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Abstract

The paper discusses equilibrium solutions and solutions with period two and period three
for the difference equation

xn+l = Q + Axn/(l+xZ),
where Q and A are real, positive parameters. The equation was used by Bier and Bountis
[1] as an example of a difference equation whose iteration diagram can show bubbles of
finite length rather than the successive bifurcations usually expected. The paper examines
in more detail what kind of solution can occur for given values of Q and A and
establishes a series of critical curves which demarcate the regions in the (Q, A) plane
where solutions of period two or period three occur and the subregions where these
periodic solutions are stable. This makes it easy to see how Q and A can be combined
into a one-parameter equation which gives a bubble, or a series of bubbles, in the iteration
diagram.

1. Introduction

A great deal of work has been done on first order difference equations which
involve a single parameter [5, 8], mainly because of their relevance in physical and
biological problems. One way of depicting the behaviour of the solutions is to
produce an "iteration diagram", obtained by iterating the difference equation a
large number of times, throwing away the first 50 or 100 results (to give the
solution time to settle down) and plotting the next 100 against the parameter
value that was used. This tends to pick out periodic solutions, if a stable periodic
solution is available, although in practice only the solutions with shorter period
are readily identifiable. The most familiar example is where, as the parameter
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[2 ] Critical values for a difference equation 341

increases, stable equilibrium solutions give way to stable solutions of period two
and these in turn give way to stable solutions of period four, and so on, with the
intervals of stability decreasing in size as these period-doubling bifurcations
proceed. At a later stage solutions of odd period appear, culminating in solutions
of period three, and after these solutions of period three have become unstable
the iteration diagram shows a frothy and apparently chaotic structure. Periodic
solutions can exist but with such brief intervals of stability that it is hard to pick
them up on an iteration diagram.

More recent work has shown that other patterns can arise in the iteration
diagram. In particular, the bifurcation process can be reversed at any stage. For
example, we can have stable equilibrium solutions giving way to stable solutions
of period two but with the latter replaced by stable equilibrium solutions again as
the parameter increases, giving an elongated bubble in the iteration diagram.
Diagrams of this kind are known from experimental work on RCL circuits with
nonlinear capacitors [4, 7] and others have been obtained by starting from first
order difference equations with two parameters, then introducing a relationship
between the parameters which gives a one-parameter problem [1,2,3,10]. Oppo
and Politi [10, Fig. 1] show clearly how this can be done and indeed it is evident
from their diagram that it would be possible to have more than one reversal of the
period-doubling process or, in terms of the iteration diagram, to have a string of
bubbles as the parameter increases. Another possibility is to proceed through the
usual sequence to the chaotic stage and then have a complete reversal as the
parameter increases, with another interval of stable solutions of period three and
eventually coalescence of solutions of period two to give equilibrium solutions.
Examples of this arose in discussing the equation [2,3]

yn+1 = 2k/{l+(yn-m)2}, (1.1)

where m and k are real parameters, with k > 0. This equation bears some
resemblance to an example mentioned by Bier and Bountis [1]

xn + 1 = Q+{Axn/(l + x2
n)}, (1.2)

where Q and A are real, positive parameters. In Figure 1 of their paper they show
iteration diagrams for this equation where the period-doubling process has been
reversed, in one case after solutions of period 8 had been attained. However their
treatment is fairly brief and it is clear that more could be done to mark out the
boundaries between different types of solution in the (Q, A) plane. The present
paper is intended to fill in some of these details.

Section 2 discusses the equilibrium solutions of equation (1.2) and their
stability. It can be shown that there is exactly one positive solution, for any pair
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(Q, A), and that this solution is always stable. If we regard Q as fixed and let A
increase, then at first the positive solution is the only equilibrium solution but for
larger values of A there are also two negative solutions. The larger of these
(algebraically) is always unstable and the smaller solution is stable for A0(Q) < A
< AY(Q), where A0(Q) and A^Q) are tabulated for a number of values of Q.
The curve A = A0(Q) in the (Q, A) plane is the boundary between the region
where there is only one real equilibrium solution and the region where there are
three solutions.

In Section 3 it is shown that there are solutions with period two for A > A^Q).
These solutions are stable for A > A^Q) when 0 < Q < J2 but for Q > ^2
there is a finite interval of stability AX{Q) < A < A2(Q). An expression for
A2(Q)is obtained and some values of this function are tabulated.

Sections 4 and 5 deal with the more difficult problem of establishing similar
boundary curves for solutions of period three. The lower boundary is a curve
A = A3(Q), defined for Q > 2, and for A > A3(Q) there are two solutions of
period three. One solution is always unstable—and we can refer to these solutions
as the unstable family—while the other solutions are stable over an interval
Ai(Q) < A < A4(Q). These functions are tabulated for a number of values of Q.
For an admissible pair (Q, A), that is for Q > 2 and A > A3(Q), the equations in
Section 4 allow the elements of the period three solutions to be calculated,
whether the solution is stable or unstable. This makes it feasible to follow the
changes in the solutions in a much more complete way than would be possible
from an iteration diagram.

Section 6 describes an attempt that was made to transform equation (1.2) into
equation (1.1) by means of a bilinear relationship between xn and yn. Suitable
relationships were found but with restrictions that made them applicable only in
certain regions of the (Q, A) plane. This provided some extra information but not
as much as had been hoped, since it did not allow the information about solutions
of period three and period four for equation (1.1) to be taken over directly in
discussing equation (1.2).

Although most of the calculations have been made on the basis that Q is kept
fixed and A is allowed to vary, this was purely a matter of convenience. Generally
speaking, the powers of Q that come into various equations are greater than the
powers of A, so it is better to fix Q and have an equation of lower degree in A.
Equation (5.1), which has powers of Q up to Q12 and powers of A up to AA, is an
example of this. However, once the boundary curves have been established,
different relationships between A and Q can be used to make equation (1.2) a
one-parameter problem and this permits the solutions to change in a variety of
different ways as the parameter increases. Some examples of this are mentioned in
Section 7.
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2. Equilibrium solutions

If we write the Bier and Bountis equation as

xn+l = F{xn) = Q+{Axj(\+x2
n)}, (2.1)

with Q > 0 and A > 0, then for any real xn

Q-{A/2)<xn+1^Q+(A/2)

and any periodic solution must have its elements in the interval [Q — (A/2), Q +
(A/2)]. So in looking for periodic solutions we can take x0 in this interval and
regard F as a mapping of the interval into itself. In general, F has two stationary
points, at xn = -1 and xn = +1, but if we restrict x0 to the interval above, then
one or both of the stationary points can be excluded. More precisely, for
0 < A < \2 — 2Q\ both stationary points are excluded, for A > 2Q + 2 both
stationary points are included, and for other admissible values of Q and A there
is one stationary point (at xn = 1). With this change in the number of stationary
points we might expect some changes in the behaviour of the solutions in the
different cases.

If xn - X is an equilibrium solution, then X = F( X) and this gives a cubic
equation

G(X) = (X- G)(l + X2)-AX=0. (2.2)

This equation has three real distinct roots [9] if and only if A + (1/3)Q2 > 1 and
T(Q, A) > 0, where

T(Q, A) = 4A> + (Q2 - \2)A2 + (12 - 20Q2)A - 4(l + Q2)2. (2.3)

It can be shown that for Q > 0 the equation T(Q, A) = 0 has a unique positive
solution for A, say A0(Q), with A0(Q) > 1. For A > A0(Q), the conditions
A + ( l /3)()2 > 1 and T(Q, A) > 0 are both satisfied and hence there are three
real distinct equilibrium solutions of equation (2.1) for A > A0(Q). For 0 < A <
^o(Q)' t n e r e is a single equilibrium solution and the graph A = A0(Q), which is
shown in Figure 1, serves as a critical curve separating the two regions in the
(Q, A) plane. As Q -* 0 from above, A0(Q) -> 1, and for Q large

2(? + 2 - 1 + A _ ^ + 2 6 + ^ - 5 ) . (2.4)

Some numerical values for A0(Q) are given in Table 1.
The condition for local stability for an equilibrium solution, X, is that |Sj| < 1

where

S, = F'(X) = A(l - X2)/(l + X2)2. (2.5)
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TABLE 1. Values of Ao ( Q )

[Equation (2.2) has 3 real solutions for A > Ao (£>)]

0
1.0

0.5
2.4864

1
3.6107

2
5.7290

3
7.7897 11

5
.8535

10
21.9160

20
41.9544

It can be shown that equation (2.2) has exactly one positive root, say X3, for
any admissible pair (Q, A) and that this positive root is always stable. For
•<4 > A0{Q) there are also two negative roots, say Xx and X2, with Xx < X2 < 0.
For X = X2, Sj > 1 and this equilibrium solution is always unstable. For
X = Ar

1, the equilibrium solution is stable for A0(Q) < A < AX(Q), where

^ { } (2.6)

As Q -* 0 from above, AX(Q) becomes unbounded and for Q large

± ± ^ ). (2.7)

Some numerical values for AX{Q) are given in Table 2 and it appears as one of the
critical curves in Figures 1 and 2. From equation (2.6), A^Q) has a minimum
value of 8 at Q = i/3.

For A — A0(Q), the two negative equilibrium values coalesce to give a double
root of equation (2.2) and St = 1 for this double root. As A increases from
A = A0(Q) the value of 5X corresponding to X = Xx decreases. It becomes zero
for A = 2Q + 2 and -1 for A = A^Q). Indeed the expression for AX{Q) was
obtained from the condition that S1 = -1 when the equilibrium solution is on the
point of becoming unstable. It can be shown that this occurs when

* i = -( i /<2){i + / ( i + <22)} (2.8)
and the corresponding value of A follows from equation (2.2). If we take
A > AX(Q) and follow Xt as A increases, with Q fixed, then X1 tends to -oo as
A -* oo while the corresponding value of Sj decreases to a minimum and then
increases again, with S1 -* -1 as A -» oo. Thus the equilibrium solution Xx is
unstable for A > A^Q).

For the intermediate solution X2, the value of S1 increases as A increases from
A = -A0(Q). For a given value of Q, \X2\ -* 0 and Sx -* oo as A -* oo. However,
it should be noted from equation (2.2) that X = 0 cannot be an equilibrium
solution for Q > 0 and A finite.

It can be shown that where there are three equilibrium solutions the product of
the corresponding values of Sl is

P = (A-2- 2Q)(A - 2 + 2Q)/A (2.9)
and the sum of the S1 values is P + 2. These results were very useful in checking
some of the numerical work. They also agree with the information available about
superstable equilibrium solutions. From equation (2.5), S1 = 0 for X = +1 and it
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TABLE 2. Values of Ax (Q) and A2 (Q)

[C2 solutions exist for A > / ^ ( Q ) and are stable for /^(g) </< < A2(Q)]

Q
Al(Q)

Q
At(Q)
A2(Q)

0.1
405.01

1.6
8.029

28.594

0.2
105.03

1.8
8.007

17.074

0.4
30.117

2.0
8.090

13.660

0.6
16.367

3.0
9.250

10.938

0.8
11.688

4.0
10.887
11.834

1.0
9.657

5.0
12.686
13.337

1.25
8.531

10.0
22.321
22.570

1.5
8.097

55.069

20.0
42.155
42.266

is easy to check that X = -1 implies A = 2Q + 2 while X = +1 implies A = 2
- 2Q. Along the line A = 2Q + 2 in the (Q, A) plane the smallest equilibrium
solution is Xx = -1 and the other solutions can be written down explicitly. It can
be checked that P = 0 and the sum of the 5 t values is 2 in this case.

For A = 2 - 2Q we have to add the condition 0 < Q < 1 to ensure that
A > 0. This segment of the line A = 2 - 2Q is shown in Figure 1 and it will be
seen that it crosses the curve A = A0(Q) between Q = 0 and Q = 0.5, say for
Q = Qo. There will be three equilibrium solutions when A = 2 - 2Q > A0(Q),
that is for 0 < Q < Qo, but only one equilibrium solution, X2 = 1, for Qo < Q
< 1. For 0 < Q < Qo we still have X3 = 1 and the two negative solutions can be
written down as explicit functions of Q. It can again be checked that P = 0 and
that the sum of the Sl values is 2. For Q = Qo, the two negative solutions must
be equal and this gives Qo = 3 - 2\/I = 0.1716.

1C

10 -

8 -

B -

4 -

2 -

0 -

V ^^—""""̂^ '
. ' ' y

,''y
„ - ' y

- ' " ' " * * ^y*'

S < " .^'^ ~ ~ A =

^ ^ - ^ .^" A =
"~ - .^ - ^ A •

' ^ . ^ - '
1 1 1

> A l (0)
-- 2Q + 2
* A0 (Q)
•• 2 - 2 0
» 2Q-2

1
2 3

VALUE OF PARAMETER 0

Figure 1. Graphs of A0(Q) and Al(Q) for 0 < Q < 4.
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3. Solutions with period two

For a solution with minimum period two (referred to later as a C2 solution) we
want elements b1 and b2, with bx =£ b2 and with

b^FibJ.bi-FibJ. (3.1)

These equations can be written as

( f t 2 -e) ( i + 6?) = ^ i (3-2)

(b, - g)(l + b\) = Ab2, (3.3)

and their difference gives

(b2 - ^ ){1 - b,b2 + Q{bx + b2)} = A(b, - b2). (3.4)

If we write a = bx + b2 and p = b^b2 and cancel the non-zero factor b2 — bv we
get

P = 1 + A + Qa. (3.5)

Adding equations (3.2) and (3.3) and using the identity b\ + b\ = a2 - 2/J gives

a(l - A) + afr = 2Q + Q(a2 - 2/3). (3.6)

We can use equation (3.5) to replace /? in equation (3.6) and thus obtain a in
terms of A and Q. The solution for /} follows and we get

(3.7)
i + e i + Q

The C2 elements are then the roots of the equation

b2 - ab + 0 = 0 (3.8)

and the stability condition is that \S2\ < 1, where

(3-9)

To ensure that equation (3.8) has real distinct roots we must have a2 > 4)3 and
this leads to the condition A > A^Q), which we had before as the condition for
the equilibrium solution Xx to become unstable. From equation (3.7), a < 0 and
/? > 0, so bx and b2 must both be negative, and this supports the idea that the C2
solution is a bifurcation of the unstable solution Xv

We can obtain an alternative form for S2 if we write

(1 - ^2)(1 - bl) = 1 - ( a 2 - 20) + P2 = (1 + Pf - a2, (3.10)
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then pu t a and /$ in terms of A and Q from equat ion (3.7). T h e denomina tor in
equa t ion (3.9) can be dealt with in the same way and this leads to

A2{(1 + 0)2 - a2} _ {A + 2 + 2Q2f-Q2A2

2 { ( l - / * ) 2
 + «2}2 Al

= (1 - Q2) + 4(1 + Q2)/A + 4(1 + Q2f/A2. (3.12)
For a fixed value of Q, S2 will decrease as A increases and as A -» oo the terms
in I/A and I/A2 will tend to zero through positive values. Thus S2 -* 1 — Q2

from above. For A = AX(Q), S2 = 1 and the solutions will be stable as A
increases until S2 becomes equal to - 1 . This is only possible if Q > ]/2. For
0 < Q < J2 the C2 solutions are stable for all A > At(Q). For Q > jl there
will be a critical value of A, say A2(Q), at which S2 = - 1 , with stable solutions
for AX(Q) < A < A2(Q) and unstable solutions for A > A2(Q)- From equation
(3.11), S2 = -1 when

(A+ 2 + 2Q2)2 - Q2A2 = -A2

and this gives

^" '̂'I'/f-". (3.U)
Table 2 includes some values of ^42(S) a nd Figure 2 includes graphs of A = ^ 2 )
and yl = ^42(6)- As ^ -* \/2~ from above, ^42(Q) -» oo and the table indicates a
minimum around Q = 3. More precisely, the minimum is A2 = 10.9282 for
Q = 2.9093. For Q large,

^2(f i) = 2Q + 2 + | + A + ^ + ^ + O ( Q - ) , (3.14)

and hence
y! 2 ( (2 ) -^ 1 (6 ) = width of stability interval

= 77 + A + A + — + O(e"5). (3.15)

It was noted in Section 2 that the positive equil ibrium solution X3 exists and is
stable for all positive values of A and Q. This means that it is possible to have a
stable C 2 solution and a stable equil ibrium value for the same pai r (Q, A ) , with
an i terat ion d iagram which is sensitive to the choice of x 0 . For example, x 0 > 0
makes x n > 0 for n = 1 , 2 , 3 , . . . a n d in this case it would be impossible to pick
up the C 2 solution. Indeed this could happen with x 0 < 0 also. F o r example, if
Q = 5 and A = 13 there is a superstable C 2 solution with bx = - 1 . 0 and
b2 = - 1 . 5 . If we take xQ = - 0 . 4 , we get x x = +0 .5172 and then x n > 0 for
n = 2 , 3 , 4 , After a few i terat ions x n is close to the stable equil ibrium solution
Xz = 6.8565.
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30 -

25 -

20 -

15 -

10 -

5 -

A = Al (Q)
A = A2 (Q)
A = A3 (Q)
A = 2Q+2

I 1
4 6

VALUE OF PARAMETER 0

I
1 0

Figure 2. Graphs of A1(Q), A2(Q) and A3(Q).

In the same way, the work in Sections 4 and 5 shows that it is possible to have a
stable solution of period three for suitable parameter values Q and A. There must
also be a stable equilibrium solution, X3, and the iteration diagram would be
sensitive to the choice of xn.

4. Solutions with period three: basic equations

In Section 3 the determination of C2 solutions was made easier by using
symmetrical functions of the solution elements and relating these to the parame-
ters Q and A. For solutions with minimum period three (C3 solutions) the same
approach can be used. The analysis follows the same lines as for equation (1.1) [2,
Section 4] so most of the detailed derivations are omitted in the account below.

For a C3 solution we want real distinct elements bl,b2, b3 which satisfy the
equations

b2 = F^), b, = F(b2), b, = F(b3). (4.1)

Rather than form an equation for, say, bY directly it is convenient to make use of
the symmetrical functions

a = bl + b2 + b3, /? = bxb2 + b2b3 + b3b1, y = b^b^, (4.2)
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and to construct equations which give a, /}, y for a given pair of parameter values
(Q, A). The solution elements are then the roots of the cubic

h(b) = b3-ab2 +pb-y = O. (4.3)

To illustrate the procedure we note that equation (4.1) gives

b\b2 = -b2 + Q + Qb\ + Abx (4.4)

and two similar equations obtained by cyclic permutation of the suffixes. If we
add these equations

Y,b\b2 = -a + 3Q+ Q(a2 - 20) + Act, (4.5)

where £ is used to denote cyclic summation over the suffixes 1, 2, and 3. If we
multiply equation (4.4) by b3 and sum cyclically we get

ay = - 0 + Qa + QLb^2 + A0 (4.6)

and we can use the identity

£b2b2 + Zbxb2
2 = afi-3y (4.7)

to eliminate Hb\b2 and Hb^j. The result is an equation of the form
anP + ai2Y = "n> (4-8)

with

an = (A-l)+aQ + 2Q\

au= -a- 3Q,

ali = (a2+3)Q2+(A-2)Qa. (4.9)

Similar algebraic manipulation gives a second linear equation
a21fi + a22y = a23, (4.10)

with

a22 = 3,40 + a(l + Q2),

a23 = (a2 + 3)g2(l + A + Q2) + AQa(A + Q2). (4.11)

From these two linear equations

fiD{a,Q,A) = Dl{a,Q,A), yD(a,Q, A) = D2(a,Q,A), (4.12)
where

D(a,Q,A) = (1 + Q2)a2 +(5A + 4 + 4Q2)Qa

+ 3{(A - l)2+(3 + 3A)Q2 + 2QA}, (4.13)

D1(a,(g,y4) = (A + 2 + 2Q2)Qa3 + {(A2 + A - 2 ) + ( l + %A)Q2 + 3g4}a2

- A + 2) +(A + 2)Q2}Qa + 9Q2(2A + 1 + Q2),

(4.14)
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D2(a,Q,A) = (A + 1 + Q2)QV + {(2A2 + A - 2) +(3A -2)Q2}Qa2

+ {(A3 - 3A + 2)+(2A2 + A + 9)Q2 + 7QA}a

+ 3Q{(A2 + A-2)+(2A-2)Q2}. (4.15)

In general, these equations give /? and y, once a, Q, A are known. The main
problem that remains is to find an equation for a, for given values of Q and A.

It can be shown (along the lines indicated above) that

02 = (A + 2 - 2Q2)p + 2ay +(Q2 - l )a2 + QAa + 3Q2, (4.16)

Py = 3QP +(3.4 + Qa)y +( l - A)a - ( a 2 + 3)fi, (4.17)

3y 2 = (5Q2-2A - l)>8 + {3AQ +(A + 1 + Q2)a}y

+ (1 - 2Q2)a2 - 2QAa - 6Q2, (4.18)

so one of these equations could be used with equation (4.12) to eliminate /? and y,
thus leaving a relationship between a, Q and A. However this would involve
expansions for D2, DDV DD2 and similar products. Instead, a third linear
equation for /? and y was obtained by multiplying equation (4.8) by 3y and
substituting for /?y and 3y2 from equations (4.17) and (4.18). This gives

a3iP + a32y = a33, (4.19)

with

a31 = (1 + 2A + 4Q2)a +(15A - 6 + 3Q2)Q,

a32 = 9(A - 1)(A + Q2) + 3Q(A + Q2)a - (A + 1 + (?2)a2, (4.20)

a33 = 9Q(A - 1) + 3a{(A - I)2 - Q2} +(4A - 3)Qa2 +( l + Q2)a\

From equations (4.8), (4.10) and (4.19), the equation for a is

Q,A) = dct\aij\=0, (4.21)

where E(a, Q, A) is a polynomial in a of degree 5. At most there should be two
C3 solutions for a given pair (Q, A), so the equation for a should be a quadratic.
The discrepancy arises because the analysis did not use the condition bl =£ b2^ b2

to rule out the degenerate case b1 = b2 = b3 = X, where X is an equilibrium
solution. If we put X = a/3 in equation (2.2) we get

0 = a 3 - 30a 2 +9(1 - A)a - 21Q = E0(a,Q, A) (4.22)

and it can be verified that E(a, Q, A) includes E0(a, Q, A) as a factor. The
co-factor has the form

+ q1a + q2, (4.23)
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with

q0 = (1 + <22)3 + 2AQ2(l + Q2) + A2Q2, (4.24)

qx = &4 {3(1 + Q2f + A(l + 5Q2) + 2A2}, (4.25)

q2=(A- l)(A3 - 1) + 302(l + A2 + A3) + Q4(3 +A + 2A2) + Q6.

(4.26)

It will be seen that q0, qx, q2 can easily be evaluated for any pair (Q, A) and for
the C3 solutions a is determined by the quadratic equation qoa

2 + qxa + q2 = 0.
For each value of a, equation (4.12) then gives /? and y and the elements
bv b2, b3 can be found from (4.3). Thus the equations involved are relatively
simple and they apply whether the solutions are stable or unstable. Indeed the
stability can be tested readily as part of the computational scheme. The condition
for stability is that \S3\ < 1, where

Since S3 is a symmetrical function of bx, b2, b3 it can be expressed in terms of
a, /?, y and with the help of equation (4.1) it can be shown that

= (1 + a M + y X l a ^ y )

This enables S3 to be calculated without knowing bv b2, b3 exphcitly.
For the most part the computations are straightforward, although some special

cases arise and they are included in the discussion in the next section.

5. Solutions with period three: discussion

From equations (4.24), (4.25) and (4.26) q0, qx and q2 are positive for Q > 0
and A > 0, so we can deduce that a < 0 for any real solutions of qoa

2 + qxa +
q2 = 0. This rules out a C3 solution with bx > 0, for equation (2.1) would then
give b2 > 0, b3 > 0, and hence a > 0. Our choice of which element we call bx is
arbitrary so this argument shows that b{ < 0 for each C3 element. In particular,
to obtain a superstable solution we can start with bx = -1 (which gives F'(t>i) = 0
and S3 = 0), work out b2 and b3 and impose the condition that F(B3) = - 1 . For
g = 3, for example, the cyclic condition gave A = 13.80712906 and from this
b2 = - 3.90356454, b3 = -0.31922834. Apart from serving as a typical C3 solu-
tion, this example was of great value in checking the algebra in Section 4.
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If we set HX(Q, A) = q\ - 4qoq2, then equation (4.29) has two real roots for
H\(.Q, A)> 0 and complex roots for H^Q, A) < 0, so we can expect H^Q, A) =
0 to provide the boundary curve A = A3(Q) where C3 solutions first appear. It is
convenient here to use R = 1 + Q2 and to write H^Q, A) = H(R, A). With this
minor change of notation

H(R, A) = A4(R - 2)2(R - 5) + 2RA\R - 2)(R2 - 1R + 4)

+A2R2(R - l)(R2 - 16R + 16) + AR4(l6 - 12R) - 4R6

(5.1)

= {(R - 2)A + R2}2{(R - 5)A2 - 4RA - 4R2}. (5.2)

For a given value of Q, H(R, A) = 0 when A is given by either

(i) (R - 2)A + R2 = 0 (5.3)

or (ii) (R - 5)A2 - ARA - 4R2 = 0. (5.4)

For A > 0, (R - 2)A + R2 > 0 for R > 2 and this means that equation (5.3) can
only be satisfied when R < 2, that is when 0 < Q < 1. Since all C2 solutions are
stable for 0 < Q < 1 it seems unlikely that there will be C3 solutions in this
region and this can be checked if we assume that 0 < Q < 1 and take

A = R2/(2 -R)=(l + Q2f/{\ - Q2). (5.5)

This makes q\ = 4q0q2, so the quadratic for a has a double root -qi/(2q0). If we
substitute for A in q0 and qv the result is

' ) - ! - ^ . (5.6)

We now have a and A in terms of Q and with these expressions equation (4.8)
reduces to

(1 - <22)/? + 2Qy = 3 - Q2. (5.7)

Equations (4.10) and (4.19) give exactly the same equation so this is a case where
D(a, Q, A) is zero and the usual method of solution for R and y breaks down.

We can obtain an equation for B from equation (4.16), by using equation (5.7)
to replace 2 ay by terms involving B. This leads to a quadratic

(1 - Q2)2B2 - 20(1 - <22)(<24 - 20 2 + 3) + 9 + 9g4 - 2Q6 = 0,

(5.8)

and the condition for real roots is that D3 > 0, where

D, = Q2(Q2 - 3)(e4 + Q2 + 4). (5.9)

Thus the equation for B gives complex roots for 0 < Q < 1 and we have checked
that equation (5.3) does not lead to real C3 solutions for A > 0.
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The alternative condition for H(R, A) = 0 is that equation (5.4) holds. We
must have R > 5, that is Q > 2, to give a positive solution for A. The appropriate
solution is then

= 2 * { i + / ( n 4 ) } = 2 ( i + e ) { i + / e 3 ) )
R - 5 £>2 - 4

If we call this function A3(Q), then .4 = A3(Q) gives the boundary curve we are
seeking, with real C3 solutions for A > A3(Q). Some values of A3(Q) are given
in Table 3. As Q -» 2, A3 -> oo and for Q large

2 + 1 + f2+ f2 + +
^ 3 has a minimum value 12.944272 at Q = 3.670441. A graph of A = A3(Q) is
included in Figure 2.

For A = A3(Q), the quadratic for a has a double root. It is possible to write
down expressions for q0, qv q2, a and D(a, Q, A) in terms of R but these
expressions are too cumbrous to provide additional information. However the
numerical evidence is that D is non-zero and that there is a single real C3
solution for A = A3(Q), with S3 = 1 for this solution. For A > A3(Q) there are
two C3 solutions for each pair (Q, A). For a given value of Q, S3 increases as A
increases for the solution with the smaller value of a and all solutions of this
family are unstable. For the other family, which we can refer to as the stable
family of solutions, S3 decreases as A increases and there is a finite interval
within which these solutions are stable. The upper limit of stability occurs when
S3 = -1 and we use A4(Q) for the corresponding value of A. Values of A4(Q)
were determined numerically and are included with A3(Q) in Table 3. It will be
seen that the width of the stability interval decreases as Q increases, from 0.139 at
Q = 2.1 to 0.014 at Q = 5.0 and 0.0035 at Q = 20.0. We can guess that A4(Q)
also behaves like 2£) + 2asQ-»oo, although we have no analytical evidence for
this. Because the difference A4(Q) — A3(Q) is so small, a separate graph for
A4(Q) was not included in Figure 2. It would be difficult to distinguish A4(Q)
from A3(Q) on the scale of this diagram.

TABLE 3. Values of A3(Q) and .

[C3 solutions exist for A > A3(Q), with stable solutions for A}(Q) < A < AA(Q)]

Q

Q

2.1
57.7269
57.8662

5.0
14.0906
14.1048

2.3
24.5093
24.5941

7.0
17.2941
17.3037

2.5
18.0623
18.1226

8.0
19.0889
19.0972

3.0
13.7980
13.8330

10.0
22.8278
22.8345

3.5
12.9814
13.0064

20.0
42.3781
42.3816

4.0
13.0491
13.0688
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As A approaches A3(Q) from above, the stable solutions and the unstable
solutions approach a common limit, the solution for A = A3(Q). For A slightly
greater than A3(Q) the elements of the two solutions will not differ greatly and
indeed this is true even at A = A4(Q), as indicated by the examples of C3
solutions in Table 4. In each case the smallest solution element has been taken as
b^ and the value of S3 is given in the last column to show which is the stable
solution and which is the unstable solution.

TABLE 4. Details of C3 solutions when A is close to A4(Q)

Q
2.5

5.0

0.0

0.0

A
18.122596

14.104848

22.834487

42.381568

a
-7.743
-7.807

-3.592
-3.658

-3.166
-3.207

-3.058
-3.082

-6.560,
-6.549,

-2.052,
-2.045,

-1.417,
-1.413,

-1.191,
-1.188,

-0.200,
-0.204,

-0.555,
-0.566,

-0.758,
-0.767,

-0.873,
-0.879,

-0.983
-1.054

-0.985
-1.047

-0.991
-1.027

-0.995
-1.015

-1.000002
+ 2.856081

-0.999964
+ 2.814133

-0.999999
+ 2.821887

-1.000165
+ 2.833216

6. Bilinear transformation of Bier and Bountis equation

As mentioned in Section 1 there are some similarities between equations (1.1)
and (1.2) and this raised the question whether it would be possible to go from one
to the other by a suitable transformation, so that the results obtained for equation
(1.1) could be used in the discussion of equation (1.2). With this in mind, a
bilinear transformation of equation (1.2) was examined. If we write

zn = L(xn) = (a + bxn)/(c + xn) (a * be) (6.1)
then the inverse relationship is

xn = (a - czn)/{zn - b) (6.2)

and equation (1.2) gives

Vn-^WiCO, (6-3)
where Jr and J2 are in general quadratics in zn. In order to put this into the form
of equation (1.1), /x must have no terms in zn and z\ and this gives two
conditions on a, b, c, namely

bcA = (a + bQ)(l + c2), (6.4)

bA{a + be) = 2(a + bQ)(ac + b). (6.5)
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It is easy to show that a + bQ cannot be zero and if a + bQ ¥= 0 then b and c
are non-zero, from equation (6.4). (As usual, we shall assume that A > 0 and
Q > 0.) It follows that

a±b£ = fcMO
c 1 + c2

and hence

(be - a)(l - c2) = 0. (6.7)

Since be *£ a, we get c = ±1 and we can consider the two cases separately.
When c = 1, we have 2(a + bQ) = bA, that is

a=jb(A-2Q), b-a= ^b(2 + 2Q-A). (6.8)

After some reduction, equation (6.3) becomes

*n+i[{*n - \(a + b)f + M2] = \b2A(b - a), (6.9)

M2 = ^b{b - a)(A + 2Q + 2). (6.10)
o

where

To make k > 0 we must have b — a > 0 in equation (6.9) and for M to be real
we must then have b > 0. Equation (6.8) now gives 2 + 2Q — A > 0, that is
0 < A < 2Q + 2, which is an important restriction on A. With this restriction we
can write

( \ ) (6.11)

a + b b(A + 2- 2Q)
~ ~2M~ ~ AM ' ( 6 1 2 )

zn = Myn (6.14)

and equation (6.9) goes over to the form

yn+i{l+{yn-mf}=2k, (6.15)

as required. Note that a precise value for b is not needed. If we write

M0 = 4M/b = }/{(2 + 2Q)2-A2}, (6.16)

then the transformation becomes

4xn + 2A-4Q

" ( 6 1 7 )
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with

Mom = A + 2 - 2Q, Mok = 4A/(2 + 2Q + A). (6.18)

With this mapping, equilibrium points of equation (1.2) will map into equi-
librium points of equation (1.1), and vice versa, and the stability testing function
(STF) will be the same for corresponding equilibrium points. From equation (6.1),
if xn+l = xn, then zn+l = zn and yn+1 = yn from equation (6.14). If xn = X is an
equilibrium point of equation (1.2) and zn = Z is the corresponding equilibrium
point of equation (6.9), we obtain the STF at Z by evaluating (dzn+l)/(dzn) at
zn = Z = L(X). We can write

±z±i = d^dx^dx^ x )F'( xm)/L'( xn)

dzn dxn+1 dxn dzn
 v n+1J v ";/ v "'

and evaluating these derivatives at xn = xn+1 = X gives

S* = STF at Z = F'(X) = Sv (6.19)
The change of scale from zn to yn does not alter the STF; indeed the same
argument would apply. The only problem that could arise would be if xn = X is a
singular point of the transformation. For c = 1, there is a singular point at
xn = -1 but we know that X = -1 implies A = 2Q + 2 and this is excluded by
the restriction 0 < A < 2Q + 2.

It will be noted that the transformation applies in some cases where there are
three equilibrium solutions of equation (1.2). In Figure 1 the appropriate values of
Q and A he in the gap between A = A0(Q) and A = 2Q + 2 and each
equilibrium solution of equation (1.2) maps into an equilibrium solution of
equation (1.1), with the same value for the STF. The argument concerning the
STF can easily be extended to the mapping of a C2 solution but the restriction on
A means that A < 2Q + 2 < AX(Q) so we do not have to consider C2 solutions
in this case.

The case where c = -1 goes through in much the same way, although we have
to distinguish the case 0 < Q < 1 from the case Q > 1. For 0 < Q < l,the
appropriate transformation is

yn = AX1~2_\)M^ (6-2°)
where

M1 = 4 ( 2 - 2 e ) 2 - ^ 2 } , (6.21)
and A satisfies the restriction 0 < A < 2 — 2Q. With this transformation, yn

satisfies equation (6.15) with

Mxm = A + 2 + 2Q, Mxk = 4A/(A + 2- 2Q). (6.22)
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For the case Q > 1, we can again use Mx but the restriction on A is now
0 < A < 2Q — 2 and the sign on the right-hand sides of equations (6.20) and
(6.22) has to be reversed. As in the case c = 1, these transformations map
equilibrium points into equilibrium points, with the same STF, although the
restriction on A limits their usefulness.

One property of equation (1.1) which can be used is the result, essentially due
to Coppel [6], that the iteration process gives monotonic convergence to a limit
when 0 < 2 k < m. The limit must be a stable equilibrium point, with S1 > 0 to
ensure the monotonic behaviour. For c = 1, equations (6.18) show that this
condition is satisfied if

which is equivalent to

4<22 < (A - 2)2. (6.24)
If we take A > 2, equation (6.24) gives A > 2 + 2Q, which contradicts the
restriction 0 < A < 2 + 2Q, so we must take 0 < A < 2 in equation(6.24) and
the requirement becomes 0<2Q<2-AoiO<A < 2 - 2Q. This implies that
0 < Q < 1 and that we are dealing with points in the triangular region in Figure
1 defined by A > 0, Q > 0 and 0 < A < 2 - 2Q. The critical curve A = A0(Q)
divides the triangle into two regions, with a single equilibrium solution for
0 < A < A0(Q) and three equilibrium solutions for A0(Q) < A < 2 - 2Q. Where
there is only one equilibrium solution it must be the positive solution and the
monotonic convergence property shows that 0 < S1 < 1 for this solution. From
equation (2.5), this implies that 0 < X3 < 1 for this equilibrium solution. (We
know already that S1 = 0 and X3 = 1 when A = 2 - 2Q.) Where there are three
solutions, with Xx < X2 < 0 < X3, we know that the X2 solution is always
unstable so monotonic convergence implies 0 < Sx < 1 for the other two solu-
tions and hence 0 < |Xx\ < 1 and 0 < X3 < 1.

We can extend this result a little further and state that X3 > 1 except in the
triangular region defined above. For a given value of Q and A large, equation
(2.2) gives X3 ~ {A , so X, > 1 for A large. We have X3 = 1 only on the line
segment A = 2 - 2Q (with 0 < Q < 1), so the change from X3 < 1 to X3 > 1
can only occur at points along this line. This implies that for points outside the
triangular region X3 > 1 and -1 < Sx < 0 for the corresponding value of Sv (As
A -* oo, Sl -» -1 from above).

If we look at the transformations with c = -1 and see if the condition
0 < 2k < m can be satisfied, equations (6.22) again give 4Q2 < (A - 2)2 and
this leads to the same conclusions as before. For the case where Q > 1, with
0 < A < 2Q - 2, the equation for m is Mxm = -{A + 2 + 2Q) and hence
m < 0. Thus the condition 0 < 2 k < m cannot be satisfied.
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An unexpected consequence of this work on bilinear transformations is that in
some cases equation (1.1) can be transformed into another equation of the same
form. For example, if we take A = 2 and Q = 3 we have 0 < A < 2Q + 2 so we
can use equations (6.17) and (6.18). This gives

) (6-25)

On the other hand, Q > 1 and 0 < A < 2Q - 2, so we can use the second of the
two cases for c = - 1 . This gives

Thus two different versions of equation (1.1) map into the same version of
equation (1.2) and it follows that they must map into each other.

This argument applies for any values of Q and A in the region Q > 1,
0 < A < 2(2 - 2, that is, below the line A = 2Q - 2 (for Q > 1) in Figure 1. In
the same way, we can use the transformation for c = 1 and the first of the two
cases for c = -1 in the triangular region O<Q<1, 0<A<2-2Qin Figure
1. This includes some values of Q and A for which equation (1.2) has three
equilibrium solutions.

If we go back to our example and use wn instead of yn in equation (6.26), to
distinguish the two cases, we can eliminate xn and get

w- (6-27)
This suggests that if we want to transform the equation

7n+i = 2k1/{l +(yn-m1)
2} (6.28)

into a similar equation

" n + 1 = 2 ^ ( 1 +(wn-m2)
2} (6.29)

we should try a relationship of the form

(yn - « i ) K - « 2 ) = c, (6.30)

where C is a non-zero constant. If we start from equation (6.28) and replace yn by
wn, from equation (6.30), then to obtain the equation for wn in the prescribed
form we must have

m2(m1 - 2kx) = C, (6.31)

m, - 2kx = wxC2, (6.32)

w^mj - 2mlk2 = C. (6.33)
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From equation (6.32), m1 — 0 is not admissible. Subtracting equation (6.33) from
equation (6.31) gives

m2kl = mxk2 (6-34)

which implies that ml and m2 have the same sign. For m1 > 0, equation (6.32)
shows that m1 > 2kx > 0 and it follows from equation (6.34) that m2 > 2k2 > 0
in this case. If we put ml — 2kx = m^C2 in equation (6.31), we get

C = l / ( m 1 m 2 ) (6.35)

and equation (6.31) then gives

Mhfm.K^t,)}-1. (6.36)
If m1 < 0, we must take m2 < 0 in using equation (6.36) and the appropriate
values of k2 and C follow from equations (6.34) and (6.35). Since there are no
restrictions on kY when ml < 0, kx can be taken large enough to ensure that
equation (6.28) has a stable C2 solution and this C2 solution maps into a C2
solution of equation (6.29),with the same STF.

7. Discussion of results

It has been assumed throughout that A and Q are both positive and with this
assumption appropriate boundary curves A = A0(Q), A = AY(Q),... A = A4(Q)
have been established for equation (1.2), as a guide to changes in the type of
solution available. Once these, boundary curves are known it is fairly easy to
construct one-parameter equations to illustrate different types of behaviour as the
parameter increases. For example, if we take A = 10 and let Q vary there will be
a range of values of Q (roughly, 1 < Q < 3.5) for which stable C2 solutions occur
but only equilibrium solutions would appear on the iteration diagram for other
values of Q. There would be no solutions with period greater than 2 in this case.
(Compare Figure 2.)

For A = 14 and Q as the parameter, solutions with period three exist for,
roughly, 3 < Q < 5 and this implies that solutions of all periods exist in this
interval. For the C3 solutions there will be two small intervals of stability, one
close to Q = 3 and the other close to Q = 5, with a chaotic region in between. As
Q increases beyond Q = 5 there would be a complete and fairly rapid reversal of
the usual "period-doubling route to chaos". By the time Q = 6 in this case we
have A = 2Q + 2 < A^Q) which means that we are back to equilibrium solu-
tions and any further increase in Q would not change this.

A more artificial example would be to join the point (6,9) in the (Q, A) plane
to the point (1,9) and to join (1,9) to (0.25,30), giving a piecewise linear
relationship between A and Q. In terms of Figure 2, this gives a path which starts
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below A = A^Q), crosses it twice between (6,9) and (1,9) (so that it is below
A = AX(Q) at (1,9)) and then crosses it twice more between (1,9) and (0.25,30).
Where the path is below A = AX(Q) there are only equilibrium solutions; for the
segments which are above A = A^Q) there are stable C2 solutions. If we use arc
length along this path as the parameter (and choose appropriate values for x0)
there would be two bubbles on the iteration diagram, corresponding to the stable
C2 solutions. This illustrates a point made in Section 1 when discussing the paper
by Oppo and Politi [10]. With a little more trouble in defining the relationship
between A and Q it would be possible to have a curve which crosses A = AX(Q)
several times but without crossing A = A2(Q)- For example, we could use

AQ) = MQ) + \{MQ) - A(G)}sin20, (7.1)

with 2 < Q < 18. If we take arc length along this curve as the parameter,
equation (1.2) would give a series of bubbles on the iteration diagram. The main
requirement is that the boundary curves should be known and the need for
symmetry, which is sometimes specified, becomes less apparent.

It was partly to avoid using any symmetry properties that the conditions A > 0
and Q > 0 were maintained throughout Sections 2 to 6. Solutions for Q < 0 can
easily be obtained from the solutions for Q > 0, as pointed out by Bier and
Bountis, but the behaviour for A < 0 would have to be considered separately. The
same approach could be used and a fair number of the equations would remain
unchanged but appreciable changes in behaviour are to be expected in the
solutions. To illustrate this we can take the case Q = 0, which gives

For A > 0 and x0 > 0, it follows that xn > 0 for n = 1,2,3,..., whereas if
A < 0 and x0 > 0 then xn changes sign at each iteration. If xn = Xo is a non-zero
equilibrium solution for A = Ao > 0, then bv = Xo, b2 = -Xo is a C2 solution
for A = -Ao. Indeed equation (7.2) cannot have a non-zero equilibrium solution
for A = -Ao although C2 solutions exist, and are stable, for Ao > 1. In contrast,
for A > 0 there are no C2 solutions but non-zero equilibrium solutions exist, and
are stable, for A > 1.
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