
LETTER TO THE EDITOR

Dear Editor,

Remarks on the Luria-Delbruck distribution

Ma et al. (1992) obtain some asymptotic properties of the Luria-Delbruck (LD)
distribution, i.e. the discrete law whose probability generating function (p.g.f.) is

(1) F (s) = LPnS n = (1 - s) m (l - s)/s

where, for our purposes, m is a positive constant. Properties of this distribution are very
useful in helping to resolve some controversial issues about bacterial mutagenesis. By
writing F(s) as a composite function and using successive differentiation, Ma et al.
derive the computationally efficient recursion

(2)
n -}

Po=e- m , and for n g I, Pn=(m/n) L
;=0 n - i + 1

A formally equivalent, but much easier, approach is just to logarithmically differen
tiate (1) and equate coefficients of powers of s. Probabilists and statisticians will
recognise (2) as an instance of the general identity connecting the masses of a compound
Poisson law with p.g.f. F(s) = exp[ - m (1 - rp(s »] and the masses of the p.g.f. rp. Here

(3) rp(s) = 1 + [(1 - s)/s]log(1 - s),

and it follows that the LD law is infinitely divisible. The general identity referred to here
seems to arise first in the statistical literature of the early 1960s. For references see Ord
(1972), p. 130, and Douglas (1980), p. 86, who cites this relation as ' ... perhaps the most
generally useful formula ...'. In a slightly different form, the identity is a quite well known
criterion for infinite divisibility ofPn; see van Harn (1978), pp. 15-18, for discussion and
references.

Next, Ma et al. seek the asymptotic behaviour of Pn as n -+ 00 using an elementary
theory of discrete convolution powers. The masses corresponding to (3) are fo = 0
and j, = l/n(n + 1), n ~ 1. Letting};,*k denote the masses of the p.g.f. (¢J(S»k, (kEN),
Ma et al. give arguments supporting the asymptotic estimates

(4)

the approximations were found by numerical means. On the basis of a representation
which we express as
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(5)

they assert that

(6)

n
Pn=exp(-m) L (mklk)f,,*k,

k=l
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where (correcting what appears to be an error)

(7)
n

C = exp( - m) L ck2k-Imklk.
k=l

Ma et al. do not separate m and ¢J as we do but work with a(s) = m ¢J(s) and its weights
an = mf". Hence the terms in their version of (5) are an*kIk, and they derive (5)
analytically (and with a small error). Again, probabilists will recognise (5) as the familiar
expression for a compound Poisson law - the sum is finite here because ¢J(O) = o.

Observe that the coefficients 2k-1Ck are approximately 2,3 and 4 for k = 2,3 and 4,
respectively. If this is a general pattern then from (7) we have c ~ m. All of this should
look familiar since it springs fully developed from the long-known and rich theory of
convolution powers of subexponential laws; see Chover et al. (1973) and Embrechts and
Hawkes (1982) for the discrete case we need here.

Indeed, a tabulated power series representation for [log(1 - S)]2 (see Jolly (1961),
p. 21) gives the exact representation

t 2 2 4H(n) - 3 - 21n
In* = +------

n(n + 1) n(n + 1)(n + 2)

where H(n) = Ljn=l II} is the nth harmonic number. Consequently, as n --. 00,

(8)

and it now follows from subexponential theory (Chover et al. (1973), Lemma 5) that

f,,*k~ kin? (n --. 00).

Hence the above approximations for the c, are exact. Again from subexponential theory
(Embrechts and Hawkes (1982), Theorem 1), (8) is equivalent to

(9) Pn~mln2 and Pn+I~Pn.

This 'remarkable' (Ma et al. (1992), p. 262) result is thus explained (and vastly
generalised) through subexponential theory. Indeed, this theory applies to the more
general model of Mandelbrot (1974) where (3) is replaced by

~(s) = as (I u
a

duo
J 0 1 - s(1 - u)

Consequently f" = aB(a + 1, n) where B( · , · ) is the beta function. The parameter a is
interpreted as the ratio of growth rates of normal and mutant bacteria. These formulae
are equivalent to those listed by Mandelbrot (1974) on p. 439. It follows that {f,,} is
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strictly decreasing and r, "" ar(a + l)n -I-a (which contradicts the expression at the top
ofp. 440 in Mandelbrot (1974) which obviously is wrong since it implies that Y(I) has a
finite mean). Hence the conditions of Chover et al. (1973), p. 259, are fulfilled, giving
.f,,*2 "" 2};, and hence Pn "" m};, .

Final comments
1. The derivation of(4) for k = 2 in Appendix B ofMa et al. (1992) yields the precise

value C2 = 1, but this seems to have been lost in the main text.
2. Ma et al. observe that it has long been known that the moments. of {Pn} are infinite.

Certainly this is explicitly stated by Bailey (1964), p. 129 and Bartlett (1978), p. 134. But
Ma et al. make assertions about rates of divergence of the moments. Presumably they
(should) have in mind the asymptotic behaviour of truncated moments

n

Ilk (n) = L j kp)
)=1

as n -+ .x:.. It is clear that

IlI(n)""mlogn

and for k ~ 1,

3. In the context of bacterial mutation the parameter m is an exponentially increasing
function of time; it is the rate of formation of mutant clones. If Zm is the mutant
population size, whose p.g.f. is F(s), then it is clear that Zm -+p 00 as m -+ 00. Elementary
calculation shows that norming and centering gives a non-trivial limit law: as m -+ 00,

(Zmlm) -log m ~ S,

a stable random variable whose characteristic function is

exp[ - 18 I(n12 + (sgn(8)))log I8 I],

but whose distribution does not have an elementary closed form. However, this result
shows that the mutant population size normed by clonal formation rate grows linearly in
time. In particular we have the cruder result Zml(m log m) -+p 1. Thus we have a
pedagogically interesting example of a family of random variables (the Z's) having
accessible distributional properties (via (2)) but having an intractable limit law. Mandel
brot (1974) asserts something like the above limit theorem (see p. 442) where he gives
what seems to be a bilateral Laplace transform of the density of the limit law. But this
transform does not exist! Also, Mandelbrot works with a random sum which has the
same law as the mutant population size, but differs from it.

4. Sarkar et al. (1992) looked at an extension of the LD law due to Bartlett (1978)
which allows for the finite number of cell divisions between seeding and harvesting
the culture used in a fluctuation experiment. Generalising (1) we have Fa (s) =

(1 - s + as )m(l-s)/s which is a p.g.f. iff 0 ~ a < 1. Sarkar et al. (1992) obtain a recursion
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generalising (2) which can easily be derived by logarithmic differentiation, as suggested
above. When a ~ 0 the asymptotic behaviour of the masses Pn(a) is quite different from
the LD case: as n -+ 00,

Pn(a) -..- (1 - a)nnam-1/r(am).

Hence the upper tail is proportional to that of a negative binomial law having
parameters 1 - a and am. Note that this law also is infinitely divisible. I thank the
referee for directing me to this reference.

5. The author is investigating more general mutation models.
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