 is a factor of 2n2p.

Since Sn^ contains the factor In + 1, we have, putting n = - \
in the expression for 2n2l>.

i.e. taking - 1 to the right-hand side of the equation and
•ip + i

multiplying up by 2p + 1,

22B, 2p+1C2 - 2*B2 2p+1C4 + 28B3 2p+1C6...

+ (-)- '22"Bp 2 p + 102p=2p. VI.

N o w , | ± T ! | ^ ^

Multiply up by e* - e~x, expand both sides, and write down the
condition that the coefficient of x!p+1 is the same on both sides,
and we get equation VI.
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