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1. Introduction

Let M be an ^-dimensional Hadamard manifold, that is, a complete simply

connected C°° Riemannian manifold with nonpositive sectional curvatures. Making

use of geodesic rays, Eberlein and O'Neill [11] constructed a compactification

Ϊ = I U S(°°) of M which gives a homeomorphism of (M, S(°°)) with the

Euclidean pair (Bn, Sn~ ). In this paper we shall study the asymptotic Dirichlet

problem for the Laplace-Beltrami operator, which is stated as follows:

PROBLEM. Given a continuous function φ on 5(°°), find a harmonic function

u*Ξ C°°(M) Π C°(AD such that u |5(oo) = φ.

The maximum principle implies that φ uniquely determines u if it exists.

This problem has been studied by several authors (see [2], [3], [4], [7], [8], [9],

[14], [15], [16], [20] and [21]). Choi [9] solved this problem for rotationally

symmetric manifolds with the decay of sectional curvatures faster than

— Ap {log p) outside a compact subset, where A > 1 is a constant and p is the

distance from a fixed point. In [3] and [21], Anderson and Sullivan independently

settled this problem affirmatively for the manifold with the sectional curvatures

bounded between two negative constants. In relation with this result, the following

question is proposed by Yau [22, p. 14]: if curvatures of M are bounded above by

a negative constant, can one find nontrivial bounded harmonic functions defined

over the manifold? From this point of view, as a first step, we shall attempt to re-

lax the pinching condition for the curvatures which is imposed in Anderson [3]

and Sullivan [21]. A work in this direction was actually done by Hsu and March:
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2 HIRONORI KUMURA

THEOREM 1.1 ([15], [14]). Let M be an Hadamard manifold of dimension n > 3

and assume either (a) there are constants α > 2 , 0 < / 3 < l and L > 0 with

a{\ - β) > 2 such that

KM(x) < - a(a- DpixΓ2

and

RicM(x) > - Lp(x)2β

for all x ^ M outside some compact subset or (b) there are constants U > 0 and

L > 0 with U2/L > (n~ l )/2 such that

KM{x) < - U2

and

Ric^ω > - L2p(x)2

for all x ^ M outside some compact subset, where β(x) = dist(o, x) and o ^ M is a

fixed point of M and KM(x) (resp. RicMCr)) denotes the sectional curvature of M (resp.

the Ricci curvature of M). Then one can solve the asymptotic Dirichlet problem for the

Laplace-Beltrami operator.

In this paper, we shall generalize Theorem 1.1 and prove the following:

THEOREM 1.2. Let M be an Hadamard manifold of dimension n ^ 3 and assume

either (a) there exist constants / > 2, C > 0, and θ > 0 such that

κM(x) < - / α -

and

RicM(x) > — Cp(x)ι~2{\ogp(x)}~θ~ι

for all x ^ M outside some compact subset; or (b) there exist constants a > 0, C > 0

and b e (0, a) such that

KM(x) < - a

and

for all x ^ M outside some compact subset. Then one can solve the asymptotic Dirichlet

problem for the Laplace-Beltrami operator.
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To prove Theorem 1.1, Hsu and March used a probabilistic approach. Their

proof requires some lower bound of the Ricci curvature which guarantees the con-

servative law for the heat equation to hold; see [15, Remark 3]. This is the reason

they imposed the condition RicMCr) > — Cipix) + 1). Indeed, Li and Yau [18]

showed that if the Ricci curvatures on a complete Riemannian manifold M satisfy

RicMCr) > — C(p(x) + 1) for some positive constant C, then a nonnegative

solution of the heat equation on M is uniquely determined by its initial data and

therefore the minimal heat kernel pit, x, y) satisfies I pit, x, y)dV{y) = 1. On

the other hand, Azencott [6] showed that this curvature bound is almost sharp. To

be precise, he showed that if M is an Hadamard manifold whose sectional curva-

tures are bounded from above by — Cpix) for some positive constants C and ε,

then the minimal heat kernel pit, x, y) satisfies 0 < / pit, x, y)dViy) < 1 for

t > 0 and hence a solution of the heat equation on M is not uniquely determined

by its initial data. Obviously, Theorem 1.2 includes the case that M is not

stochastically complete.

On the other hand, we shall prove Theorem 1.2 by a more geometric method

than Hsu and March's one. Indeed, we shall construct C -superharmonic and sub-

harmonic functions with given boundary value on S(°°), making use of the

Schoen's technique in [4]. In our proof, we shall use only the comparison theorems

in Riemannian geometry and the maximum principle.

This paper is divided into five sections. In Section 2, a key estimate for the

proof of Theorem 1.2 will be obtained by using the comparison theorem in

Riemannian geometry. Section 3 is devoted to proving Theorem 1.2. In Section 4,

we shall state a generalization of Theorem 1.2 to the Dirichlet problem for harmo-

nic maps. Some examples of manifolds will be given in Section 5.

Acknowledgement. The author would like to express his gratitude to Profes-

sor Atsusi Kasue for his valuable suggestion and warm encouragement.

2. A key estimate

To begin with, we choose a fixed point o ^ M and identify S(°°) with the

unit tangent sphere S* (1) = {u ^ T0M || u || = 1} via the exponential map at

o, where we assume that So (1) has the standard sphere metric. Let φ be a Lips-

chitz function on S^~ (1) = S(°°) and extend it radially along the rays from o to

a function on M — {o}, with boundary data φ on S(°°). Let χ : [0, °°) —* R be a
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fixed C2-function such that

, 2<t,

(2) χ'(ί) < 0, t > 0,

and

(3) χf/(t)>0, 7/4<t<2.

As in [4], we define a function .A(<p) by

j *(/(>(#, y))φ(y)dV(y)
(4) 4 (p) ω = - ^ ,

/ x(pU, y))dV(y)

where p(x> y) — d is t(r , y) and dV denotes the Riemannian measure on M. We

note that A(φ) is a C -function on M with boundary value φ on S(°°). Then we

have the following:

LEMMA 2.1. The Laplacian ofA(φ) satisfies

(5) I ΔA(φ) I (x) < QUOr) 2 + 1) sup I φ(y) - φ(x) |,

where

iy U)

DIUI
and Cx is a constant depending only on χ and n = dim M.

(6) - A U) 2 = inίl RiCM(u'u)

u2 0 Φ u e TqM, q e β x(2))
*~ I -M 1 1 1 / ^

Remark 1. In [4], Anderson and Schoen took an auxilialy function χ satis-

fying (1) and showed that

(7) I D2A(φ) I (x) < C[ sup | φ(y) - φ{x) |,

when the sectional curvatures of M are bounded between two negative constants.

Here, D A(φ) is the Hessian of A(φ) and C[ is a constant depending only on the

choice of χ, the curvature bounds and ambient geometry of M (see [4, p. 437]).

Proof of Lemma 2.1. Direct computation shows that

Δ(A(φ))(x0) = Δ(A(φ) - φ(xo))(xo)
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, y))){xo)[φ(y) ~ φ(xo)]dV(y)

fMX(p(x0,y))dV(y)

fχ(p(xo,y))[φ(y)-φ(xo)]dV(y) • f Δx(χ(p(x,y))(x0)dV(y)

__ r>

„ f(e)x(χ(p(x,y)))(x0)dV(y) f (e,)x(χ(p(x,y)))(x0)[φ(y) - φ(xo)]dV(y)

„ f χ(p(x0, y))lφ(y) ~ ψ(xo)]dV(y) • { f(e,)x(χ(p(x, y)))(xo)dV(y)Y

{JMX(p(x0,y))dV(y)}3

where {eι \ i — 1,. . . , n) is a local orthonormal frame around x0 satisfying

(Vetej)(x0) — 0 (/, j' = 1 , . . . , ^) and the subscript x means the differenciation

with respect to ^-variable. Therefore, we get

f\Δx{χ(p(x,y))\dV(y) ί Γ | χ'(p(x, y)) \dV{y)Y '
,Δ(A(φ))(x)\<2-

J Z(pte. y))dV(y) I χ(p(x> y))dV(y)

x sup I φ(y) — φ(x) \
y<EBx(2)

for all x e M. Since ^(χ(pCr, z/))) = χ'(/θU, y)) ^ ( x , y) + χ"(/θ(j;, z/)),

we obtain

(8) \Δ(A(φ))(x) I < 2{/3ω + f2(x) + 2nfγ{xγ} x sup
y<=Bτ(2)

where

f |χ'(p(*,0))l<W

fχ(pte,y))dV(y)

JM\χ"(p(x,y))\dV(y)

fχ(p(x,y))dV(y)

and
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f\χ'(p(x,y))\\Δxp(x,y)\dV(y)

f3ω = ̂  r
χ(p(x,y))dV(y)

Now, we shall estimate the part {•} in the inequality (8) from above in terms of a

polynomial of k(x). (We choose the sign of k(x) to be nonnegative).

We shall begin with an estimate of fv When we represent the volume form dV

relative to geodesic porlar coordinates centered at x, we have dV(y) =

a(t, θ)dtdθ for some positive function a(t, θ), where dθ is the standard volume

form on the unit sphere S"~ (1) c TXM and t = distCr, y) and θ e S"~ (1).

Thus, we get

ί I χ'CoOr, y)) I dV(y) = - fχ'ipix, y)) dV(y) = - Γ dθ f χf(t)a(ty θ)dt

and for every fixed θ

- f χ'(t)a(t, θ)dt= - [χ(t)a(t, θ)YtZi+ [ χ(ί) (dta)(t, θ)dt

(n- l)k(x) J χ(ί)coth(A(x)dβ(/, θ)dt
2"

(n- l)k(x)-coth(~~) • j*χ(t)a(t, θ)dt.

In the above inequalities, we have used (1), (2) of χ and the Bishop-Gromov ine-

quality, that is to say,

0 < ~ ± - < {df{t

{t'θ)

θ) <(n- l)k(x)coth(k(x)t)

for t > 0 and θ e S"~ι(l). Also we note that

a(^, θ) <2 J χ(ί)o(ί, β)Λ.
2"

Combining the inequalities above, we deduce

- ί dθ f χ'(f)a(t, θ)dt
o) Λω = ;*"'» ;

I dθ I χ(ί)a(ί, θ)dt

< 2 + (n - l)k(x)coth(k(x)/2)
< C{'(k(x) + I),
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where C/' is a positive constant depending only on n = dim M.

Next, we shall estimate f2(x). We set

Then, since χ" ^ 0 on [7/4, 2], we see

f dθ f χ"(t)a(t, θ)dt
< C2 Vol(ffx(7/4)) + V ω 4

f χ(p(x,y))dV(y) f χ(p(x, y))dV(y)
JM JM

The first term on the right hand side in the above inequality is estimated as fol-

lows:

C2 Vol(5,(7/4)) ^ C2 VolGBx(7/4)) C
2

where C5 > 0 is a constant depending only on χ.

With respect to the second term, we have

f7 χ"{t)a(t, θ)dt= lχ'(t)a(t, θ)VtZi ~ f χ'(t)(dta)(t, θ)dt
Ί

< - χ /(7/4)«(7/4, θ) - (n- \)k(x) Jγ χ\t)a(t, θ)coth(k(x)t)dt
T

r2

< - χ'(7/4)«(7/4, θ) - (n- l)k{x)coth{Ίk(x)/A) J ? χr(f)a{t, θ)dt
I

and, because tf(ί, #) is an increasing function with respect t > 0, we get

- χ ' ( 7 / 4 ) α ( 7 / 4 , 6>) < 4̂

15

f χ(t)a(t, θ)dt,

where C4 > 0 is a constant depending only on χ. Hence, we obtain

(10) f2{x) < C3 + C4 + (n- I)k(x)coth(7k(x)/4)f1(x)

< C5(k(x)z + Ϊ),
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where C5 > 0 is a constant depending only on χ and n = dim M.

Now, it remains only to estimate the function /3. The Bishop-Gromov inequal-

ity implies that for y e BXQ(2) - BXQ(1),

0< (n-l) p(x, y)'1

< (Δxp(x,y))(x)

< (n - l)k(x)coMk(x)p(x, y))

< (n - l)k(x)cothk(x).

Noting that | χ'(p(x, y)) \ = 0 when y e ^ ( 1 ) U (M — Bx(2)), we see

(11) f3(x) < (n - l)k(x)coth k(x) - f^x)

where C6 > 0 is a constant depending only on n — dim M. Lemma 2.1 follows

from the inequalities (8) —(11). Q. E. D.

3. The proof of Theorem 1.2

In the first place, we note that the following inequality holds by virtue of

Lemma 2.1:

(12) Δ{A(φ) + C 7 (log(p4

1

l> \p + C 8 ) log l + C8) ^ + C->

- CSkixΫ +l)(p + C8){log(p + C8)}ε+1

x sup \ φ(y) — φ(x) \\
y(=Bx(2) J

a t x for e v e r y p o s i t i v e c o n s t a n t s C 7 , C 8 a n d ε, w h e r e p(-) = d i s t ( o , ) a n d C j i s

a s in L e m m a 2 . 1 . L e t u s s e t

(13) Kmax(s) = maxί i i^ ί r ω Λ u) \u e Γ r v ( 5 ) M - {0}, r ;(s) 1 u f t; e s

where ^(s) = expo(5z;), S ^ d ) = iv e Γ0Λf| |U || = 1}, and ^(5) Λ υ is the

2-plane spanned by 7y(s) and f, and KM(γv(s) Λ ιθ is its sectional curvature.

Next we take a continuous function K(s) ^ C ([0, °°)) such that

(14) Kmax(s) <K(s)<0 for all s e [0, 00).
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Using this function K(s), we define Fκ ^ C ([0, °°)) to be a solution of the equa-

tion

ί F£ + KFK = 0,
/I C\ \ K K >
( ' \Fκ(0) = 0, F;(0) = 1.

Then, the comparison theorem implies

and

on M — {o}, where St is the shape operator of dB0(t) = {x ^ M\ dist(o, x) = t).

Therefore, when n = dim M > 3 and C8 is sufficiently large, we have

A £ + 1 1 . 1 Fί'p λΛ
y (p + C8) {\og(p + C8)} p + C8 2 Fκ ° p

Also, it is easily seen that

sup I <p(z/) - φ(x)
2* C

9

for every x ^ M with pCr) >: 3, where C9 is a Lipschitz constant of <p on

S"~ (1) with standard sphere metric.

Hence, we obtain the following inequality:

Δ{A(φ) + C7(log(p + C8)) ε)

1

X ί 2 f " ^ C9'(A;2 + 1} V^(p - 2) J

on Λf — Bo(3), where Cg > 0 is a constant depending only on <p and C8 is arbit-

rary constant greater than

sequence of this inequality:

rary constant greater than or equal to e . The following is an immediate con-

LEMMA 3.1 (main lemma). Let M be an Hadamard manifold of dimension n > 3.

We fix a point o in M and define k, KmΆX, K and Fκ by (6), (13), (14) and (15), re-
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spectively. Suppose that there exist positive constants C7, ε and t0 > 3 such that

FfoQd) (k(x)2 + 1) (p(x) /(ε+1> 2 t e + " ' + 1

7

t/ig asymptotic Dirichlet problem for the Laplace-Beltrami operator is solvable for

anyφ <Ξ C°(S(°°)).

Proo/. Without loss of generality, we may assume that φ is a Lipschitz func-

tion on S(°°) = So (1): (see [4]). Under the assumption of Lemma 3.1, we can

find positive constants Cf

Ί and C8 so that φ+ '-= A(φ) + Cj(log(p + C8)) is su-

perharmonic and φ_ '= A(φ) — Cγ(\og(p + C8)) is subharmonic. We note that

φ+ and φ_ are in C (M — {o}) Π C (M) and they have the same boundary data

φ on S(°°). The Perron method shows that there exists a harmonic function u

such that

<p_ < u < φ+ on M .

Therefore, Δu = 0, κ e C°°(M) Π C°(M) and w | s ( o o ) = φ. Q. E. D.

We are now ready to prove Theorem 1.2.

Let us assume that there exist constants I > 2 and p 0 > 0 such that

(16) KM(x0) < for any x0 e M satisfying dist(o, x0) = p > p0.
P

Then, as a function K(p) appeared in the inequality (14), we can take

K(p) = - 1(1- l)p~2 for all p > p0.

We respectively define functions / and B by

zip) = (p + c9y

and

Bip) = 7W = JT^9

 f o r
 P - p°'

where C9 > 2 is a positive constant determined so as to satisfy

( 1 7 ) s»o > % f I d ^ VId ^ VT-C I d = B{p°)ld-
ΓκΨθ' Po Po * U 9

In the situation introduced above, we observe that
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(18) Kip) < for all p > p0

and that Fκ and / respectively satisfy the following Riccati equations:

\F'κip)^
+ Fκip) + Kip) = 0

B'ip) + B\p) - f-^~ = 0 for p > p0.

and

From (17), (18) and the Riccati equations, we obtain

(19) JTfifi-'

So,

fipp)

Hence,

(20) -jjr- (p.

Now, we shall add the following assumption:

(21) RicMCr) > -
p(x)1

(log p(x)) θ+ι
for x ^ M satisfying p(x) > p0,

where C1 0 and θ are positive constants. If two positive constants C7 and p0 are

sufficiently large, and if ε e (0, θ), then (19) and (21) imply that

• + 1
(log p)

on M—B0(PQ), where C8 = e ε+ . Therefore, under the assumption (16) and

(21), the asymptotic Dirichlet problem for harmonic functions is solvable and we

complete the proof of the case (a) in Theorem 1.2.
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Next, let us prove the case (b) in Theorem 1.2. We assume that KM(x) <

— a for all x with dist(0, x) > p0. Let us take the constant pι > pQ and then define

(22) K(t) =

0,
2

a . Λ

{-a2, ί e fo, oo).

In addition we define F^ to be the solution of equation (15). Then, we can prove

that Fχ(t)/Fκ(f)—* a as t~+ °° and that eat/Fκ(t) converges to some positive

constant as /—• °°. Hence, applying Lemma 3.1 completes the proof of the case (b).

Remark 2. As is seen from the above proof, the assumption (b) in Theorem

1.2 can be weakened as follows: let us assume that (b') there exist positive con-

stants, a, C, and θ such that

KM(x) < - a

and

RicMCr) > - Ceapix\p(x) + iyι{log(p(x) + 2)}~ι~θ

for x G M outside a compact subset. Then we can solve the asymptotic Dirichlet

problem.

Remark 3. For Hadamard manifolds with the sectional curvatures bounded

between two negative constants, Anderson and Schoen [4] showed that the Martin

boundary of the manifold conicides with the geometric boundary S(°°). But it is

unclear that the Martin boundary of M coincides with 5(°°) under our assump-

tion of Theorem 1.2.

4. A generalization

When we consider the Dirichlet problem for harmonic maps, it is important to

solve the problem for harmonic functions as a special case. Indeed, Aviles, Choi

and Micallef's argument in [5] enables us to show the following:

THEOREM 4.1 (the Dirichlet problem for harmonic maps). Let M be an Hada-

mard manifold satisfying the condition of Theorem 1.2 or more generally that of main

lemma. Bτ(p) denotes the closed geodesic ball of radius τ and center at p in a complete
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C°° Riemannian manifold N. We assume that τ < min {%/2\[κ, injectivity radius of

N at p), where K > 0 is an upper bound for the sectional curvatures of N. Then for

each φ €Ξ C°(S(°°), Bτ(p)), there exists a unique u €Ξ C\M, Bτ(p)) Π C°°(M,

Bτ{p)) which is a harmonic map on M and which equals φ on S(°°).

We note that when N is an Hadamard manifold, there is no restriction on the

upper bound of τ in Theorem 4.1 and therefore Theorem 1.2 is considered as a

special case of Theorem 4.1. We remark that in [5], Aviles, Choi and Micallef

solved the asymptotic Dirichlet problem for harmonic maps when the sectional

curvatures of M are bounded between two negative constants. But their arguments

are also available in the case that S(°°) is regular for the Laplace-Beltrami oper-

ator, and we shall omit the proof of Theorem 4.1. (See also Akutagawa [1]).

5. Examples

The notion of the asymptotic Dirichlet problem on Hadamard manifolds is

naturally extended to that on a manifold with a pole (see Choi [9]). (Let us recall

that a point p of a Riemannian manifold N is called a pole if the exponential map

TpN—* N is a diffeomorphism).

DEFINITION 1 ([9]). Let N be a Riemannian manifold with a fixed pole p. Given

v & Sp (1) — {w ^ TPN\ || w || = 1), we define γυ to be the geodesic ray emanat-

ing the pole p with 7^(0) = υ. Suppose u is a function defined on M. We say that

u(q) converges to a number A as q —> γv(°°) if for any ε > 0 there exist δ > 0

and r > 0 such that | u(q) — A \ < ε for all q e K(υ, δ, r). Here K(v, δ, r) is

t h e t r u n c a t e d c o n e { e x p ^ ( / w ; ) ^ N \ t > r , Z . p ( v , w) < δ, w <Ξ S ^

DEFINITION 2 (asymptotic Dirichlet problem with respect to a pole p ([9])).

Given φ ^ C (Sp (1)), find a harmonic function on N such that for every v ^

Sp (1), u(q) converges to φ(v) as q—* Tυi.°°) in the sense of Definition 1.

Now, we shall make examples of a manifold with a pole which satisfies curva-

ture conditions similar to those of Theorem 1.2, where the sectional curvatures

shall be replaced by the radial curvatures with respect to the pole. We remark

that the upper bound of the sectional curvatures in Theorem 1.2 can be replaced

with the weaker hypothesis of the radial curvatures with respect to a pole of M,

as is easily seen from the proof in Section 3.

Let ξ be a unit Killing vector field on the standard unit sphere (S n , gQ)
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which satisfies Ker/^ = R-ξ for the Hopf fibering/ : 5 —• CPn . We define a

symmetric tensor gh on S w~ by gh — §o~ ωξ® ω^ where α>? is the 1-form dual

to ξ. We shall introduce the following Riemannian metric Grj(l on R using two

tensors gh and ωv ® ωη:

G^ = dp2 + r?(/o) V* + μ(p)2ωη ® ω,,

where jθ is the Euclidean distance to the origin 0 oί R , and ϊ] and μ are smooth

function on [0, °°) satisfying

77(0) = μ ( 0 ) = 0 , τj'(O) = μ'(0) = 1,

and

77 > 0, μ > 0 on (0, °o).

Some properties of the harmonic functions on Rη[χ — (R , Gηu) are discussed in

Kasue[17].

We shall assume that n — 2 and choose 77 and μ to make examples related to

Theorem 1.2.

EXAMPLE 1. Let us take 77 and μ such that

77(p) — p and μ(p) = pm for all p > pQ > 0.

We suppose m > 21. Then, straightforward calculation shows

κRijXΛdp) < -id-Dp'2,

KRiJX1Λde) = -l(l-l)p-2,

Ric^/ί) > - C {p2{m'2ί\q) + 1},

and

for all ^ ^ i? — {O}, where X is an arbitrary tangent vector at q with dist(O, q)

= p and XL dp, and where ^ is any vector at q satisfying dist(#, O) = p,

Xλ _L dp and Xι L ξ, and where C > 0 is a constant which does not depend on q.

Here, | = (0, ξ) is the vector field on (0, °°) x S3 = R4 - {0} that is canoni-

cally determined by the vector field ξ on S . Therefore, if 8 < 4/ < 2m < 5/ — 2,

then this example satisfies curvature conditions similar to those of Theorem 1.2

(a), where KM should be replaced to be the radial curvatures with respect to the
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origin. As a matter of fact, if only /, m > 1, the asymptotic Dirichlet problem with

respect to the origin is solvable. (We note that this is not an Hadamard manifold).

EXAMPLE 2. We set

η(p) = a~ sinh(αp),

μ(p) — b~ι sinh(δp),

and assume b > 2a > 0. Then,

KRΛX Λ dp) < - a,

KRΛXλ Adp) = - a,

RicΛJ(?) > - c-e2<b'2a)piq\
and

RίCΛj ( Z 2 , Xγ) a4 2(b-2a)p

II Xι II b

for all q ^ R — {0}, where C > 0 is a constant depending only on a and b.

Hence, if 2a < b <~w a, this example satisfies curvature conditions similar to

those of Theorem 1.2 (b), where the condition KR^t < — a should be replaced to

be radial curvatures with respect to the origin < — a . Actually, under the condi-

tion a, b > 0, alone, the asymptotic Dirichlet problem with respect to the origin is

solvable. (This example is also not an Hadamard manifold).

The following example may be somewhat interesting, because η decreases ex-

ponentially but the asymptotic Dirichlet problem with respect to the origin is solv-

able.

EXAMPLE 3. We take

- Θ -

η(p) = p2(\ogp) e and μ(p) — exp(exp2p)

for p > p0 > 0 and suppose the constant θ satisfies 2Θ > 1, then we can settle

the asymptotic Dirichlet problem on (R , Gηu) with respect to the origin. Indeed,

given φ ^ C (SQ

n (1)), we extend it radially along the rays from the origin 0 to

a function on RVβ — {0} and denote this function by φ. We may assume that

So

n (1) — {υ ^ T0Rη^ I || f || — 1} has the standard sphere metric g0 and that φ

is smooth with respect to the metric g0. Then, we have
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-\p{x)) + η~2
I Δφ I (x) < C{μ-\p{x)) + η~2(p(x))}

for all x with dist(O, x) = p(x) ^ p0, where C is a constant. Also, we get

ε \(n ^ η'(p) , μ'(p) 1 ε + 1
l ( 2 w 2 ) +M l 0 8 p ) = "

for any ε > 0. Consequently, if there exist positive constants, ε, Cr and pr

Q such

that

for all (O > ^Q, then we can solve the asymptotic Dirichlet problem on

(R n, Gvu) with respect to the origin for any φ ^ C (So

n~ (1)). This condition

(23) is actually satisfied in this case, Example 3. Moreover, we should note the

following two facts: first, when 2Θ ^ 1, there are no nonconstant bounded harmo-

?nic functions on Rm and secondly, for every θ ^ R, the conservative law for

the heat equation does not hold on Rη*, where η(p) = p*(\ogp) e~P and η(p) =

exp(exp 2p) for p > p0 > 0. (This example is also not an Hadamard manifold).

Remark 4. Kasue [17], gives the general condition which settle the asympto-

tic Dirichlet problem on Rη" with respect to the origin. Indeed, he defined two in-

tegrals,

/ = Γ η

2n-\r)μ(r) Γ rf'2"{s)μ~\s)dsdr
Jγ Jγ

and

X °° _ Γ°°

r\n (r)μ (r) I η n(s)u (s)dsdr
Λ

and proved that

(Aι) there are no nonconstant bounded harmonic functions on R*u if and only if*u if

= + °°
(A2) the asymptotic Dirichlet problem with respect to the origin is solvable

on R*u for any continuous function on SQ~ (1) if and only if both /x and I2 are fi-

nite;

(A3) when Iλ is finite but I2 divergent, any bounded harmonic function is con-

stant along each fiber of Hopf map /, and for a continuous function Ψ on C P

there exists a unique bounded harmonic function h on Rm such that h(q)

converges to Ψ ° f(v) as q-+ Ty(°°) for every v ^ So

n~ (1).
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Remark 5. While the author was preparing this paper, Professor Kasue in-

formed the author that the following two condition (Bj) and (B3) are equivalent;

(Bλ) Any bounded classical solution u(x, t) of the Cauchy problem for the

heat equation

(24) id'
I u (T

- Δ)u(x, t) = 0 on R2n

u x (0, T\,

u(xy 0) = uo(x) on R2n

u,

is uniquely determined by its initial data uQ(x), where T is a positive constant;

(B2) I p{x, y, t)dVηu(y) = 1, where p{x, y, t) is minimal heat kernel on
κημ

RVfl and dVm is the Riemannian measure on Rm\

(B3) £ I3(f)dt - + ~, where I3(t) = η2'2"(t)μ'1 (t) £ ηn'2(s)μ{s)ds.

The proof is not difficult. The fact that (B^ implies (B2) is obvious. To see

(B2) implies (B3), it suffices to notice the following:

(25) Γ I3(t)dt= f [ pQε,y,t)dtdVw(y).
Jp(x) JR™JQ

The equation (25) is easily proved from the fact that Θ{t) = f I3(s)ds satisfies

Δ(Θ ° p) = 1. Using the argument in Dodziuk [22, p.706 and p.707], we can show

that (i?3) implies (B^. In relation to the condition (B^), we remark that the clas-

sical solution u of the Cauchy problem (24) satisfies

max I u(x, t) I = max | u(x, 0) |,

if (B3) holds and if there exists monotone increasing sequence {R{} such that

N(Rt)/θ(Rt) -* 0 as Ri-*™, where N(s) = sup{| u(x, t) \ (x, t) e dB0(s) x

[0, 71} and where θ(s) = I 73(ί)Λ and dB0(s) = {x e R2

η

n

u;p(x) = s} and s
o

is a positive constant.
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