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K-Theory of Non-Commutative Spheres
Arising from the Fourier Automorphism
Samuel G. Walters

Abstract. For a dense Gδ set of real parameters θ in [0, 1] (containing the rationals) it is shown that the
group K0(Aθ oσ Z4) is isomorphic to Z9, where Aθ is the rotation C*-algebra generated by unitaries
U , V satisfying VU = e2πiθUV and σ is the Fourier automorphism of Aθ defined by σ(U ) = V ,
σ(V ) = U−1. More precisely, an explicit basis for K0 consisting of nine canonical modules is given.
(A slight generalization of this result is also obtained for certain separable continuous fields of unital
C*-algebras over [0, 1].) The Connes Chern character ch : K0(Aθoσ Z4) → Hev (Aθoσ Z4)∗ is shown
to be injective for a dense Gδ set of parameters θ. The main computational tool in this paper is a group
homomorphism T : K0(Aθoσ Z4) → R8×Z obtained from the Connes Chern character by restricting
the functionals in its codomain to a certain nine-dimensional subspace of Hev (Aθ oσ Z4). The range
of T is fully determined for each θ. (We conjecture that this subspace is all of Hev .)

1 Introduction

For 0 < θ < 1 let Aθ denote the rotation C*-algebra generated by unitaries U , V
satisfying VU = λUV , where λ := e2πiθ. Denote by σ the order-four automorphism
of Aθ defined by

σ(U ) = V, σ(V ) = U−1.

We shall call it the Fourier automorphism because of its close connection with the
Fourier transform of classical analysis (already used in [15] in the construction of
the Fourier module). Throughout, we shall denote the associated crossed product by
Bθ := Aθ �σ Z4, where Z4 = Z/4Z.

The basic problem here is to compute the K-groups of Bθ, particularly K0(Bθ), for
any θ, to find a canonical basis for it, and to compute (as much as possible) the asso-
ciated Connes Chern character. The difficulty of this problem is due to the fact that
there are no known tools for calculating the K-groups of crossed products by finite
cyclic groups (analogous to the Pimsner-Voiculescu sequence for crossed products by
the integers [10] and by the free group on a finite number of generators [11]). A sec-
ond problem is whether Bθ is approximately finite dimensional when θ is irrational,
as is the case for the flip automorphism [3], [14], and whether the Fourier automor-
phism is an inductive limit of type I automorphisms as is true for the flip [14]. (See
the Addendum at the end of the paper.) These and other questions related to the
Fourier automorphism were raised by George Elliott in private communication with
the author and have been of interest to him.
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632 Samuel G. Walters

We shall use Aθ to also denote its canonical smooth dense *-subalgebra under
the canonical toral action, and by Bθ the dense *-subalgebra of elements of the form∑

j a jW j where a j are smooth elements in Aθ, j = 0, 1, 2, 3, and W is the canoni-

cal (order four) unitary of the crossed product implementing σ by σ(a) = WaW−1.
(This identification is justified since both the C*-algebra and its smooth *-subalgebra
have the same K-theory, since the dense *-subalgebras are closed under the holomor-
phic functional calculus, and since it will be clear from the context which algebra is
intended.)

In [15], the author constructed nine canonical modules over Bθ and showed (us-
ing theta functions) that they give rise to nine independent positive classes in K0(Bθ)
for each θ (rational or irrational). This was done by examination of the Connes
Chern character

ch : K0(Bθ)→ Hev (Bθ)∗

where Hev (Bθ) is Connes’ even periodic cyclic cohomology group and Hev (Bθ)∗ is its
vector space dual [5, III]. (We prefer to view the codomain of ch as above instead of
the usual cyclic homology group so as to readily use Connes’ canonical pairing be-
tween K0 and cyclic cohomology.) From ch a group homomorphism T : K0(Bθ) →
R8 × Z can be defined by taking the Connes Chern character ch(x) of each element
x in K0(Bθ) and restricting it to a certain (nine-dimensional) subspace of Hev (Bθ)
spanned by the traces on the (smooth) algebra Bθ (as in [15]) and by Connes’ canon-
ical cyclic 2-cocycle (as in [4] or [5, III.2.β]). It was shown in [15] that T is injective
when θ is rational. This suggests, presumably, that the subspace in question is all
of Hev(Bθ) and that ch will in fact turn out to be, after tensoring with the complex
plane, an isomorphism. (In view of this, we shall sometimes refer to T as the Connes
Chern character.)

The first result of the present paper is to show that the nine modules under consid-
eration generate (and so form a basis for) K0(Bθ) when θ is rational (Corollary 6-C).
Together with Corollary 7.3-E (Section 7.3), this result yields a suitable parametriza-
tion of K0(Bθ) which is independent of θ. These results culminate with the following
main theorem:

Theorem There is a dense Gδ set of parameters θ (containing the rationals) such that
K0(Bθ) is isomorphic to Z9. In addition, for such parameters,

(i) the nine canonical modules form a basis for K0(Bθ),
(ii) the Connes Chern character ch : K0(Bθ)→ Hev (Bθ)∗ is injective,
(iii) the range of T : K0(Bθ)→ R8 × Z is the integral span of the rows in the Character

Table (in Section 2.1) for all θ,
(iv) K1(Bθ) = 0.

In particular, these conclusions hold for many irrationals. The fact that K0(Bθ) ∼=
Z9 for rational θ is a result of [7]. One of the results used in the proofs below (es-
pecially in Section 3) is a realization, in the rational case, of Bθ as a 2-sphere with
singularities due to Farsi and Watling [7, Theorem 6.2.1]. (Some corrections to the
latter paper in this connection, to be used here, are noted in the Appendix below
(Section 8).)
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In Section 7, the context of the present situation (the existence of a finite num-
ber of generating modules) is generalized slightly by imposing two hypotheses on a
separable continuous field of C*-algebras {Ct : 0 ≤ t ≤ 1} so as to obtain the same
conclusion—namely, that the K-groups are the same on a dense Gδ set of the param-
eter t if they are the same on a dense set of parameters t . (See Corollary 7.3-E and
hypotheses (H1) and (H2) of Section 7.1.) Also obtained are K-group short exact se-
quences involving the C*-algebra of the field Γ and each fiber Ct (Corollary 7.3-E(c)).
In fact, it is shown (under (H1)) that there is a canonical surjection K0(Γ)→ K0(Ct )
for each t (induced by the evaluation map at t); see Corollary 7.3-E(b).

2 Nine Modules and the Connes Chern Character

Throughout, we shall assume that 0 < θ < 1 and adopt the notation

e(t) := exp(2πit).

Thus λ = e(θ). When considering the case that θ is rational, we shall tacitly assume
throughout that θ = p/q where p < q are positive relatively prime integers.

2.1 The Nine Modules

As in [15], one has the following six projections in Bθ

(2.1.1)

P1(θ) = 1
2 (1 + W 2)

P2(θ) = 1
2 +
(

1+i
4

)
W +
(

1−i
4

)
W 3

P3(θ) = 1
4 (1 + W + W 2 + W 3)

P4(θ) = 1
2 (1 + λ1/2UVW 2)

P5(θ) = 1
2 +
(

1+i
4

)
λ1/4UW +

(
1−i

4

)
λ−1/4VW 3

P6(θ) = 1
4 (1 + λ1/4UW + λ1/2UVW 2 + λ−1/4VW 3).

Note that the last three are obtained from the first three by replacing W by the (order
four) unitary λ1/4UW . One further has the Fourier module Fθ over Bθ (0 < θ < 1)
obtained by equipping the Heisenberg module (see [4]) over Aθ with the action of
W represented by a suitable scaling of the Fourier transform on the Schwartz space
S(R) (see [15, Section 3]). Using the dual automorphism σ̂ of Bθ (which fixes U and
V and maps W to iW ), one obtains two other modules denoted in [15] by Fθ(i) and
Fθ(−1), where the action of W is multiplied by i and−1, respectively. For simplicity,
we shall write (taking the module picture)

P7(θ) = Fθ, P8(θ) = Fθ(i), P9(θ) = Fθ(−1).

The algebra Bθ has the canonical (bounded) trace τι given by

τι
( 3∑

j=0

a jW
j
)

= τι(a0)
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for a j ∈ Aθ, where τι(a0) is the canonical trace of a0 in Aθ (relative to the unitaries
U , V ). In [15] it was shown that one has the following unbounded traces on Bθ (the
smooth *-subalgebra) given by

T20(U mV nW 2) = λ−mn/2δm,0δn,0 T10(U mV nW 3) = λ(m−n)2/4δm,n

T21(U mV nW 2) = λ−mn/2δm,1δn,1 T11(U mV nW 3) = λ(m−n)2/4δm,n+1(2.1.2)

T22(U mV nW 2) = λ−mn/2δm,n+1

where at other generic elements U mV nW k they vanish, and δr,s is the usual δ-function
and m is m reduced modulo 2. (Note that the T11 of [15] has here been multiplied by
λ1/4 for normalization.)

Observe that the maps T2 j are self-adjoint trace functionals, but that T1 j are not
self-adjoint. This unfortunate choice (made in [15] and [16]), while not incorrect,
can now be mended by looking at the real and imaginary parts of T1 j . Let

φ0 = 1
2 (T10 + T∗

10), φ ′
0 = − i

2 (T10 − T∗
10)

be the real and imaginary parts of T10, respectively, and

φ1 = 1
2 (T11 + T∗

11), φ ′
1 = − i

2 (T11 − T∗
11)

be those of T11 (where T∗(x) := T(x∗)).
The last invariant we need to recall is Connes’ canonical cyclic 2-cocycle given on

the rotation algebra Aθ by

(2.1.3) ϕ(x0, x1, x2) =
1

2πi
τι
(

x0[δ1(x1)δ2(x2)− δ2(x1)δ1(x2)]
)

(see [5, III.2.β]) where δ j , j = 1, 2, are the canonical derivations of Aθ under the
canonical action of the 2-torus T2 (relative to U ,V ). The Chern character invari-
ant that ϕ induces is the group homomorphism c1 : K0(Aθ) → Z given by the cup
product

(2.1.4) c1[E] := (ϕ # Trn)(E, E, E)

for E any smooth projection in Mn(Aθ). In [15, Section 2], this invariant was ex-
tended to Bθ by taking the composition

(2.1.5) C1 := c1 ◦Ψ∗ : K0(Bθ)→ Z

where Ψ : Bθ → M4(Aθ) is the canonical injection given by, for a =
∑

j a jW j ∈ Bθ,

(2.1.6) Ψ(a) = [σ−i(ai− j)]3
i, j=0 =


a0 a3 a2 a1

σ3(a1) σ3(a0) σ3(a3) σ3(a2)
σ2(a2) σ2(a1) σ2(a0) σ2(a3)
σ(a3) σ(a2) σ(a1) σ(a0)


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where i − j is reduced mod 4 and where a j ∈ Aθ. (To clarify Ψ∗, if E is a projection
in some matrix algebra over Bθ, then Ψ(E) is a projection in some matrix algebra
over M4(Aθ), hence in a matrix algebra over Aθ , and thus gives a class in K0(Aθ)—e.g.
Ψ∗[1] = 4[1]K0(Aθ).) For example (and we shall need this later), if eθ is a smooth
Powers-Rieffel projection in Aθ with trace θ (0 < θ < 1 rational or irrational) then,
viewing eθ as an element of Bθ via the canonical inclusion Aθ ↪→ Bθ, one has

C1[eθ] = −4.

This follows since c1[eθ] = −1, Ψ(eθ) = diag
(

eθ, σ3(eθ), σ2(eθ), σ(eθ)
)

, and
[σ(eθ)] = [eθ] in K0(Aθ), so that Ψ∗[eθ]K0(Bθ) = 4[eθ]K0(Aθ), where Ψ∗ : K0(Bθ) →
K0(Aθ) is the induced map.

Consider the Connes Chern character

ch : K0(Bθ)→ HCev (Bθ)∗

where HCev (Bθ)∗ is the complex vector space dual of the even periodic cyclic coho-
mology group [5, III.1.α]. From this, one defines the map T : K0(Bθ) → R8 × Z by
the pairing

T(x) = 〈(τι ;φ0, φ
′
0, φ1, φ

′
1; T20,T21,T22; C1), ch(x)〉

:=
(
τι(x);φ0(x), φ ′

0(x), φ1(x), φ ′
1(x); T20(x),T21(x),T22(x); C1(x)

)
.

All computations below will be done in terms of this map (as was done in [15]), and
there is some justification for calling T the Connes Chern character, since there is
evidence that after tensoring with C, one eventually has an isomorphism

chC : K0(Bθ)⊗ C→ HCev (Bθ)∗

between vector spaces of dimension nine. The evidence for this comes from the fact
proved in [15, Theorem 2.3] that for irrational θ one has HC0(Bθ) ∼= C8 and has
as basis {τι , φ0, φ

′
0, φ1, φ

′
1,T20,T21,T22}. These, together with the class associated to

Connes’ cyclic 2-cocycle would presumably constitute a basis for HCev (Bθ), which
the author suspects is HC0(Bθ)⊕HC2(Bθ) modulo identifications given by the peri-
odicity operator S (in Connes’ notation) after tensoring with the complex plane over
the ring HC∗(C). This further suggests that the Hochschild dimension of Bθ is two, as
Connes showed to be the case for the rotation algebra. (Of course, for rational θ, the
group HC0(Bθ) is infinite dimensional, but one would still expect that the periodic
cohomology group HCev (Bθ) to be finite dimensional—in fact, nine-dimensional.)

For the identity element and the Powers-Rieffel projection one clearly has

T(1) = (1; 0, 0, 0, 0; 0, 0, 0; 0), T(eθ) = (θ; 0, 0, 0, 0; 0, 0, 0;−4).

The main result of [15] is the data of Connes Chern character values for the above
nine modules for any θ shown in Table 1.

Table 1 yields the following.

Theorem 2.1 ([15, Theorem 2.4]) For 0 < θ < 1, the nine modules {P1(θ), . . . ,
P9(θ)} give rise to independent classes in K0(Bθ). When θ is rational, the map T is injec-
tive on K0(Bθ), and hence so is the Connes Chern character ch : K0(Bθ)→ HCev (Bθ)∗.
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Projection τι φ0 φ ′
0 φ1 φ ′

1 T20 T21 T22 C1

P1(θ) 1
2 0 0 0 0 1

2 0 0 0

P2(θ) 1
2

1
4 − 1

4 0 0 0 0 0 0

P3(θ) 1
4

1
4 0 0 0 1

4 0 0 0

P4(θ) 1
2 0 0 0 0 0 1

2 0 0

P5(θ) 1
2 0 0 1

4 − 1
4 0 0 0 0

P6(θ) 1
4 0 0 1

4 0 0 1
4 0 0

P7(θ) θ
4

1
8

1
8

1
8

1
8

1
8

1
8

1
4 −1

P8(θ) θ
4 − 1

8
1
8 − 1

8
1
8 − 1

8 − 1
8 − 1

4 −1

P9(θ) θ
4 − 1

8 − 1
8 − 1

8 − 1
8

1
8

1
8

1
4 −1

Table 1: Character Table

Notation We shall denote by Rθ the subgroup of K0(Bθ) generated by the classes
{P j(θ)}9

j=1.

Consider the element of K0(Bp/q) defined by (for relatively prime integers p, q)

κp,q = (p + q)([P1]− 2[P3] + [P4]− 2[P6])

+ p([P2] + [P5] + [P7])− 2q[P8]− (2q + p)[P9].
(2.1.7)

(Here, each P j is evaluated at θ = p/q.) It is easy to check that T(κp,q) = (0; 0, 0, 0, 0;
0, 0, 0; 4q) from Table 1. Since T(p[1] − q[eθ]) = (0; 0, 0, 0, 0; 0, 0, 0; 4q) = T(κp,q),
the injectivity of T (in the rational case, Theorem 2.1) gives the equality

p[1]− q[eθ] = κp,q

in K0(Bθ). In fact, in the same manner one easily checks that the Powers-Rieffel
projection eθ is related to the nine modules as follows for rational θ

[eθ] = −[P1] + 2[P3]− [P4] + 2[P6] + 2[P8] + 2[P9]

in K0(Bθ) (the right side evaluated at θ). This shows that [eθ] ∈ Rθ for rational θ.
Define the reduced character T ′ : K0(Bθ) → R8 to be the degree zero part of the

Connes Chern character T, namely,

T ′ = (τι ;φ0, φ
′
0, φ1, φ

′
1; T20,T21,T22).
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Sometimes, especially in Sections 4 and 5, we shall collapse φ j , φ ′
j back to T1 j and

simply write T ′ = (τι ; T10,T11; T20,T21,T22). This will help simplify matters later on
and so will be more convenient to do.

Note that κp,q is in Ker(T ′) from above. Two key steps in the proofs below is to
show that in fact κp,q generates Ker(T ′) (Corollary 5-D) and that the range of T ′ on
K0(Bθ) is equal to its range on Rθ for θ in a special dense set of rationals Q ′ described
in Section 2.3 (Proposition 4-D). These steps lead one to the equality

K0(Bp/q) = Rp/q

from which it follows that the modules P j(p/q) form a basis for K0(Bp/q).

2.2 Realization of Ap/q as a Dimension-Drop Algebra

Begin with the following realization of the rational rotation algebra as the subalgebra
of C([0, 1]× [0, 1],Mq) given in [2, p. 64], by

Ap/q =
{

f ∈ C([0, 1]× [0, 1],Mq) : f (x, 1) = α1

(
f (x, 0)

)
,

f (1, y) = α2

(
f (0, y)

)}(2.2.1)

where Mq := Mq(C) is generated by the unitaries

U0 =


1 0 · · · 0
0 λ · · · 0
...

...
. . . 0

0 0 · · · λq−1

 , V0 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


satisfying V0U0 = λU0V0, where λ = e(p/q), and α1, α2 are the automorphisms of
Mq given by

α1(U0) = U0, α2(U0) = wU0

α1(V0) = wV0, α2(V0) = V0

where w = e(1/q). With this realization, the canonical generators U , V of Aθ are
given by the functions

U (x, y) = e(x/q)U0, V (x, y) = e(y/q)V0

and the Fourier automorphism is given by

σ( f )(x, y) = σ0

(
f (y, 1− x)

)
where σ0 ∈ Aut(Mq) is given by

σ0(U0) = V0, σ0(V0) = wU−1
0 .
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In addition, the following q× q matrices were introduced in [2]:

Γ0 =


1 0 0 · · · 0
0 0 0 · · · 1
...

...
... ··· ...

0 0 1 · · · 0
0 1 0 · · · 0

 ,

W1 = U−p ′
0 =


1 0 · · · 0
0 w · · · 0
...

...
. . . 0

0 0 · · · wq−1

 , W2 = V−p ′′
0 =

[
0 Ip ′ ′

Iq−p ′′ 0

]

where In is the n× n identity matrix, and p ′, p ′′ are the unique integers in [1, q− 1]
such that

(2.2.2) pp ′ ≡ −1 mod q, pp ′′ ≡ 1 mod q.

In [7] the following q× q matrix was introduced (in addition to the above)

W0 =
1√
q


1 1 1 · · · 1
1 λ λ2 · · · λq−1

1 λ2 λ4 · · · λ2(q−1)

...
...

...
. . .

...

1 λq−1 λ2(q−1) · · · λ(q−1)2

 .

One has the following relations that will be used below

(2.2.3)
W 2

0 = Γ0, W0V0 = U−1
0 W0, W0U0 = V0W0,

W0W1 = W−1
2 W0, W0W2 = W1W0.

It is easy to see that α1(x) = W−1
1 xW1 and α2(x) = W−1

2 xW2. Using the inner
automorphisms α0(x) = W−1

0 xW0 and γ0(x) = Γ−1
0 xΓ0 (as in [7]) the relations

(2.2.3) yield

(2.2.4)
α0(U0) = V−1

0 , α1(U0) = U0, α2(U0) = wU0, γ0(U0) = U−1
0

α0(V0) = U0, α1(V0) = wV0 α2(V0) = V0, γ0(V0) = V−1
0 .

Further, if

(2.2.5) W ′
0 = λ−p ′p ′ ′/4W0W1

(which is denoted by W̃0W1 in [7]), then W ′
0

4 = 1 and one easily checks that σ0(x) =
W ′

0 xW ′
0
−1.

These matrices are used in [2] and [7] in their realizations of the crossed products
Aθ�Z2 (under the flip) and Bθ, respectively, as spheres with singularities. In Section 3
below, the basic facts related to Bθ (when θ is rational) from [7] are recalled for use
in this paper (with some corrections made in Section 8).
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2.3 The Subset of Rationals Q ′

Given positive relatively prime integers p, q, let p ′, p ′ ′ be the integers as in (2.2.2)
and write pp ′ = −1 + qp̃, pp ′ ′ = 1 + qq̃ for some integers p̃ and q̃. One easily checks
that p = p̃ + q̃ and q = p ′ + p ′′. In the present paper we shall be interested in the
following dense set of rational numbers in (0, 1)

(2.3.1) Q ′ :=
{

2d(2k)+1
4d : k = 1, . . . , 2d−1 − 1, d ≥ 2

}
.

For such rationals, p = 2d(2k) + 1, q = 4d, and one can verify directly that

(2.3.2) p ′ = 2d(2k)−1, p ′′ = 2d(2d−2k)+1, p̃ = 4k2, q̃ = 2k(2d−2k)+1.

This choice will facilitate the computation of the Gaussian sums that arise below. In
this case the Gaussian sum G(p, q) :=

∑q−1
j=0 e2πi p j2/q takes the simpler form (see [8])

(2.3.3) G(p, 4d) = 2d(1 + i p).

2.4 The Connes Chern Character on Aθ (For Rational θ)

Realizing Aθ as Mq-valued functions on the unit square, as in (2.2.1), where θ = p/q,
the canonical trace is given by

τι(F) =
1

q

∫ 1

0

∫ 1

0
Trq

(
F(x, y)

)
dx dy

for F ∈ Aθ, where Trq is the usual trace on Mq(C). Also, the canonical derivations of
Aθ are given by

δ1 = q
∂

∂x
, δ2 = q

∂

∂y
.

They are defined by

δ1(U mV n) = 2πimU mV n, δ2(U mV n) = 2πinU mV n.

Connes’ canonical cyclic 2-cocycle is given by (see [5, III.2.β])

ϕq(F0, F1, F2) =
1

2πi
τι
(

F0[δ1(F1)δ2(F2)− δ2(F1)δ1(F2)]
)

=
1

2πi

1

q

∫ 1

0

∫ 1

0
Trq

(
F0[δ1(F1)δ2(F2)− δ2(F1)δ1(F2)]

)
dx dy

=
q

2πi

∫ 1

0

∫ 1

0
Trq

(
F0
[ ∂F1

∂x

∂F2

∂y
− ∂F1

∂y

∂F2

∂x

])
dx dy

where F j ∈ Aθ (are smooth elements). The extension of ϕq to Mn(Aθ) is given by the
cup product

(ϕq # Trn)(F0 ⊗ a0, F1 ⊗ a1, F2 ⊗ a2) = ϕq(F0, F1, F2) · Trn(a0a1a2)
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where F j ∈ Aθ and a j ∈ Mn(C). The Chern character invariant of Connes is then
given by: c1 : K0(Aθ)→ Z,

c1[Q] := 〈[Q], ϕq〉 = (ϕq # Trn)(Q,Q,Q),

where Q is a projection in Mn(Aθ). For 0 < θ < 1 the Powers-Rieffel projection eθ
has c1(eθ) = ϕq(eθ, eθ, eθ) = −1 (as was shown by Connes). For θ = 1, one can
show that c1 of the Bott projection is ±1, depending on the choices made for it (see
Section 5 below for details, and the footnote there).

2.5 Gaussian Sums

Recall the classical quadratic Gauss sum defined by

G(p, q) :=
q−1∑
j=0

exp(2πi j2 p/q) =
q−1∑
j=0

λ j2

where p, q are relatively prime positive integers and λ = e2πi p/q. For relatively prime
positive integers p, q and any m ∈ Z define the following variant of the Gaussian sum

F(p, q; m) :=
q−1∑
j=0

λ j2+m j =
q−1∑
j=0

exp
(

2πi( j2 + m j)p/q
)
,

F(p, q) := F(p, q; 1) =
q−1∑
j=0

exp
(

2πi( j2 + j)p/q
)
.

(These sums arise in our trace computations below.) Suppose first that m = 2n.
Then

F(p, q; m) = exp(−2πi pn2/q) ·
q−1∑
j=0

exp
(

2πi( j + n)2 p/q
)

= exp(−πi pm2/2q) · G(p, q)

since the terms in the preceding summation are just a cyclic permutation of the terms
comprising G(p, q). Now suppose m = 2n + 1 is odd. Then by the same reasoning
one has

F(p, q; m) = exp
(−2πi p(n2 + n)/q

) · q−1∑
j=0

exp
(

2πi[( j + n)2 + ( j + n)]p/q
)

= exp
(−πi p(m2 − 1)/2q

) · F(p, q).

Therefore, in either case one has

(2.5.1) F(p, q; m) = λ−m2/4G(p, q)δm,0 + λ−(m2−1)/4F(p, q)δm,1.
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Lemma 2.5-A Let λ = e2πi p/q, where p < q are relatively prime positive integers.
Then for q = 4d, where d is a positive integer, one has

F(p, 4d) = 0, and F(p, 4d; m) = 2d(1 + i p)λ−m2/4δm,0.

Proof Once F(p, 4d) = 0 has been proven, one uses the fact that G(p, 4d) =
2d(1 + i p) to get, from (2.5.1),

F(p, q; m) = λ−m2/4G(p, q)δm,0 = 2d(1 + i p)λ−m2/4δm,0

giving the second equality. To see the first equality, we will show more generally that
if 4 divides q (so that p is odd), then F(p, q) = 0. Dividing the sum as follows

F(p, q) =
q−1∑
j=0

λ j2+ j =

q
2−1∑
j=0

λ j2+ j +
q−1∑
j=

q
2

λ j2+ j

set k = j − q
2 in the second sum, and since q/4 is an integer and λq/2 = −1, one

obtains

F(p, q) =

q
2−1∑
j=0

λ j2+ j +

q
2−1∑
k=0

λk2+kλq(q/4)λq/2 =

q
2−1∑
j=0

λ j2+ j −
q
2−1∑
k=0

λk2+k = 0.

Lemma 2.5-B For relatively prime p, q one has

Tr(U m
0 V n

0 W 2
0 ) = λ−mn/2

(
δn,0 + (−1)pmδn,q

)
,

Tr(U m
0 V n

0 W 3
0 ) = 1√

q F(p, q,m− n)

Tr(U m
0 V n

0 W ′
0

3
) = 1√

qλ
p ′p ′ ′/4λnp ′

F(p, q,m + p ′ − n).

In particular, when q = 4d (where d is a positive integer) these become

Tr(U m
0 V n

0 W 2
0 ) = 2T20(U mV nW 2),

Tr(U m
0 V n

0 W 3
0 ) = (1− i p)T10(U mV nW 3),

Tr(U m
0 V n

0 W ′
0

3
) = −i(1− i p)λp ′(m+n)/2T11(U mV nW 3).

Proof Since

V n
0 =
[

O Iq−n

In O

]
one decomposes W0 into the following block form

W0 =
[

n× (q− n) n× n
(q− n)× (q− n) (q− n)× n

]
= 1√

q

[∗ X
Y ∗

]
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where, writing out only the (relevant) diagonal entries,

X =



1
λq−n+1

. . .
λ j(q−n+ j)

. . .
λ(q−1)(n−1)


where j = 0, 1, . . . , n− 1, and

Y =



1
λn+1

. . .
λ j(n+ j)

. . .
λ(q−1)(q−n−1)


where j = 0, 1, . . . , q − n − 1 (the non diagonal entries here have been left blank).
From this one has

U m
0 V n

0 W0 = 1√
qU m

0

[
O Iq−n

In O

] [∗ X
Y ∗

]
= 1√

qU m
0

[
Y ∗
∗ X

]
and since

U m
0 = diag(1, λm, · · · , λm(q−n−1) | λm(q−n), · · · , λm(q−1))

one obtains

√
q Tr(U m

0 V n
0 W0) =

q−n−1∑
j=0

λm j · λ j(n+ j) +
n−1∑
j=0

λm(q−n+ j) · λ j(q−n+ j).

Making the translation k = j + n in the first sum it becomes
∑q−1

k=n λ
m(k−n) · λk(k−n)

which has the same type of terms as the second sum. Thus (and using λq = 1),

√
q Tr(U m

0 V n
0 W0) = λ−mn

q−1∑
k=0

λk2+(m−n)k = λ−mnF(p, q,m− n)

so that one gets
Tr(U m

0 V n
0 W0) = 1√

qλ
−mnF(p, q,m− n).

From this one easily gets

Tr(U m
0 V n

0 W 3
0 ) = λ−mnTr(U−m

0 V−n
0 W0) = 1√

q F(p, q,m− n)
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as required. From this one gets, after recalling that W ′
0 = λ−p ′p ′ ′/4W0W1 =

λ−p ′p ′′/4W0U−p ′
0 ,

Tr(U m
0 V n

0 W ′
0

3
) = Tr(U m

0 V n
0 W ′

0
−1

)

= λp ′ p ′′/4 Tr(U m
0 V n

0 U p ′
0 W 3

0 )

= λp ′ p ′′/4λnp ′
Tr(U m+p ′

0 V n
0 W 3

0 )

= λp ′ p ′′/4λnp ′ 1√
q F(p, q,m + p ′ − n) .

Next we compute Tr(U m
0 V n

0 W 2
0 ). Since W 2

0 = Γ0,

V n
0 W 2

0 =
[

O Iq−n

In O

]
·


1 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
...

... . . . ...
0 1 · · · 0 0

 =
[

Sq−n+1 O
O Sn−1

]

where Sk the k× k symmetry matrix

Sk =


0 · · · 0 1
0 · · · 1 0
... . . . ...

...
1 · · · 0 0

 .
So

U m
0 V n

0 W 2
0 =


1 0 · · · 0
0 λm · · · 0
...

...
. . . 0

0 0 · · · λm(q−1)

 ·
[

Sq−n+1 O
O Sn−1

]
=
[

Xq−n+1 O
O Yn−1

]

where

Xq−n+1 =


0 · · · 0 1
0 · · · λm 0
... . . . ...

...
λm(q−n) · · · 0 0

 ,

Yn−1 =


0 · · · 0 λm(q−n+1)

0 · · · λm(q−n+2) 0
... . . . ...

...
λm(q−1) · · · 0 0

 .
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Therefore,

Tr(U m
0 V n

0 W 2
0 ) = λm(q−n)/2δq−n,0 + λ−mn/2δn,0 = λ−mn/2

(
δn,0 + (−1)pmδn,q

)
.

Specializing to the case q = 4d (so p is odd) and using Lemma 2.5-A one has

Tr(U m
0 V n

0 W 3
0 ) = 2d

√
q (1 + i p)λ(m−n)2/4δm,n = (1 + i p)T10(U mV nW 3),

Tr(U m
0 V n

0 W 2
0 ) = λ−mn/2

(
1 + (−1)m

)
δn,0 = 2λ−mn/2δm,0δn,0 = 2T20(U mV nW 2),

and (as p, p ′ are odd and q = p ′ + p ′′, from Section 2.3)

Tr(U m
0 V n

0 W ′
0

3
) = 1√

qλ
p ′p ′ ′/4λnp ′

F(p, 4d,m + p ′ − n)

= 1√
qλ

p ′p ′ ′/4λnp ′ · 2d(1 + i−p)λ(m+p ′−n)2/4δm+p ′,n

= (1− i p)λ(p ′ p ′ ′+p ′2)/4λp ′(m+n)/2 · λ(m−n)2/4δm+1,n

= −i(1− i p)λp ′(m+n)/2T11(U mV nW 3)

since λ(p ′p ′ ′+p ′2)/4 = λp ′q/4 = e(pp ′/4) = e
(

(−1 + qp̃)/4
)

= −i, as required.

3 Relation Between Two Sets of Unbounded Traces

In [7] it is proved that the algebra Bθ, for rational θ = p/q (with (p, q) = 1), is
isomorphic to a subalgebra of C(S2,M4q) of functions that commute with certain
projections at three special points (which we refer to as “singularities”). As they do,
we shall identify the 2-sphere with the triangle T (shown in the figures below) with
the appropriate edges identified. We shall use T to denote the triangle without iden-
tifying its edges and write S2 to denote the triangle with its edges identified. For con-
venience, we shall view this subalgebra as the set of all functions that commute with
certain finite-order unitaries at the singular points. More precisely, Bθ is isomorphic
to (see [7, Theorem 6.2.1])

(3.1) Sθ :=

F ∈ C(S2,Mq ⊗M4) :

F(0, 0) ←→ W−1
0 ⊗ D,

F
(

1
2 ,

1
2

) ←→ (W−1
0 W ′

0
−1W0)⊗ D,

F
(

1
2 , 0
) ←→ Γ0W2 ⊗ D2


where (0, 0),

(
1
2 ,

1
2

)
,
(

1
2 , 0
)

are the singular points and X ↔ Y means that X and

Y commute, and where D = diag(1,−1, i,−i) (which is Ẑ in the notation of [7]).
It is easy to see that the canonical trace on Sθ , which arises from that of Aθ given in
Section 2.4, is given by

τι(F) =
1

q

∫∫
T

Tr4q

(
F(x, y)

)
dx dy.
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(Which is clearly normalized.)
To obtain the isomorphism Bθ → Sθ, one considers (as in [7, p. 1190]) the inter-

mediate algebra

(3.2) Tθ :=
{

g ∈ C(T,Mq ⊗M4) :
g(x, x) = (α1α0 ⊗ Ad D−1)

(
g(1− x, x)

)
g(x, 0) = (α2γ0 ⊗ Ad D2)

(
g(1− x, 0)

) } .
At this point we draw the reader’s attention to the Appendix below for the corrections
to [7] to be used freely henceforth (and already included in (3.1) and (3.2) above).

There are isomorphisms

(3.3) Bθ
γ−−−−→ Tθ

β−−−−→ Sθ

given by, for f ∈ Aθ (viewed as a function on the unit square as in Section 2),

γ( f ) =
1

4


f0 f2 f1 f3

f2 f0 f3 f1

f3 f1 f0 f2

f1 f3 f2 f0

 , and γ(W ) = Iq ⊗ D =


Iq

−Iq

iIq

−iIq

 ,
where

fk :=
3∑

j=0

i jkσ j( f )

which is restricted to the triangle T and belongs to the vector space

(3.4) Aτ
θ(ik) :=

{
g ∈ C(T,Mq) :

g(x, x) = ikα1α0

(
g(1− x, x)

)
g(x, 0) = (ik)2α2γ0

(
g(1− x, 0)

)} ,
where τ here is our σ−1 (see (8.1) of the Appendix.) Conversely, if gk are functions in
Aτ
θ(ik), k = 0, 1, 2, 3, then it is not hard to see that there is a unique function f ∈ Aθ

such that fk = gk for each k.
The map β can be described as follows (after a careful examination of the proofs

in Sections 4.2 and 6.2 of [7]). For g ∈ Tθ one defines β(g) to be the continuous
function on T (as a 2-sphere) such that

(3.5) β(g)(s) := (Rs ⊗ Ds) · g(s) · (Rs ⊗ Ds)
−1

for s ∈ T − {s j}, where s �→ Rs and s �→ Ds are unitary-valued functions on T (with
respective values in Mq(C) and M4(C)) that are continuous on T − {s j} and have
edge-limits as indicated in the figure shown below. The mapping Ds can be chosen
to be diagonal-valued, a fact used below. Necessarily, these functions have jump
discontinuities at the singular points, but they are carefully chosen so that β(g)(s)
is well-defined and continuous on S2—see [7, p. 1190].

The algebra Sθ has ten trace functionals that arise from the three singular points.
Given F ∈ Sθ at each such point one can take the trace of any one of the block
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(0, 0) ( 1
2 , 0)

( 1
2 ,

1
2 )

(1, 0)

λ−p ′ p ′ ′/4W−1
0 Γ0W2

Γ0W2I

Indicated unitaries are the edge-limits
of the function s → Rs

(0, 0) ( 1
2 , 0)

( 1
2 ,

1
2 )

(1, 0)

D−1 D2

D2I

Edge limits of the function s → Ds

Figure 1: The triangle T and the 2-sphere S2

decompositions of F(s) relative to the corresponding unitary that it commutes with.
But instead of doing this it will be more convenient to consider the following trace
functionals

(3.6)

τι 1k(F) = Tr
(

F(0, 0)(W−1
0 ⊗ D)k

)
k = 0, 1, 2, 3

τι 2k(F) = Tr
(

F
(

1
2 ,

1
2

) · ( (W−1
0 W ′

0
−1

W0)⊗ D
) k
)

k = 0, 1, 2, 3

τι 0k(F) = Tr
(

F
(

1
2 , 0
)

(Γ0W2 ⊗ D2)k
)

k = 0, 1.

(These are in fact tracial maps on Sθ .) To simplify, denote the underlying unitaries in
each case by w j ⊗ Z j and the respective singular points by s1 = (0, 0), s2 =

(
1
2 ,

1
2

)
,

s0 =
(

1
2 , 0
)

, so that (3.6) can be written as

τι jk(F) = Tr
(

F(s j )(w j ⊗ Z j)
k
)
.

Let Y := {s0, s1, s2}. Fixing f ∈ Aθ and expanding γ( f ) as

γ( f ) = 1
4

(
f0 ⊗ I4 +

3∑
j=1

f j ⊗ (matrices with zero diagonal)
)

one has, for s in T − Y ,

β
(
γ( f )
)

(s) = (Rs ⊗ Ds) · γ( f )(s) · (Rs ⊗ Ds)
−1

= 1
4

(
Rs f0(s)R∗

s

) ⊗ I4 + 1
4

3∑
j=1

(
Rs f j(s)R∗

s

)
⊗ (matrices with zero diagonal)
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and since β
(
γ(W )

)
= β(Iq⊗D) = Iq⊗D (viewed as a constant function on T) and

Z j are all diagonal (being powers of D), one gets

τι jk

(
β
(
γ( f W r)

))
= τι jk

(
β
(
γ( f )
)

(Iq ⊗ D)r
)

= Tr
(
β
(
γ( f )
)

(s j)(Iq ⊗ D)r(w j ⊗ Z j)
k
)

= lim
s→s j

s∈T−Y

Tr
(
β
(
γ( f )
)

(s)(Iq ⊗ D)r(w j ⊗ Z j)
k
)

= 1
4 lim

s→s j

s∈T−Y

Tr
[((

Rs f0(s)R∗
s

) ⊗ I4

)
(Iq ⊗ D)r(w j ⊗ Z j)

k
]

= 1
4 lim

s→s j

s∈T−Y

Tr
((

Rs f0(s)R∗
s wk

j

) ⊗ (DrZk
j )
)

= 1
4 lim

s→s j

s∈T−Y

Tr
(

Rs f0(s)R∗
s wk

j

) · Tr(DrZk
j ).

Now near each singular point s j the unitary Rs can approach either of the edges join-
ing at s j (see the left figure above); and although it is not continuous at the edges, the
limit of the trace Tr

(
Rs f0(s)R∗

s wk
j

)
will be independent of which edge it approaches

(since Rs f0(s)R∗
s is continuous). Thus one can let s → s j “toward” either edge. For

example, for s1 = (0, 0) one can let Rs → Iq so that (since Z1 = D and w1 = W−1
0

from (3.6)) one has

lim
s→s1

s∈T−Y

Tr
(

Rs f0(s)R∗
s wk

1

)
= lim

s→s1
s∈T−Y

Tr
(

f0(s) · R∗
s W−k

0 Rs

)
= Tr
(

f0(0, 0)W−k
0

)
since f0 is itself continuous on T. Hence, one gets the first set of traces

τι 1k

(
β
(
γ( f )γ(W r)

))
= 1

4 Tr
(

f0(0, 0)W−k
0

) · Tr(Dr+k)

where

Tr(Dn) =

{
0 if n �≡ 0(mod 4),

4 if n ≡ 0(mod 4),

Similarly, one gets

τι 2k

(
β
(
γ( f )γ(W r)

))
= 1

4 Tr
(

f0

(
1
2 ,

1
2

)
W ′

0
−k
)
· Tr(Dr+k)

τι 0k

(
β
(
γ( f )γ(W r)

))
= 1

4 Tr
(

f0

(
1
2 , 0
)

(Γ0W2)k
)
· Tr(Dr+2k).

There is no danger of confusion to denote by U , V , W the unitaries in Sθ corre-
sponding to the original unitaries U , V , W in Bθ under the isomorphism βγ. With
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f = U mV n these yield

(3.7)

τι 1k(U mV nW r) = 1
4 Tr
(

f0(0, 0)W−k
0

) · Tr(Dr+k)

τι 2k(U mV nW r) = 1
4 Tr
(

f0

(
1
2 ,

1
2

)
W ′

0
−k
)
· Tr(Dr+k)

τι 0k(U mV nW r) = 1
4 Tr
(

f0

(
1
2 , 0
)

(Γ0W2)k
)
· Tr(Dr+2k).

We are now ready to relate the set of evaluation traces {τι jk} with the original traces
{T jk}.
Proposition 3 With q = 4d and p odd, where d is a positive integer, one has

τι 11 = 4(1− i p)T10, τι 21 = −4i(−1) p̃(1− i p)T11,

τι 12 = 8T20, τι 22 = −8T21, τι 01 = 4T22.

In particular, for p/q ∈ Q ′, these yield

T10 = 1+i
8 τι 11, T11 = i−1

8 τι 21, T20 = 1
8τι 12, T21 = − 1

8τι 22, T22 = 1
4τι 01.

Proof In this proof we will make free use of Lemma 2.5-B and equations (2.2.3), and
in the computations to follow we shall take f = U mV n so that

f0 =
3∑

j=0

σ j(U mV n) = U mV n + V mU−n + U−mV−n + V−mU n

or

f0(x, y) = e
(

(mx + ny)/q
)

U m
0 V n

0 + e
(

(−nx + my)/q
)

V m
0 U−n

0

+ e(−mx − ny)U−m
0 V−n

0 + e(nx −my)V−m
0 U n

0 .

This will be used below in evaluating the expressions in (3.7). For τι 11 (and r = 3 and
since Tr(D4) = 4) one has, using (2.2.3) and Lemma 2.5-B,

τι 11(U mV nW 3) = Tr
(

f0(0, 0)W−1
0

)
= 4 Tr(U m

0 V n
0 W 3

0 ) = 4(1− i p) ·T10(U mV nW 3),

which holds for all m, n. For τι 21 one takes r = 3 and gets (and recalling that p ′ is
odd and that W ′

0 is given by (2.2.5))

τι 21(U mV nW 3) = Tr
(

f0

(
1
2 ,

1
2

)
W ′

0
3
)

= 4e
(

(m + n)/2q
)

Tr(U m
0 V n

0 W ′
0

3
)

= 4e
(

(m + n)/2q
) · (−i)(1− i p)λp ′(m+n)/2T11(U mV nW 3)

= 4e
(

(m + n)/2q
) · (−i)(1− i p)e

(
pp ′(m + n)/2q

)
T11(U mV nW 3)

= e
(

qp̃(m + n)/2q
) · (−4i)(1− i p)T11(U mV nW 3)

= (−1) p̃(m+n) · (−4i)(1− i p)T11(U mV nW 3)

= −4i(−1) p̃(1− i p)T11(U mV nW 3)
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where the last equality holds since m + n is odd when T11(U mV nW 3) does not vanish.
For τι 12 one takes r = 2 to obtain

τι 12(U mV nW 2) = Tr
(

f0(0, 0)W 2
0

)
= 4 Tr(U m

0 V n
0 W 2

0 ) = 8T20(U mV nW 2).

For τι 22, one uses the identity W ′
0

2 = λ−p ′p ′ ′/2V p ′ ′
0 U p ′

0 W 2
0 and the fact that p, p ′,

p ′′ are odd (see Section 2.3), and that p = q̃ + p̃, to obtain

τι 22(U mV nW 2) = Tr
(

f0

(
1
2 ,

1
2

)
W ′

0
2
)

= 4e
(

(m + n)/2q
)

Tr(U m
0 V n

0 W ′
0

2
)

= 4e
(

(m + n)/2q
)
λ−p ′p ′′/2 Tr(U m

0 V n
0 ·V p ′ ′

0 U p ′
0 W 2

0 )

= 4e
(

(m + n)/2q
)
λ−p ′p ′′/2λp ′(n+p ′′) Tr(U m+p ′

0 V n+p ′′
0 W 2

0 )

and using the first equation of Lemma 2.5-B this becomes

= 4e
(

(m + n)/2q
)
λp ′ p ′′/2λp ′nλ−(m+p ′)(n+p ′′)/2

(
δn+p ′′,0 + (−1)p(m+p ′)δn+p ′′,q

)
= 4e
(

(m + n)/2q
)
λp ′ p ′′/2λp ′nλ−(m+p ′)(n+p ′′)/2

(
1− (−1)m

)
δn,1

= 4λ−mn/2(−1)q̃m+ p̃n
(

1− (−1)m
)
δn,1

= 8(−1)q̃+ p̃λ−mn/2δn,1δm,1

= 8(−1)pT21(U mV nW 2) = −8T21(U mV nW 2).

For τι 01 one has (recalling that W2 = V−p ′′
0 )

τι 01(U mV nW 2) = Tr
(

f0

(
1
2 , 0
)
Γ0W2

)
= 2e(m/2q) Tr(U m

0 V n
0 Γ0W2) + 2e(−n/2q) Tr(V m

0 U−n
0 Γ0W2)

= 2e(m/2q) Tr(U m
0 V n

0 V p ′ ′
0 W 2

0 ) + 2e(−n/2q) Tr(V m
0 U−n

0 V p ′′
0 W 2

0 )

= 2e(m/2q) Tr(U m
0 V n+p ′′

0 W 2
0 )

+ 2e(−n/2q)λ−mn Tr(U−n
0 V m+p ′ ′

0 W 2
0 )

= 2e(m/2q)λ−m(n+p ′′)/2
(

1 + (−1)pm
)
δn+p ′′,0

+ 2e(−n/2q)λ−mnλn(m+p ′′)/2
(

1 + (−1)−pn
)
δm+p ′′,0

= 2(−1)q̃mλ−mn/2
(

1 + (−1)m
)
δn,1

+ 2(−1)q̃nλ−mn/2
(

1 + (−1)n
)
δm,1

= 4λ−mn/2δm,0δn,1 + 4λ−mn/2δn,0δm,1

= 4λ−mn/2δm,n+1

= 4T22(U mV nW 2).
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When p/q ∈ Q ′, the second set of equations in the statement of the Proposition
follow immediately from the first set using (2.3.2).

4 An Auxiliary Basis for K0(Bp/q)

As a step toward showing that the modules P j(θ) generate K0(Bθ) (for rational θ),
we consider in this section an auxiliary basis for K0(Bθ) that arises naturally from the
realization of Bθ as a sphere with singularities and which enables one to show that the
range of the reduced character T ′ on K0(Bθ) (as defined in Section 2.1) is equal to its
range on Rθ . To do this, we shall assume that θ is in Q ′, as defined in Section 2.3.
(See Proposition 4-D.)

Assume that θ = p/q is any rational in (0, 1). Let F1 be a rank one subprojection
of the spectral projection of W−1

0 corresponding to the eigenvalue 1. Similarly, let
F2 be such a projection for W−1

0 W ′
0
−1W0, and F0 for Γ0W2. These are all projec-

tions in Mq(C), and we think of them as being “located” at the singular points (0, 0),(
1
2 ,

1
2

)
,
(

1
2 , 0
)

, respectively (cf. definition of Sθ in (3.1)). Thus, by definition, one
has W−1

0 F1 = F1 (and similarly for F2 and F0). Now let

e j
k := F j ⊗ Ek

for j = 0, 1, 2 and k = 1, 2, 3, 4, where Ek ∈ M4(C) is the diagonal matrix that has 1
at the k-th diagonal entry and zeros elsewhere. These all have rank one in Mq ⊗M4.
It will be convenient to introduce the following notation. If e, f , g are projections of
equal rank, denote by [e, f , g] a smooth projection-valued function on S2 such that

[e, f , g]
(

1
2 ,

1
2

)
= e, [e, f , g](0, 0) = f , [e, f , g]

(
1
2 , 0
)

= g.

(Such a function clearly exists since the projections have equal rank.) So [e, f , g]
defines a projection in Sθ , and hence a unique positive class in K0(Sθ). Now consider
the following eight projections in Sθ:

[e2
1, e

1
1, e

0
1], [e2

2 + e2
3, e

1
1 + e1

2, e
0
1 + e0

2],

[e2
2, e

1
2, e

0
2], [e2

3 + e2
4, e

1
2 + e1

3, e
0
2 + e0

3],(4.1)

[e2
3, e

1
3, e

0
3], [e2

2, e
1
1, e

0
1],

[e2
4, e

1
4, e

0
4], [e2

3, e
1
1, e

0
3].

We claim that these projections, together with one other class in the kernel of T ′,
which will be κp,q given by (2.1.7), form a basis for K0(Sθ) ∼= K0(Bθ).

Since W−1
0 ⊗ D has order four, let n1, n2, n3, n4 be its spectral dimensions cor-

responding to the eigenvalues 1, −1, i, −i, respectively. (So,
∑

j n j = 4q.) Simi-

larly, let m j be the spectral dimensions of (W−1
0 W ′

0
−1W0) ⊗ D, and k, 4q − k those

of Γ0W2 ⊗ D2 (which has order two). The commutant of W−1
0 ⊗ D (respectively,

W−1
0 W ′

0
−1W0) ⊗ D) in Mq ⊗M4 is isomorphic to

⊕
j Mn j (respectively,

⊕
j Mm j ).

For Γ0W2 ⊗ D2 the commutant algebra is isomorphic to Mk ⊕ M4q−k. (Although
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these dimensions are known from [7] and [2], their exact values will not be needed
here.) Identifying each commutant in this way with its corresponding matrix algebra
direct sum, one has the surjective evaluation map

E : Sθ −→ F :=
(⊕

j

Mm j

)
⊕
(⊕

j

Mn j

)
⊕ (Mk ⊕M4q−k)

E(F) =
(

F
(

1
2 ,

1
2

)
; F(0, 0); F

(
1
2 , 0
))

(4.2)

where F
(

1
2 , 0
) ∈ Mk⊕M4q−k. Under E, the eight projections in (4.1) are mapped as

follows:

[e2
1, e

1
1, e

0
1] �→ (F2, 0, 0, 0); (F1, 0, 0, 0); (F0, 0), (0, 0)

[e2
2, e

1
2, e

0
2] �→ (0, F2, 0, 0); (0, F1, 0, 0); (0, F0), (0, 0)

[e2
3, e

1
3, e

0
3] �→ (0, 0, F2, 0); (0, 0, F1, 0); (0, 0), (F0, 0)

[e2
4, e

1
4, e

0
4] �→ (0, 0, 0, F2); (0, 0, 0, F1); (0, 0), (0, F0)

[e2
2 + e2

3, e
1
1 + e1

2, e
0
1 + e0

2] �→ (0, F2, F2, 0); (F1, F1, 0, 0); (F0, F0), (0, 0)

[e2
3 + e2

4, e
1
2 + e1

3, e
0
2 + e0

3] �→ (0, 0, F2, F2); (0, F1, F1, 0); (0, F0), (F0, 0)

[e2
2, e

1
1, e

0
1] �→ (0, F2, 0, 0); (F1, 0, 0, 0); (F0, 0), (0, 0)

[e2
3, e

1
1, e

0
3] �→ (0, 0, F2, 0); (F1, 0, 0, 0); (0, 0), (F0, 0).

Letting J denote the kernel of E, one has the short exact sequence

(4.3) 0 −−−−→ J
j−−−−→ Sθ

E−−−−→ F −−−−→ 0

where j : J ↪→ Sθ is inclusion. Under the induced map

E∗ : K0(Sθ)→ K0(F) ∼= Z4 ⊕ Z4 ⊕ (Z⊕ Z),

one gets (since F j has rank one)

(4.4)

[e2
1, e

1
1, e

0
1] �→ (1, 0, 0, 0); (1, 0, 0, 0); 1, 0

[e2
2, e

1
2, e

0
2] �→ (0, 1, 0, 0); (0, 1, 0, 0); 1, 0

[e2
3, e

1
3, e

0
3] �→ (0, 0, 1, 0); (0, 0, 1, 0); 0, 1

[e2
4, e

1
4, e

0
4] �→ (0, 0, 0, 1); (0, 0, 0, 1); 0, 1

[e2
2 + e2

3, e
1
1 + e1

2, e
0
1 + e0

2] �→ (0, 1, 1, 0); (1, 1, 0, 0); 2, 0

[e2
3 + e2

4, e
1
2 + e1

3, e
0
2 + e0

3] �→ (0, 0, 1, 1); (0, 1, 1, 0); 1, 1

[e2
2, e

1
1, e

0
1] �→ (0, 1, 0, 0); (1, 0, 0, 0); 1, 0

[e2
3, e

1
1, e

0
3] �→ (0, 0, 1, 0); (1, 0, 0, 0); 0, 1.
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Remark 4-A Since J is the ideal of all functions S2 → M4q vanishing at the three
singular points s j , it is isomorphic to R0 ⊗M4q where

(4.5) R0 := { f ∈ C(T,C) : f (s0) = f (s1) = f (s2) = 0}.

Hence K0( J) ∼= K0(R0) ∼= Z, as can easily by checked. (See also the proof of Lemma 5-
B below.) Similarly, one has K1( J) ∼= K1(R0) ∼= Z2.

Now consider the following part of the six-term exact K-theory sequence associ-
ated with (4.3)

(4.6) Z ∼= K0( J)
j∗−−−−→ K0(Sθ)

E∗−−−−→ K0(F)
δ0−−−−→ K1( J) ∼= Z2 −−−−→ 0

where δ0, the connecting homomorphism, is surjective (as K1(Sθ) = 0, by [7]). Since
K0(Sθ) ∼= Z9 and as the elements in Z10 given by

(4.7) (1, 0, 0, 0); (0, 0, 0, 0); 0, 0 and (0, 0, 0, 0); (0, 0, 0, 0); 0, 1

together with those in (4.4) constitute a 10 × 10 matrix whose determinant is 1, it
follows that E∗

(
K0(Sθ)

)
is spanned by the images of the eight projections in (4.1).

These, together with the image under j∗ of a generator ξ of K0( J), constitute a basis
for K0(Sθ). The remaining basis element j∗(ξ) will be shown to be ±κp,q (Corol-
lary 5-D).

Remark 4-B By showing that the two K0-elements corresponding to (4.7) are
mapped onto generators of K1( J) via δ0 one actually gets another proof, using (4.6),
that, for the rational case, K0(Sθ) ∼= Z9 and K1(Sθ) = 0.

Now let us calculate τι 11, τι 21, τι 12, τι 22, τι 01 on these eight projections. We do this
only for τι 11 since for the others the computation is similar and shall only state the
results for the other τι i j . For k = 1, 2, 3, 4 one gets

τι 11[e2
k, e

1
k, e

0
k] = Tr

(
e1

k(W−1
0 ⊗ D)

)
= Tr(F1W−1

0 ⊗ EkD)

= Tr(F1W−1
0 ) Tr(EkD) = Tr(EkD)

since Tr(F1W−1
0 ) = Tr(F1) = 1 (by the choice of F1). And as Tr(EkD) = 1,−1, i,−i,

for k = 1, 2, 3, 4, respectively, one gets the value for τι 11[e2
k, e

1
k, e

0
k]. In the same man-

ner,

τι 11[e2
2 + e2

3, e
1
1 + e1

2, e
0
1 + e0

2] = Tr((e1
1 + e1

2) · ((W−1
0 ⊗ D)) = 0

τι 11[e2
3 + e2

4, e
1
2 + e1

3, e
0
2 + e0

3] = Tr((e1
2 + e1

3) · ((W−1
0 ⊗ D)) = −1 + i

τι 11[e2
2, e

1
1, e

0
1] = 1

τι 11[e2
3, e

1
1, e

0
3] = 1.

Doing the same for the other traces one can summarize the data in Table 2:
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Projection τι τι 11 τι 21 τι 12 τι 22 τι 01

[e2
1, e

1
1, e

0
1] 1

4q 1 1 1 1 1

[e2
2, e

1
2, e

0
2] 1

4q −1 −1 1 1 1

[e2
3, e

1
3, e

0
3] 1

4q i i −1 −1 −1

[e2
4, e

1
4, e

0
4] 1

4q −i −i −1 −1 −1

[e2
2 + e2

3, e
1
1 + e1

2, e
0
1 + e0

2] 1
2q 0 i − 1 2 0 2

[e2
3 + e2

4, e
1
2 + e1

3, e
0
2 + e0

3] 1
2q i − 1 0 0 −2 0

[e2
2, e

1
1, e

0
1] 1

4q 1 −1 1 1 1

[e2
3, e

1
1, e

0
3] 1

4q 1 i 1 −1 −1

Table 2

(The canonical trace values are immediate from the expression for τι following
equation (3.1).) We now assume that θ = p/q ∈ Q ′ and use Proposition 3, together
with Table 2, to obtain Table 3 for T ′.

One is now in a position to check that each of these T ′-images is in the Z-span
of T ′(P j ), j = 1, . . . , 9, as given in Table 1 (recall that in Table 1, φ j , φ ′

j are the real
and imaginary components of T1 j). In so doing, however, for the projections of trace
1/4q (in Table 3) one encounters equations of the form

p(4n + 1)− qb = 1

to which integral solutions n, b are required, where b is given a priori to be in 4Z + δ
for some already prescribed δ = 0, 1, 2, 3. This is guaranteed by the following simple
fact.

Lemma 4-C If q = 4d, p = 4k + 1, and δ ∈ Z are given, then there exists a ∈ 4Z + 1
and b ∈ 4Z + δ such that pa− qb = 1.

Proof Pick integers a, b such that pa − qb = 1. Since q is even, a is odd, so write
a = 2a ′ + 1. Substituting this into (4k + 1)a − 4db = 1 implies that a ′ is even, so
that a ∈ 4Z + 1. Now for any integer t one has p(a + 4dt) − q(b + t p) = 1, and
b + pt = b + 4kt + t is in 4Z + δ if one chooses t = δ − b, done.
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Projection τι T10 T11 T20 T21 T22

[e2
1, e

1
1, e

0
1] 1

4q
1+i

8
−1+i

8
1
8 − 1

8
1
4

[e2
2, e

1
2, e

0
2] 1

4q − 1+i
8

1−i
8

1
8 − 1

8
1
4

[e2
3, e

1
3, e

0
3] 1

4q
−1+i

8 − 1+i
8 − 1

8
1
8 − 1

4

[e2
4, e

1
4, e

0
4] 1

4q
1−i

8
1+i

8 − 1
8

1
8 − 1

4

[e2
2 + e2

3, e
1
1 + e1

2, e
0
1 + e0

2] 1
2q 0 − i

4
1
4 0 1

2

[e2
3 + e2

4, e
1
2 + e1

3, e
0
2 + e0

3] 1
2q − 1

4 0 0 1
4 0

[e2
2, e

1
1, e

0
1] 1

4q
1+i

8
1−i

8
1
8 − 1

8
1
4

[e2
3, e

1
1, e

0
3] 1

4q
1+i

8 − 1+i
8

1
8

1
8 − 1

4

Table 3: Values of T′ for p/q ∈ Q ′

For the other two projections of trace 1/2q one requires integer solutions n, b to

p(2n + 1)− q
2 b = 1

where b is prescribed to be in 4Z + δ. This however can be solved in exactly the
same fashion. For completion we do this. Since q = 4d, pick integers a, b such that
pa− q

2 b = 1. Again a is odd, so write a = 2a ′ + 1 so that p(2a ′ + 1)− q
2 b = 1. Now

for any integer t one has

p
(

2a ′ + 1 + q
2 t
) − q

2 (b + pt) = 1

where 2a ′ + 1 + q
2 t is clearly in 2Z + 1 and b + pt = b + 4kt + t which can be chosen

in 4Z + δ by taking t = δ − b. We have therefore proved the following.

Proposition 4-D For any θ ∈ Q ′, one has T ′(K0(Bθ)
)

= T ′(Rθ).

5 The Connes Chern Character of a Bott Projection

The objective of this section is to identify the generator of Ker(E∗) ⊂ K0(Sθ), com-
pute Connes’ canonical cyclic 2-cocycle, and therefore show that this generator is
±κp,q (as defined by (2.1.7)). This is done by proving the following.

Proposition 5-A For any positive rational θ = p/q < 1, the class κp,q ∈ K0(Sθ) is the
image of a generator of K0( J) ∼= Z under the canonical map j∗ : K0( J)→ K0(Sθ).

https://doi.org/10.4153/CJM-2001-026-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-026-x


K-Theory of Non-Commutative Spheres 655

First we need the following lemma.

Lemma 5-B With R0 defined as in (4.5), the group K0(R0) ∼= Z is generated by an
element of the form ξ0 = [P0]− [1] where

(5.1) P0 =
[

1− f g
g f

]
and f , g are smooth and rapidly decreasing functions at the boundary of T.

Proof Consider the short exact sequence

0 −−−−→ C0(T)
j−−−−→ R0

α−−−−→ C0

(
(0, 1)
) ⊕C0

(
(0, 1)
) −−−−→ 0

where C0(T) is the subalgebra of R0 of functions vanishing along the boundary of
T, and where α, here, restricts a function to the two line segments connecting the
singular points (0, 0),

(
1
2 ,

1
2

)
and (0, 0),

(
1
2 , 0
)

. Looking at the corresponding exact
sequence of K0 groups one gets

K0

(
C0(T)

) j∗−−−−→ K0(R0)
α∗−−−−→ K0

(
C0

(
(0, 1)
) ⊕C0

(
(0, 1)
))

= 0

so j∗ is onto, and since K0

(
C0(T)

) ∼= Z ∼= K0(R0), one deduces that j∗ is an iso-

morphism. Since it is known that a generator of K0

(
C0(T)

)
has the form [P0]− [1],

where P0 has the form (5.1), one gets a generator of K0(R0) that has exactly the same
form. Finally, since the smooth rapidly decreasing functions at the boundary of T are
dense in C0(T), and are closed under the holomorphic functional calculus, one can
modify P0 so that f and g are smooth and rapidly decreasing.

Lemma 5-C One has C1

(
j∗(ξ)
)

= ±4q.

Let ρ : R0 → J denote the homomorphism ρ( f ) = f e11 where e11 = e(q)
11 ⊗ e(4)

11 ∈
Mq ⊗ M4. Then the induced map ρ∗ : K0(R0) → K0( J) is an isomorphism and so
mapping ξ0 to a generator ξ of K0( J). More precisely, letting ρ̃ : R̃0 → J̃ denote the
unitized map associated with ρ ( J̃ being the unitization of J), so that ρ̃( f + z1) =
f e11 + zI4q ( f ∈ R0), one has

(5.2) ξ = ρ∗(ξ0) = ρ∗([P0]−[1]) = ρ̃∗([P0]−[1]) = [ρ̃(P0)]−[ρ̃(1)] = [P]−[I4q]

where

(5.3) P :=
[

I4q − f e11 ge11

ge11 f e11

]
is a projection belonging to M2( J̃) ⊂ M2(Sθ). Thus, C1(ξ) = C1(P). To calculate
C1(P), one takes P back to Bθ via the isomorphism βγ (of Section 3), then following
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it by the injection Ψ : Bθ → M4(Aθ) and so obtain C1(P) = c1

(
Ψ
(

(βγ)−1(P)
))

(as

defined in Section 2.1). Now

(βγ)−1(P) =
[

1Bθ − (βγ)−1( f e11) (βγ)−1(ge11)
(βγ)−1(ge11) (βγ)−1( f e11)

]

and since f e11 = 1
4 f (e(q)

11 ⊗ I4)(I4q + Iq ⊗ D + Iq ⊗ D2 + Iq ⊗ D3) one gets

(βγ)−1( f e11) = (βγ)−1
(

1
4 f (e(q)

11 ⊗ I4)
) · (1 + W + W 2 + W 3)

= γ−1
(

1
4 f · R−1e(q)

11 R⊗ I4

) · (1 + W + W 2 + W 3)

= 1
4 F(1 + W + W 2 + W 3)

where F is the unique function in Aθ such that γ(F) = f · R−1e(q)
11 R ⊗ I4. Similarly,

let G be the function in Aθ such that γ(G) = g · R−1e(q)
11 R⊗ I4. Let f̃ := f · R−1e(q)

11 R
so that it is easy to check that it belongs to Aσ

θ . Letting T1, T2, T3, T denote the closed
triangles formed by the diagonal lines y = x, y = 1 − x of the unit square (with T1

being the left, T2 the top, T3 the right, and T the bottom triangle) one sets

(5.4) F(x, y) =


σ0

(
f̃ (y, 1− x)

)
if (x, y) ∈ T3

σ2
0

(
f̃ (1− x, 1− y)

)
if (x, y) ∈ T2

σ3
0

(
f̃ (1− y, x)

)
if (x, y) ∈ T1

f̃ (x, y) if (x, y) ∈ T

where σ0 is the order-four automorphism of Mq defined in Section 2.2. (It is easily
checked that F is well-defined and belongs to the fixed point subalgebra of Aθ under

σ.) A similar formula holds for G in terms of g̃ := g · R−1e(q)
11 R. By definition, one

easily checks that γ(F) = f̃ ⊗ I4 and γ(G) = g̃ ⊗ I4. One thus has

Ψ
(

(βγ)−1( f e11)
)

= 1
4Ψ
(

F(1 + W + W 2 + W 3)
)

= F ⊗ E

where E is the rank one projection

E :=
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .
Hence,

Q := Ψ
(

(βγ)−1(P)
)

=
[

Iq ⊗ I4 − F ⊗ E G⊗ E
G∗ ⊗ E F ⊗ E

]
and belongs to M2

(
M4(Aθ)

)
. (Here, Iq is the identity element of Aθ.)
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Now it is clear that we need to compute (ϕq # Tr4 # Tr2)(Q,Q,Q) = ψ #
Tr2(Q,Q,Q), where ψ := ϕq # Tr4 and ϕq is given in Section 2.4, and show that
it is divisible by 4q. Thus, using the cyclicity property, one obtains

c1[Q] = (ϕq # Tr4 # Tr2)(Q,Q,Q) = ψ # Tr2(Q,Q,Q)

= ψ(−F ⊗ E,−F ⊗ E,−F ⊗ E) + ψ(−F ⊗ E,G⊗ E,G∗ ⊗ E)

+ ψ(G⊗ E,G∗ ⊗ E,−F ⊗ E) + ψ(G⊗ E, F ⊗ E,G∗ ⊗ E)

+ ψ(G∗ ⊗ E,−F ⊗ E,G⊗ E) + ψ(G∗ ⊗ E,G⊗ E, F ⊗ E)

+ ψ(F ⊗ E, F ⊗ E, F ⊗ E) + ψ(F ⊗ E,G∗ ⊗ E,G⊗ E)

= 3ψ(−F ⊗ E,G⊗ E,G∗ ⊗ E) + 3ψ(F ⊗ E,G∗ ⊗ E,G⊗ E)

= 3(ϕq # Tr4)(−F ⊗ E,G⊗ E,G∗ ⊗ E) + 3(ϕq # Tr4)(F ⊗ E,G∗ ⊗ E,G⊗ E)

= −3ϕq(F,G,G∗) + 3ϕq(F,G∗,G)

which by the expression for ϕq in Section 2.4 becomes

= −3
q

2πi

∫ 1

0

∫ 1

0
Tr

(
F

[
∂G

∂x

∂G∗

∂y
− ∂G

∂y

∂G∗

∂x

])
dx dy

+ 3
q

2πi

∫ 1

0

∫ 1

0
Tr

(
F

[
∂G

∂x

∗ ∂G

∂y
− ∂G∗

∂y

∂G

∂x

])
dx dy

= −12 · q

2πi

∫∫
T

Tr

(
f̃

[
∂g̃

∂x

∂g̃∗

∂y
− ∂g̃

∂y

∂g̃∗

∂x

])
dx dy

+ 12 · q

2πi

∫∫
T

Tr

(
f̃

[
∂g̃∗

∂x

∂g̃

∂y
− ∂g̃∗

∂y

∂g̃

∂x

])
dx dy

= 4 · (−3ϕq( f̃ , g̃, g̃∗) + 3ϕq( f̃ , g̃∗, g̃)
)(5.5)

where, in the last equality, f and g (and hence f̃ , g̃) have been extended to the unit
square by defining them to be zero outside the triangle T. (Since f , g are smooth and
rapidly decreasing at the boundary of T—Lemma 5-D—the resulting extensions are
smooth on the unit square.) Letting P ′ denote the projection

P ′ =
[

Iq − f̃ g̃
g̃∗ f̃

]

whose entries belong to the subalgebra Ã = A + CIq of Aθ, where A := Mq ⊗
C0

(
(0, 1)2

)
, one has

−3ϕq( f̃ , g̃, g̃∗) + 3ϕq( f̃ , g̃∗, g̃) = (ϕq # Tr2)(P ′, P ′, P ′).
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Now [P ′]− [Iq] is in K0(A) ∼= Z, which is generated by [PBott]− [Iq], where

PBott :=

[
Iq − f e(q)

11 ge(q)
11

ge(q)
11 f e(q)

11

]

as is easily checked. So there is an integer n such that [P ′]− [Iq] = n([PBott]− [Iq]) in
K0(A). This still holds in K0(Aθ). Continuing with our computation in (5.5) above
we have

C1

(
j∗(ξ)
)

= c1[Q] = 4(ϕq # Tr2)(P ′, P ′, P ′) = 4〈[P ′], ϕq〉 = 4〈[P ′]− [Iq], ϕq〉
= 4n〈[PBott]− [Iq], ϕq〉
= 4n(ϕq # Tr2)(PBott, PBott, PBott)

= 4n[−3ϕq( f e(q)
11 , ge(q)

11 , ge(q)
11 ) + 3ϕq( f e(q)

11 , ge(q)
11 , ge(q)

11 )]

= 4n(−6)ϕq( f e(q)
11 , ge(q)

11 , ge(q)
11 )

= −4qn · 6

2πi

∫ 1

0

∫ 1

0
f

[
∂g

∂x

∂g

∂y
− ∂g

∂y

∂g

∂x

]
dx dy

= −4qn · 〈[P0], ϕ1〉

where P0 is given by (5.1) (with f , g extended as above), and 〈[P0], ϕ1〉 is an integer.1

Therefore, C1

(
j∗(ξ)
)

= c1[Q] is divisible by 4q, which proves Lemma 5-C. To
complete the proof of Proposition 5-A, it is easy to see directly that j∗(ξ), given
by (5.2) and (5.3) and using (3.6), maps to zero by the components of T ′. Thus
Ker(E∗) ⊆ Ker(T ′) and from the above calculation,

T
(

j∗(ξ)
)

= (0; 0, 0, 0, 0; 0, 0, 0;−4qN)

where N = n〈[P0], ϕ1〉. But we already know (from Section 2.1) that T(κp,q) =
(0; 0, 0, 0, 0; 0, 0, 0; 4q), thus T

(
j∗(ξ)
)

= −NT(κp,q). As T is injective on K0(Bθ)
(since θ is rational), one gets j∗(ξ) = −Nκp,q in K0(Bθ).

Corollary 5-D For θ ∈ Q ′, one has Ker(T ′) = Z j∗(ξ) = Zκp,q.

Proof It was already shown in Section 4 that the eight classes in Table 3, i.e., of (4.1),
together with j∗(ξ), yield a basis for K0(Sθ). Since the values of T ′ (given by Table 3)
are independent and T ′ vanishes on j∗(ξ), it follows that j∗(ξ) generates Ker(T ′).
But since j∗(ξ) = −Nκp,q and T ′(κp,q) = 0 it follows that N = ±1, so that j∗(ξ) =
±κp,q. Thus, Ker(T ′) = Z j∗(ξ) = Zκp,q.

This completes the proof of Proposition 5-A. (Note that in the above computation
n = ±1 and 〈[P0], ϕ1〉 = ±1 hold automatically.)

1Although Connes [4] showed that c1 is integer-valued for 0 < θ < 1 by computing it for the Powers-
Rieffel projection, this can still be done in the case θ = 1 for the Bott projection (5.1) to obtain the same
result. In fact, one can show that 〈[P0], ϕ1〉 = 1, but we shall not need this here.
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6 Conclusions

Proposition 6-A For θ ∈ Q ′, the set {P1(θ), . . . , P9(θ)} is a basis for the group
K0(Bθ).

Proof Since the modules P j(θ) are already independent (for each θ), it is enough
to show that they generate. So pick any x in K0(Sθ). From Proposition 4-D (since
θ ∈ Q ′) one can write T ′(x) =

∑9
j=1 n jT ′([P j]) for some integers n j . Therefore, by

Corollary 5-D, one gets

x =
9∑

j=1

n j[P j] + mκp,q

for some integer m (where θ = p/q). The result follows since κp,q is, by definition,
in Rθ.

The conclusion of this proposition will in fact remain true for all rationals as will
be seen from Corollary 6-C below.

Remark It is not hard to see that the unbounded traces Tt
i j on the smooth *-sub-

algebra Bt (as defined by (2.1.2) with respect to the canonical unitary generators Ut ,
Vt , Wt ) are strongly continuous in the parameter t , in the sense that if ξ is a locally
defined continuous section of the continuous field of smooth *-subalgebras {Bt} (so
its values are smooth elements), then the map t �→ Tt

i j

(
ξ(t)
)

is continuous. Further,
the same can be seen to hold for Connes’ canonical cyclic 2-cocycle

ϕt (x0, x1, x2) =
1

2πi
τι t

(
x0[δt

1(x1)δt
2(x2)− δt

2(x1)δt
1(x2)]

)
on the smooth rotation algebra At , where δt

1, δt
2 are the canonical derivations asso-

ciated with the unitary generators Ut , Vt , and τι t is the canonical trace on At . That
is, if ξ j , j = 0, 1, 2 are locally defined continuous sections of the continuous field of
smooth *-subalgebras {Bt}, then the map t �→ ϕt

(
ξ0(t), ξ1(t), ξ2(t)

)
is continuous.

Theorem 6-B (Range of the Connes Chern Character) For any 0 < θ < 1 one has
the range of the Connes Chern character:

T
(

K0(Bθ)
)

= T(Rθ)

where Rθ is the subgroup of K0(Bθ) generated by {P1(θ), . . . , P9(θ)}. More specifically,
the range is spanned by the rows in Table 1.

Proof Equality holds for θ ∈ Q ′ in view of the preceding proposition which has
K0(Bθ) = Rθ. So fix any 0 < θ < 1 and fix a positive class [e] ∈ K0(Bθ), where e
is a smooth projection in some matrix algebra over Bθ. Let t �→ et be a continuous
section of smooth projections of the continuous field of matrix algebras over Bθ (all
of the same size), defined in a neighborhood of θ, such that eθ = e. The values
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of canonical traces t �→ τι t (et ) defines a continuous function which takes values in
1
4 (Z + Zt) for each t . There are integers m, n (independent of t) such that

τι t (et ) = 1
4 (m + nt) and Ct

1(et ) = −n

for t near θ (where we wrote Ct
1 to specify the dependence of C1, as in Section 2.1,

upon t). To see this, note that Ct
1(et ) is a constant integer, by the continu-

ity of Connes’ cyclic 2-cocycle ϕt as easily seen from Ct
1(et ) = (ϕt # Tr) ·(

Ψt (et ),Ψt (et ),Ψt (et )
)

(where Ψt = Ψ is given as in (2.1.6)). As τι t (et ) is itself
continuous, the result follows.

Now write

Tt ([et ]) =
(

1
4 (m + nt);φt

0(et ), φ
′
0

t
(et ), φ

t
1(et ), φ

′
1

t
(et ); Tt

20(et ),T
t
21(et ),T

t
22(et );−n

)
where Tt denotes the Connes Chern character on K0(Bt ). For t ∈ Q ′, Proposition 6-
A and Table 1 show that φt

j(et ), φ ′
j
t (et ), Tt

i j(et ) can only take values in 1
8 Z, and since

these are continuous in t , they must be constant for t in a neighborhood of θ. Now
note that for each such t one has

(6.1) Tt
(

[et ]− n[P7(t)]−m[P3(t)]
)

= (0; a0, a
′
0, a1, a

′
1; b0, b1, b2; 0)

for some constants a0, a ′
0, a1, a ′

1, b0, b1, b2 ∈ 1
8 Z. Let xt = [et ]− n[P7(t)]−m[P3(t)].

Evaluating (6.1) at a rational r in Q ′ near θ, one gets

(0; a0, a
′
0, a1, a

′
1; b0, b1, b2; 0) = Tr(xr) = Tr(gr)

for some gr ∈ Rr , by Proposition 6-A. Writing

gr =
9∑

k=1

nk[Pk(r)]

for some integers nk, define gt :=
∑9

k=1 nk[Pk(t)] so that gt ∈ Rt for each t . Now it
follows that for each t

Tt (gt ) = (0; a0, a
′
0, a1, a

′
1; b0, b1, b2; 0).

To see this, note that Cr
1(gr) = 0 implies n7 + n8 + n9 = 0, so that the canonical trace

of gt (for arbitrary t near θ) is

n1
1
2 + n2

1
2 + n3

1
4 + n4

1
2 + n5

1
2 + n6

1
4 + (n7 + n8 + n9)

t

4
= 0.

Therefore, Tt
(

[et ] − n[P7(t)] − m[P3(t)]
)

= Tt (gt ), and the result follows upon
evaluating this at t = θ.

Corollary 6-C For each rational 0 < θ < 1, the set {P1(θ), . . . , P9(θ)} is a basis for
the group K0(Bθ).
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Proof This follows from Theorem 6-B since T is injective on K0(Bθ) (Theorem 2.1)
and since K0(Bp/q) ∼= Z9 (see [6]).

Remark Although P1(t), . . . , P6(t), given by (2.1.1), are continuous sections of the
field of C*-algebras {Bt : 0 ≤ t ≤ 1}, the same is not as immediate (though it is true)
for the Fourier module P7(t) = Ft as a function of t . This explains the reason for the
argument to follow. The author has shown (in unpublished work [17]) that in fact
there is a finitely generated projective module over the C*-algebra of sections of the
field which, at each t ∈ (0, 1), gives the class of Ft . However, it will not be necessary
to use this result here.

For each rational r ∈ (0, 1) there is a closed interval Nr containing r (in its inte-
rior) such that [P j (r)] = [ξr

j(r)] in K0(Br), j = 1, . . . , 9, for some projection ξr
j in

some matrix algebra over Γ|Nr, the C*-algebra of all continuous sections of the field
of C*-algebras {Bt : t ∈ Nr}. Thus, if εt : Γ|Nr → Bt is the evaluation map at t ∈ Nr,
then εr∗[ξr

j] = [P j(r)] so that the induced map

εr∗ : K0(Γ|Nr)→ K0(Br)

is surjective.

Claim For each j and t ∈ Nr one has T
(

P j(t)
)

= T
(
ξr

j(t)
)

. Moreover, for each
t ∈ Nr ∩Q one has [ξr

j(t)] = [P j(t)] in K0(Bt ). In particular, if t ∈ Nr ∩Q , then the
induced map εt∗ : K0(Γ|Nr)→ K0(Bt ) is surjective.

Proof Clearly, from Table 1, for each fixed j there are integers m, n and constants
a0, a ′

0, a1, a ′
1, b0, b1, b2 ∈ 1

8 Z such that for each t ∈ (0, 1)

T
(

P j(t)
)

=
(

1
4 (m + nt); a0, a

′
0, a1, a

′
1; b0, b1, b2;−n

)
.

As in the first paragraph of the proof of Theorem 6-B one can write, for each t ∈ Nr,

T
(
ξr

j(t)
)

=
(

1
4 (m ′ + n ′t); c0, c

′
0, c1, c

′
1; d ′

0, d
′
1, d

′
2;−n ′)

for some integers m ′, n ′ and constants ck, c ′k, d ′
� independent of t . Since [ξr

j(r)] =
[P j(r)], evaluation at t = r yields n ′ = n, m ′ = m, ck = ak, c ′k = a ′

k, d ′
� = b�. Thus,

T
(

P j(t)
)

= T
(
ξr

j(t)
)

for each t ∈ Nr and the result follows from the injectivity of T
when t is rational.

We now appeal to the slighly more general results obtained in Section 7—the con-
ditions for which were modelled on the current problem.

From the above claim it follows that by applying Corollary 7.3-E(a) to the field
{Bt : t ∈ Nr} and the classes {[ξr

1], . . . , [ξr
9]} in K0(Γ|Nr), one obtains a dense Gδ

subset Gr of Nr such that for each t ∈ Gr the set {[ξr
1(t)], . . . , [ξr

9(t)]} is a basis for
K0(Bt ). Since from the above claim we have T

(
P j(t)
)

= T
(
ξr

j(t)
)

for each t ∈ Nr,

and since from Table 1 above T
(

P j(t)
)

are independent over Z, it follows that T is
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injective on K0(Bt ) and thus [ξr
j(t)] = [P j(t)] so that {[P1(t), . . . , [P9(t)]} is a basis

for K0(Bt ) for each t ∈ Gr .
Since the countable union of Gδ sets is also a Gδ set, the union G =

⋃{Gr :
r ∈ Q ∩ (0, 1)} is a Gδ subset of (0, 1), which is clearly dense in (0, 1). Therefore,
{[P1(θ)], . . . , [P9(θ)]} is a basis for K0(Bθ) for each θ in G. One thus obtains the
following.

Theorem 6-E There is a dense Gδ subset G of (0, 1) (containing the rationals) such that
the set {P1(θ), . . . , P9(θ)} is a basis for the group K0(Bθ) for each θ ∈ G. In particular,
K0(Bθ) ∼= Z9.

The result for K1 is much easier since one essentially invokes a Baire category ar-
gument and uses the fact that it holds in the rational case [6]. (More precisely, see
Theorem 7.2-B below.)

Theorem 6-F There is a dense Gδ set of parameters θ in (0, 1) (containing the rationals)
for which K1(Bθ) = 0.

Now we can say something about the K-groups of the fixed point subalgebra Aσ
θ of

the rotation algebra under the Fourier automorphism. (But not about the generators
of its K0—save using the isomorphism K0(Aσ

θ ) ∼= K0(Bθ) implemented by the strong
Morita equivalence between Aσ

θ and Bθ.)

Corollary 6-G For a dense Gδ set of parameters θ in (0, 1), containing the rationals
except for 1

4 , 1
2 , 3

4 , one has K0(Aσ
θ ) ∼= Z9 and K1(Aσ

θ ) = 0.

Proof For the rational case the result was shown in [7, Corollary 3.2.6]. The ir-
rational case follows from Theorems 6-E and 6-F since in this case the fixed point
subalgebra and the crossed product Bθ are strongly Morita equivalent [12].

It now appears, using Theorem 6-E and Table 1, that techniques similar to those of
[13, Theorem 4.1], could be carried out to show that the positive cone of K0(Bθ) (for
θ in a dense Gδ) can be characterized as the set of elements of positive trace. This,
together with the vanishing of K1, would be further evidence that Bθ is an AF-algebra
for irrational θ. From this it will follow that the ordered group K0(Bθ) is unperforated
and is a dimension group. But these considerations will be left for a future paper.

7 Continuous Fields of C*-Algebras

In this section we generalize the situation we have so far obtained above to two hy-
potheses on a continuous field of C*-algebras. Under these hypotheses certain K-
theoretical data which are known to hold for a dense set of fibers, of a continuous
field of C*-algebras over [0, 1], are shown to continue to hold on a dense Gδ subset of
the parameter space. For example, such data can be the free-rank of the K0-group or
the vanishing of the K1-group. The basic result is that under these hypotheses there
is a surjection K0(Γ) → K0(Bt ) for each t , induced by evaluation, where {Bt} is the
field and Γ the C*-algebra of the field.
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7.1 A Slightly General Situation

Let {Bt} be a separable continuous field of unital C*-algebras with parameter space
[0, 1], so that Γ, the C*-algebra of continuous (global) sections of the field, is sep-
arable. (We will need the separability of Γ so that K0(Γ) and K1(Γ) are countable
groups.) The two hypotheses are:

(H1) There are positive classes [P1], . . . , [PN ] in K0(Γ) and a dense subset Q of [0, 1]
such that: for each t ∈ Q and each x ∈ K0(Bt ) there is a positive integer mt,x

such that
mt,x · x ∈ Z[P1(t)] + · · · + Z[PN (t)].

(H2) There is a dense subset Q of [0, 1] such that for each t ∈ Q

K1(Bt ) = 0.

Under each of these assumptions, separately, it will be shown in this section that
they continue to hold on a dense Gδ set containing Q (Theorems 7.3-C and 7.2-B).
The main result will be to show that under (H1), the canonical map εt∗ : K0(Γ) →
K0(Bt ), induced by the evaluation map εt : Γ → Bt at t , is almost surjective for all t
(Theorem 7.3-B), in the sense that each element in K0(Bt ) has a non-zero integral
multiple in the span of [P1(t)], . . . , [PN (t)].

Clearly, of particular interest is the case mt,x ≡ 1 (since in the Fourier case dealt
with above the nine modules form a basis for K0(Bθ) when θ is rational—Corollary 6-
C). In this case the map εt∗ is surjective for each t . Furthermore, under both (H1)
and (H2), one obtains the short exact sequence

0 −−−−→ Ki( Jt )
j∗−−−−→ Ki(Γ)

εt∗−−−−→ Ki(Bt ) −−−−→ 0

for each t in [0, 1] and for i = 0, 1, where Jt = Ker(εt ) and j : Jt ↪→ Γ is the canonical
inclusion. (See Corollary 7.3-E.)

Presumably, these hypotheses can be tested and applied to similar situations such
as the order three and order six automorphisms of the rotation algebra and the result-
ing crossed products. These examples are discussed briefly at the end of this section.

Notation For each t let Rt be the subgroup of K0(Bt ) defined by

Rt := Z[P1(t)] + · · · + Z[PN (t)].

All sections of the field {Bt} are assumed to be continuous. By a ‘global’ section
is meant one that is continuous and defined over [0, 1]. We will say that a group
homomorphism K → H is almost surjective if for each h ∈ H there is a positive
integer m such that mh is in its range.

7.2 The K1-Group

The results of this section are simple and probably well-known, but are included here
for completeness (and since the author was unable to find a reference in the literature
from which to derive it).
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Lemma 7.2-A Let {Bt : t ∈ [0, 1]} be a continuous field of unital C*-algebras such
that K1(Bt ) = 0 for each t in a dense subset Q of [0, 1]. Then for each θ the canonical
map K1(Γ)→ K1(Bθ) is surjective. More precisely, for each θ in [0, 1], a positive integer
n, and each invertible w in Mn(Bθ), there exists a positive integer m and a global section
ξ of the field {Mn+m(Bt ) : t ∈ [0, 1]} such that ξ(t) is invertible for each t and ξ(θ) =
w ⊕ Im.

Proof First, choose a section t �→ w(t) of the field defined on a small enough open
interval J containing θ and consisting of invertible elements such that w(θ) = w. Fix
r, s ∈ Q ∩ J such that r < θ < s. Since the K1-groups of Br and Bs are zero, there
exists an integer m such that

w(r)⊕ Im ∈ GL0
n+m(Br), and w(s)⊕ Im ∈ GL0

n+m(Bs).

Each can be written as a product of exponentials w(r)⊕ Im = eT1 · · · eTk , w(s)⊕ Im =
eS1 · · · eS� for some T j ∈ Mn+m(Br), Si ∈ Mn+m(Bs), and some integers k and �. Now
extend each T j to a global section T j(t) (of the field {Mn+m(Bt ) : t ∈ [0, 1]}) so that
T j(r) = T j , and similarly Si to a global section Si(t) such that Si(s) = Si . Define a
global section ξ of invertible elements by

ξ(t) =


eT1(t) · · · eTk(t) 0 ≤ t ≤ r,

w(t)⊕ Im r ≤ t ≤ s,

eS1(t) · · · eS�(t) s ≤ t ≤ 1.

By construction, ξ is well-defined at r and s, continuous, and so defines a global
section of invertible elements with the required condition.

From the short exact sequence

0 −−−−→ Jθ
jθ−−−−→ Γ εθ−−−−→ Bθ −−−−→ 0

where Jθ = {ξ ∈ Γ : ξ(θ) = 0}, εθ(ξ) = ξ(θ), and jθ the canonical inclusion, one
has its associated six-term exact sequence

K0( Jθ)
jθ∗−−−−→ K0(Γ)

εθ∗−−−−→ K0(Bθ)

δ1

( * δ0

K1(Bθ)
εθ∗←−−−− K1(Γ)

jθ∗←−−−− K1( Jθ)

Theorem 7.2-B Let {Bt : t ∈ [0, 1]} be a separable continuous field of unital C*-
algebras such that K1(Bt ) = 0 for each t in a dense subset Q of [0, 1]. Then there is a
dense Gδ subset G of [0, 1] containing Q such that K1(Bθ) = 0 for each θ ∈ G.
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Proof Let [ξ1], [ξ2], . . . be an enumeration of the elements of K1(Γ). By the six term
exact sequence above, and since K1(Br) = 0, for each r ∈ Q there is a surjection

jr∗ : K1( Jr)→ K1(Γ).

For each r ∈ Q and each n = 1, 2, . . . choose [ηn
r ] ∈ K1( Jr) such that jr∗([ηn

r ]) =
[ηn

r ] = [ξn] in K1(Γ). Thus ξn(ηn
r )−1 ∈ GL0

∗(Γ) so that ξn(t)
(
ηn

r (t)
)−1 ∈ GL0

∗(Bt )
for each t . Now since ηn

r (r) is a matrix with scalar entries and t �→ ηn
r (t)−1 is

continuous, it follows that there is an open interval In(r) containing r such that
ξn(t) ∈ GL0

∗ Bt ) for t ∈ In(r). Now let

Un =
⋃
r∈Q

In(r),

a dense open set in [0, 1], and consider the dense Gδ set

G =
∞⋂

n=1

Un.

Now for θ ∈ G one has K1(Bθ) = 0. To see this, fix θ ∈ G so that for each n, θ ∈ In(r)
for some r ∈ Q. So, ξn(θ) ∈ GL0

∗(Bθ). Hence, [ξn(θ)] = 0 in K1(Bθ) for all n. Since,
by Lemma 7.2-A, the map (evθ)1 : K1(Γ) → K1(Bθ) is surjective for all θ, so that
[ξ1(θ)], [ξ2(θ)], . . . constitute all the elements of K1(Bθ), it follows that K1(Bθ) = 0.

7.3 The K0-Group

Throughout this section we shall assume that {Bt : t ∈ [0, 1]} is a given continuous
field of unital C*-algebras.

Lemma 7.3-A Assume the field {Bt : t ∈ [0, 1]} satisfies the hypothesis (H1). Let
e : (a, b)→ ⋃t Bt be any local section of projections of the field. Then each r ∈ Q∩(a, b)
has a neighborhood on which mr,x[e(t)] ∈ Rt , where x = [e(r)].

Proof Put m = mr,x. Since r ∈ Q, m[e(r)] ∈ Rr , so that one can write

m[e(r)] =
∑

j

n j[P j(r)],

for some integers n j . By continuity, this equation holds in a neighborhood of r, which
gives the result.

Theorem 7.3-B Assume that the field {Bt : t ∈ [0, 1]} satisfies the hypothesis (H1).
Fix θ and a projection e in a matrix algebra over Bθ. Then there are global sections
of projections p1(t) and p2(t) of the field {Mm(Bt ) : t ∈ [0, 1]} (for some m) and a
positive integer nθ such that

[p2(θ)]− [p1(θ)] = nθ[e]

in K0(Bθ). In particular, for each θ the canonical map K0(Γ) → K0(Bθ) is almost
surjective. The integer nθ is the least common multiple of two integers of the form mr,x

appearing in (H1).
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Proof Choose a section e(t) of the field defined on a sufficiently small interval I
containing θ such that e(t) is a projection for each t ∈ I and e(θ) = e. Pick r, s ∈ Q∩I
such that r < θ < s. Using the projections P1, . . . , PN of (H1), there exist global
sections R1, R2, S1, S2 of projections (in possibly different matrix-size algebras) whose
classes at each t belong to Rt and such that

m[e(r)] = [R2(r)]− [R1(r)] ∈ Rr, m ′[e(s)] = [S2(s)]− [S1(s)] ∈ Rs,

where m = mr,[e(r)] and m ′ = ms,[e(s)]. Let n = lcm(m,m ′), so that by suitably
modifying R j , S j one can assume without loss of generality that

(7.3.1) n[e(r)] = [R2(r)]− [R1(r)] ∈ Rr, n[e(s)] = [S2(s)]− [S1(s)] ∈ Rs.

These equations in fact hold in a neighborhood of r and s (with n held fixed), respec-
tively, in view of Lemma 7.3-A. Without loss of generality one can assume

size(R2) = size(R1) + n size(e) and size(S2) = size(S1) + n size(e).

From (7.3.1) there exists positive integers p, q, p ′, q ′ and invertibles w and u in some
matrix algebra over Br and Bs, respectively, such that

e(r)(n) ⊕ R1(r)⊕ Ip ⊕ Oq = w[R2(r)⊕ Ip ⊕ Oq]w−1(7.3.2)

e(s)(n) ⊕ S1(s)⊕ Ip ′ ⊕ Oq ′ = u[S2(s)⊕ Ip ′ ⊕ Oq ′]u−1.(7.3.3)

One can assume that w and u have the same size k after suitable enlargements. Letting
R ′

j(t) = R j(t)⊕ Ip ⊕ Oq and S ′
j(t) = S j(t)⊕ Ip ′ ⊕ Oq ′ , for j = 1, 2, these become

e(r)(n) ⊕ R ′
1(r) = wR ′

2(r)w−1(7.3.2 ′)

e(s)(n) ⊕ S ′
1(s) = uS ′

2(s)u−1(7.3.3 ′)

and equations (7.3.1) are unchanged when R j and S j are replaced by R ′
j and S ′

j , re-
spectively. Choose global sections of invertibles ξ(t) and η(t) in some matrix algebra
over the field such that ξ(r) = w ⊕ w−1 and η(s) = u ⊕ u−1. (This is possible since
w ⊕ w−1 is in the connected component of the identity, so is a product of exponen-
tials, and hence extends to a global invertible section.) Thus (7.3.2 ′) and (7.3.3 ′) can
be written as

e(r)(n) ⊕ R ′
1(r)⊕ Ok = (w ⊕ w−1)

(
R ′

2(r)⊕ Ok

)
(w ⊕ w−1)−1(7.3.2 ′′)

e(s)(n) ⊕ S ′
1(s)⊕ Ok = (u⊕ u−1)

(
S ′

2(s)⊕ Ok

)
(u⊕ u−1)−1.(7.3.3 ′′)

Adding S ′
1(r) to both sides of (7.3.2 ′′) and adding R ′

1(s) to both sides of (7.3.3 ′′) one
obtains

e(r)(n) ⊕ R ′
1(r)⊕ Ok ⊕ S ′

1(r)

= (w ⊕ w−1 ⊕ Im1 )[R ′
2(r)⊕ Ok ⊕ S ′

1(r)](w ⊕ w−1 ⊕ Im1 )−1
(7.3.2 ′′′)

e(s)(n) ⊕ S ′
1(s)⊕ Ok ⊕ R ′

1(s)

= (u⊕ u−1 ⊕ In1 )[S ′
2(s)⊕ Ok ⊕ R ′

1(s)](u ⊕ u−1 ⊕ In1 )−1
(7.3.3 ′′′)
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where m1 is the size of S ′
1 and n1 the size of R ′

1. Now let

p1(t) = R ′
1(t)⊕ Ok ⊕ S ′

1(t).

Let C(t), for r ≤ t ≤ s, denote a continuous path of invertible matrices over the
complex numbers such that C(r) = Identity and C(s) the permutation matrix such
that

C(s)[X ⊕ Y ⊕ Ok ⊕ Z]C(s)−1 = X ⊕ Z ⊕ Ok ⊕ Y.

Now put

p2(t) =


(
ξ(t)⊕ Im1

)
[R ′

2(t)⊕ Ok ⊕ S ′
1(t)]
(
ξ(t)⊕ Im1

)−1
0 ≤ t ≤ r

C(t)[e(t)(n) ⊕ R ′
1(t)⊕ Ok ⊕ S ′

1(t)]C(t)−1 r ≤ t ≤ s(
η(t)⊕ In1

)
[S ′

2(t)⊕ Ok ⊕ R ′
1(t)]
(
η(t)⊕ In1

)−1
s ≤ t ≤ 1.

It easily follows that p1(t) and p2(t) are well-defined continuous sections, by (7.3.2 ′′ ′)
and (7.3.3 ′′ ′), and that [p2(θ)]− [p1(θ)] = n[e] ∈ K0(Bθ) is the canonical image of
[p2]− [p1] in K0(Γ).

Remark Note that the class of p1(t) is in Rt for each t , whereas the class of p2(t) is
in Rt for all t outside some neighborhood of θ.

Theorem 7.3-C Assume that the continuous field {Bt} is separable and satisfies the
hypothesis (H1). There is a dense Gδ subset G of [0, 1] containing Q such that for each
θ ∈ G and each x ∈ K0(Bθ) there is a positive integer Nθ(x) such that

Nθ(x) · x ∈ Z[P1(θ)] + · · · + Z[PN (θ)].

In addition, the integer Nθ(x) is a product of two integers, one of the form mr,x and the
other a least common multiple of two integers of the form mr,x (which appear in (H1)) .

Proof Let x1, x2, . . . be an enumeration of the elements of K0(Γ). By Lemma 7.3-
A, for each x j and each r ∈ Q there is an open interval I j(r) containing r such that
mr,x j (r) · x j(t) ∈ Rt for t ∈ I j(r), where x(t) := εt∗(x) (here, εt∗ is as defined in
Section 7.2). Let

U j =
⋃
r∈Q

I j(r)

a dense open set, and consider the dense Gδ set

G =
∞⋂
j=1

U j .

Now pick any element y ∈ K0(Bθ) where θ ∈ G. Then by Theorem 7.3-B there is a
positive integer nθ with nθ y = xk(θ) for some k. Now θ being in Uk is in Ik(r) for
some r ∈ Q so that mr,xk(r) · xk(θ) ∈ Rθ. Thus mr,xk(r) · nθ · y = mr,xk(r) · xk(θ) ∈ Rθ so
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that the result holds with Nθ(x) = mr,xk(r) ·nθ is of the exact form as in the statement.

Remark From the preceding proof we note that if K0(Γ) is finitely generated, then
the conclusion of Theorem 7.3-C holds on a dense open subset of [0, 1].

Corollary 7.3-D (Conservation of Torsion-Free Rank) If, in addition to (H1) for a
separable continuous field of C*-algebras, the groups K0(Br) have torsion-free rank n for
each r ∈ Q, then there is a dense Gδ subset G of [0, 1] containing Q such that K0(Bt )
has torsion-free rank n for t ∈ G.

We now arrive at and state the main result of this section as follows.

Corollary 7.3-E Assume the hypotheses (H1) and (H2) hold for a separable continu-
ous field of C*-algebras, and that mr,x = 1 for each r ∈ Q and x, so that the classes
[P1(t)], . . . , [PN (t)] generate K0(Bt ) for each t ∈ Q.

(a) There is a dense Gδ subset G of [0, 1] containing Q such that for each θ ∈ G, the
classes [P1(θ)], . . . , [PN (θ)] generate K0(Bθ).

(b) The canonical map εθ∗ : Ki(Γ) → Ki(Bθ), induced by evaluation, is surjective for
each θ in [0, 1] and for i = 0, 1.

(c) For each θ in [0, 1] one has the short exact sequences of K-groups

0 −−−−→ K0( Jθ)
j∗−−−−→ K0(Γ)

εθ∗−−−−→ K0(Bθ) −−−−→ 0

0 −−−−→ K1( Jθ)
j∗−−−−→ K1(Γ)

εθ∗−−−−→ K1(Bθ) −−−−→ 0.

Proof Part (a) follows since nθ = 1 in Theorem 7.3-B and Nθ(x) = 1 in Theo-
rem 7.3-C. Part (b) follows from Theorem 7.3-B and (c) from the above six term
exact sequence, (b), and Lemma 7.2-A.

Remarks Corollary 7.3-E holds with “generate” replaced by “form a basis for”. Note
that the conclusions in (b) and (c) hold for all θ and not just on the Gδ set. Also, for
a dense Gδ of θ’s, conclusion (c) implies that there is an isomorphism j∗ : K1( Jθ) →
K1(Γ).

The Fourier Automorphism Case

Going back to the Fourier case with Bθ = Aθ �σ Z4, Corollary 6-C shows that the
nine canonical modules form a basis for K0(Bθ) in the rational case, so that by Corol-
lary 7.3-E(a) one has K0(Bθ) ∼= Z9 for θ in a dense Gδ and that the nine modules
(evaluated at θ) form a basis for it. In addition, Corollary 7.3-E(b) shows that for
each θ there is a canonical surjection

εθ∗ : Ki(Γ)→ Ki(Bθ).

Also, Corollary 7.3-E(c) entails an isomorphism

K0(Γ) ∼= Z9 ⊕ K0( Jθ)
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so that, in particular, all the groups K0( Jθ), for θ in the Gδ , are isomorphic. It seems
reasonable to expect that these should hold for any θ—under the hypotheses (H1)
and (H2).

Since for rational θ, K1(Bθ) = 0, Theorem 7.2-B implies that the same holds on
a dense Gδ (containing the rationals), and so Corollary 7.3-E(c) yields the isomor-
phism j∗ : K1( Jθ) → K1(Γ) (induced by the canonical inclusion) for each θ in the
dense Gδ . (In particular, all such ideals Jθ also have the same K1-group.)

Other Finite-Order Automorphisms

A few applications for other finite order automorphisms of the rotation algebra can
be made as follows.

Example 1 Consider the flip automorphism of the rotation algebra, given byφ(U ) =
U−1, φ(V ) = V−1. The associated crossed product, Cθ = Aθ �φ Z2 was studied by
several authors. In [9], Kumjian was able to use Natsume’s exact sequence for K-
groups of amalgamated products, and the fact that Z � Z2

∼= Z2∗Z2, to obtain the
isomorphisms K0(Cθ) ∼= Z6 and K1(Cθ) = 0 for all θ. One can, however, show that
these isomorphisms hold on a dense Gδ without using Natsume’s sequence (nor the
fact that Z � Z2

∼= Z2∗Z2) by applying Corollary 7.3-E and verifying the hypothe-
sis (H1) for six canonical projections in Cθ in the rational case, which is easy to do.
(For example, see Lemma 2.3 of [13] for an explicit form of these projections.) That
hypothesis (H2) holds, i.e., that K1 vanishes in the rational case, follows from [2,
Theorem 6.1].

Example 2 The order six automorphism β of the rotation algebra Aθ is defined by

β(U ) = V, β(V ) = U−1V.

Its square β2 gives an order three automorphism. The associated crossed product
algebras are Aθ �β Z6 and Aθ �β2 Z3. In [6, Corollary 2.0.10], it was shown that their
K1-groups vanish when θ is rational. Therefore from Theorem 7.2-B above there is
a dense Gδ subset of [0, 1] on which the K1-groups vanish. In [6] it was also shown
that for rational θ one has K0(Aθ �β Z6) ∼= Z10 and K0(Aθ �β2 Z3) ∼= Z8. In order for
these isomorphisms to hold for at least a dense Gδ set of parameters θ, at least by our
techniques, one needs to come up with ten (respectively, eight) canonical modules
and show that they are independent in K0.

Closing Comments Some questions come to mind when looking at continuous
fields satisfying either (H1) or (H2), or both. Does Theorem 7.3-C hold for all θ?
If the groups K0(Bt ) are torsion-free for t in a dense set, are they always torsion-free?
Is the canonical image of K0( Jθ) in K0(Γ) always the same subgroup? (Which is true
for each θ in the Gδ set.) Are all the groups K0( Jθ) isomorphic? It seems that in
some important examples, like the flip and the Fourier automorphisms, one would
expect K0( Jθ) to be all isomorphic. It is known that continuous fields of C*-algebras
can behave quite strangely in such a way that no fiber, not even a dense set of them,
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can practically predict any facts about other fibers. However, what if some additional
and more stringent assumptions are made on the field? For example, define two C*-
algebras to be K0-similar if they are isomorphic to two fibers in some continuous field
{Bt} over [0, 1] for which there are classes ξ1, . . . , ξn in K0(Γ) such that at each t the
classes ξ1(t), . . . , ξn(t) form a basis for K0(Bt ). (Assume the groups are torsion-free.)
For example, the continuous field of rotation algebras yields a K0-similarity between
its fibers. What connection does this equivalence relation have, if any, with other
known relations, such as KK-equivalence, strong Morita equivalence, or even shape
equivalence?

8 Appendix. Corrections to: Quartic Algebras Paper

In this appendix we point out some corrections to the paper [7] which are crucial
for the proofs of the present paper (particularly, in Section 3 above). (These do not
affect the conclusions obtained in [7].)

In [7] the authors use τ to denote the automorphism inverse to our Fourier auto-
morphism σ. Thus, τ (U ) = V−1, τ (V ) = U , and with the realization of Ap/q given
as functions on the square by (2.2.1) one has

τ ( f )(x, y) = τ0

(
f (1− y, x)

)
,

where τ0 = α1α0 (as on page 1172 of [7]). (The latter automorphisms are defined
as in Section 2.2 above.) For E = −1,±i, the authors define the subspace (see [7,
p. 1189])

Aτ
θ(E) := {x ∈ Aθ : τ (x) = Ex}.

In their proof of Theorem 6.2.1 (page 1190), the authors state the identification

Aτ
θ(E) =

{
f ∈ C(T,Mq) :

f (x, x) = Eα1α0

(
f (1− x, x)

)
f (x, 0) = Eα1α2γ0

(
f (1− x, 0)

)}
where α0, α1, α2, γ0 are as defined in Section 2.2, and where T is the triangle shown
in the figures of Section 3. Three corrections are to be noted here. The identification
should read (after examination of the proof)

(8.1) Aτ
θ(E) =

{
f ∈ C(T,Mq) :

f (x, x) = Eα1α0

(
f (1− x, x)

)
f (x, 0) = E2α2γ0

(
f (1− x, 0)

)} .
These appear to have stemmed from the last two equations on page 1173, which read,
for a given f ∈ Aτ

θ (the fixed point subalgebra),

f (x, x) = (τ f )(x, x) = τ0

(
f (1− x, x)

)
= α1α0

(
f (1− x, x)

)
,(8.2)

f (x, 0) = (σ f )(x, 0) = α1α2γ0

(
f (1− x, 0)

)
,(8.3)

where their “σ” here denotes the flip automorphism, i.e., our σ2. Recall that their flip
“σ” is given by

“σ” ( f )(x, y) = σ0

(
f (1− x, 1− y)

)
= α1α2γ0

(
f (1− x, 1− y)

)
.
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Equation (8.2) is correct, but in (8.3) there should not be an α1. (In fact, (8.3) does
not hold for f = U + V + U−1 + V−1 which is in Aτ

θ .) When considering these
equations more generally for typical f ∈ Aτ

θ (E), so that τ ( f ) = E f , these equations
become

E f (x, x) = (τ f )(x, x) = τ0

(
f (1− x, x)

)
= α1α0

(
f (1− x, x)

)
,

E2 f (x, 0) = (σ f )(x, 0) = α2γ0

(
f (1− x, 0)

)
and these yield (8.1) as the corrected identification.

Finally, on page 1190, the authors have obtained the isomorphism

Aθ �τ Z4
∼=
{

f ∈ C(T,M4q) :
f (x, x) = (α1α0 ⊗ Ad D)

(
f (1− x, x)

)
,

f (x, 0) = (α1α2γ0 ⊗ Ad D2)
(

f (1− x, 0)
)}

which, in view of (8.1), should now be

(8.4) Aθ �τ Z4
∼=
{

f ∈ C(T,M4q) :
f (x, x) = (α1α0 ⊗ Ad D−1)

(
f (1− x, x)

)
f (x, 0) = (α2γ0 ⊗ Ad D2)

(
f (1− x, 0)

) } .
This is the algebra that we called Tθ in Section 3 above.
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Addendum After submission of this paper, in [18] the author constructed an order
four automorphism of the irrational rotation algebra Aθ that mimics the Fourier au-
tomorphism on K1 (i.e., sends the classes [U ], [V ] to [V ], [U−1], respectively) and
such that the fixed point subalgebra is an AF-algebra.
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