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ENTRY FLOW IN A STRAIGHT CIRCULAR PIPE
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Abstract

Here we discuss the development of the laminar flow of a viscous incompressible fluid
from the entry to the fully developed situation in a straight circular pipe. Uniform entry
conditions are considered and the analysis is based on the method of matched asymptotic
expansions.

1. Introduction

In a recent study Singh [5] has discussed the entry flow in a curved pipe.
However, his solution is only valid in a region close to the entry. Here we take up
the corresponding study for a straight tube and examine the flow development
from the entry to the fully developed stage. Various techniques are available in
the literature for determining the entry flow in a pipe or channel [1-8]. We follow
Van Dyke's approach of matched asymptotic expansions [7] and analyse the
problem for the case of uniform flow at the entry.

Accordingly, the development of the flow is studied by considering three
regions: (1) an in viscid core, (2) the boundary layer, and (3) the downstream
region (Figure 1). Near the entry, the results are found to be in good agreement
with the numerical solution of Friedmann et al. [3]. The solution for the
developing flow breaks down for the streamwise distance x — O(Re), where Re is
the Reynolds number of the flow, and so we introduce a new streamwise
coordinate | = x/Re in terms of which the new problem determining the down-
stream flow is found to coincide with the problem discussed by Hornbeck [4].
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2. Formulation of the problem

12)

Consider the steady axisymmetric flow of a viscous incompressible fluid with
kinematic viscosity c in a straight circular pipe of radius a. The governing
equations of motion in non-dimensional form are given by

wx = 0,

r~'ur '2 u),

wxx + r'xwr),

(1)

(2)

(3)

uur 4- wux — —pr + Re~'{urr + ux

uwr + wwx = ~px + Re-\wrr

with the entry conditions

M = 0, w = 1 at x = 0,
and the boundary conditions

u = 0, w = 0 at r — 1 for x > 0, (4)

where u and w are the radial and axial velocity components respectively and
Re = awo/y, w0 being the characteristic velocity at the entry.

w=i

—

i ^ ' " a
•

Figure 1. The uniform core model is shown above the centre line. The different regions have been
shown below the centre line as follows I: inviscid core, II: boundary layer, III: downstream region.

In the absence of viscosity, the solution in the core is just the undisturbed entry
flow given by

M = 0, w= 1 and p = -{. (5)

3. Boundary layer solution

As in the classical boundary layer theory, the effect of viscosity will be
confirmed to a thin boundary layer near the wall of the pipe. So, in the boundary
layer, we set

r = l - ^ 7 j , « = )8u, w = w, p=p, (6)
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where /? = Re'l/2. Substituting the expansions

u = M0 + /Ju, 4- . . . ,

and similar expansions for w and p into the equations (l)-(3), the first-order
boundary layer equations are obtained as

-«o, + *o, = 0, (7)

A>, = 0, (8)

-"o*o, + wowOx = -pOx + wOn. (9)

The boundary conditions are

"o = *o = 0 at 17 = 0 for x > 0 (10)

and matching with the undisturbed inviscid flow yields

w0 -> 1 asrj -> oo, (11)

which also holds as x -» 0 + . From equation (8) we find that pQ = pQ(x); but
matching requires that lim p0 = p(core) = constant for all x which implies that

p0 is constant. Thus the pressure gradient term will drop out from equation (9).
The problem is now reduced to the well known Blasius problem. In terms of the
similarity variable f = TJ/ ]/2X and the Blasius function /0(f), the first-order
boundary layer solution is given by

| / 2 (12)

4. Flow due to displacement

The boundary layer thickness grows until it becomes equal to the radius of the
pipe. The effect of the growing boundary layer is to accelerate the motion in the
core. Since the radial component u has not been matched yet with the correspond-
ing undisturbed inviscid core velocity, it induces a second-order flow in the core.
From (12) it follows that, as f -» oo,

where

j8,= lim ( £ - / „ ) = 1.21678.
f-00
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This suggests that the flow field in the core will be of the form

u = pu, + O(p2) + ..., (14)

w= 1 +/?w, + ..., (15)

Substituting the above expansions into the equations (l)-(3) we get the governing
equations for the flow due to displacement as

uK +/•"'«, +w,x = 0, (17)

The appropriate matching condition from (13) is given by

w, = -&x/flx a t r = 1, (20)

and the entry conditions are

P\ = "i = w\ = 0 atx = 0. (21)

Applying the Fourier sine transform to equation (17) and taking advantage of
w, = fii/(2x)3/2 = -p] at r — 1, we get the streamwise velocity in the core as

Pi f°° loiv) sin ax

It may be noted that, to leading order, the volume flux deficiency

/""(I - »v)rf7,
A)

277 / " " (

has an x-dependence, namely y/x". Thus the corresponding extra total flux in the
core associated with w,, in (22), must have the same x-dependence. Also, from
equations (18), (19) and (21) we have

P \ = -*>\> (23)

and

/?, r°° iAor) cos ox , , ^
«, = -7^7 / 1V

 t \ ... do. (24)
f Jo /,(a)o'/2 ^ '

Equation (23) implies that there is a fall in the pressure while (22) shows that,
correspondingly, the core is being accelerated.
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5. Downstream expansion

The two-term upstream expansion (15) breaks down when /Jw, = 0(1). The
asymptotic behaviour of the integral (22) for large x is

r /o(r;2sfr^ ~ r
•'o a l / 2 / , (a) •'o a

Hence, it follows that
fiwx~fixx/2 forx»l,

that is, 0w, = O(l) where x = O(Re).

This non-uniformity for large x suggests a contracted downstream variable
| = x//?e, and thereby we seek a downstream expansion to complement the
upstream expansion in its region of invalidity (Region III, Figure 1). Substituting

x = tf-2, u^-r1^/}2, w = r-%, (26)

into the equations (l)-(5) we get the first order governing equations, the boundary
condition and the matching condition for the downstream expansion as

<27>

*ftt,l) = *,U,l) = O, (28)
and

*,(0, r) = r. (29)
Hornbeck [4] has obtained the finite-difference solution of equation (27) satisfy-
ing (28) and (29). Far downstream from the entrance, this flow approaches the
Poiseuille parabolic distribution.

6. Results and discussion

Figures 2 and 3 represent our two-term upstream solution, one-term down-
stream solution (Hornbeck) vis-a-vis the numerical solution of full Navier-Stokes
equations obtained by Friedmann et al. [3] at the centreline for Re = 100 and 250
respectively. It is seen that the velocity increases more rapidly during the initial
development of the flow in comparison to the downstream flow. The figures also
indicate that our upstream solution is close to Friedmann's numerical solution
near the entry. However, with increasing streamwise distance, our upstream
solution deviates from Friedmann's solution which is understandable because the
latter does not take into account the displacement effect of the boundary layer
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Figure 2. The velocity along the centrehne for uniform entry at Re = 100.
- full Navier-Stokes solution (Friedmann el al.),

• one-term downstream solution (Hornbeck),
-our two-term upstream solution.

Figure 3. The velocity along the centreline for uniform entry at Re = 250.
—X—X— full Navier-Stokes solution (Friedmann et al.),

• one-term downstream solution (Hornbeck),
- our two-term upstream solution.
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(see also [2]). The one-term downstream solution (Hornbeck) understandably
merges with Friedmann's solution as x increases.

Figure 4 shows the pressure variation at the centreline for Re = 100 and 250
respectively. They show how the upstream and downstream solutions merge in the
overlapping region (where x «* 0.15 Re). It is shown that during the initial stages
of the development of the flow, the rate of increase in streamwise velocity is larger
and consequently the pressure drop is larger in comparison with their values
further downstream. This is because the retarded fluid particles in the boundary
layer are pushed towards the core more rapidly near the entry where the
boundary layer is thinner as compared to the downstream region. The tabulated
values of the velocity profile given by Hornbeck have been plotted in Figure 5 for
Re = 100, showing how the fully developed profile is attained.

10 U 18 ?? 26 30 34 38 42 46 50

Figure 4. Pressure variation along the centreline.
—K—*— upstream variation,
—O—O— downstream variation.

0? 0 4 0 6 0-8 10 12 1-4 1.6 1-8 2 0 7 2 2 4

Figure 5. Downstream velocity profile as a function of r for various values of x at Re — 100.
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