SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS
WHICH GENERALIZE THE HEAT EQUATION

I. I. HIRSCHMAN, ]Jr.

1. Introduction. The distribution of heat in an infinite rod is closely bound
up with the theory of the Weierstrass transform. This connection is exhibited
most clearly in the theory of Widder [3]. Consider the heat equation

ou  d'u
1.1 @_2h

oh — ax’
Widder has shown that if % (x, &) satisfies 1.1 and if #(x,h) > 0for — » <x < o,
a < h < b then we have

1.2 u(x, ') = f klx —y, b — Bu(y, b') dy
ifa <h,h <b b > K. Here

1.3 k(x, t) = (dnt) Fexp (— & /48)

1.4 k(x,t) = (27r)—lf exp [ — ty* — dxy] dy.

Let €,, and 9, be real m- and n-dimensional vector spaces respectively. We
shall write the elements X, Y, Z of €,, and H, H’', H" of 9, as column matrices,

X1 Vi1 21
X = (’”) Y = (32), Z = (z? )
Xm Vm Zm

k1 h hy
=" m=|" ="
R ha by
In place of #(x, k), we consider » (X, H) depending upon the m + % real variables
X1y «vyXmy B1,...,H, and instead of the heat equation 1.1, we consider the
system of partial differential equations
m 2
15 Ou u_ ot I=1,...,n

Oy 5y 9 0x, Y

Here the a’s are real constants and
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l l
a“ = aj,.

In the present paper we shall develop for such systems a theory analogous to that
of Widder.

Let T3m+1 be the space of real symmetric m X m matrices,

b hiz ... lim th te .. tim
T = (tzl log ... lzm > T, - (tél t;2 . tém >
tml tm2 o tmm t‘;nl t:n2 LERIRY t;nm

We may define a partial ordering in Tynm+y by writing 77V > T if TV — T is
positive definite. We introduce corresponding to the system 1.5 a mapping
H — H, of 9, into Tynm+y, the (4, j) entry of H, being defined as

lZiilabhl G,j=12...,m).
We shall show that if (X, H) satisfies 1.5 and if (X, H) > 0 for X € &,,
H € N where N is an open convex subset of §,, then
1.6 u(X,H") = f@mk(X - Y,H',— H)u(Y,H)dY
if H, H" € W, H', > H',. The function k(X, T) is defined by the formula
1.7 kX, T)=(Q2m)™ J‘@mexp [ - Y*TY — :Y*X]dY;

here T" must be positive definite. An explicit formula for (X, T") (due to Cziiber)
is given in §3.
If 4 is any matrix, A* is its transpose; thus

m
Y*X = Z yi xiy
=1
Y*TY = Zj:lyi tu Y s

2. A special case. The equation of heat transfer in m-dimensional space is

ou 2 6_214 ou

21 % 2 o or — = Au.

oh

In this section we shall establish our theory for this special case. If m = 1 in
2.1 we have the equation considered by Widder. It is to be noted that only
relatively minor adjustments are needed to make the extension from 1 to m
dimensions. We set

2.2 E(X, ) = ()™ exp [ - ::ZX*X],

kX, t) = Q2m)™" f@m exp [ — tY*Y — ¢ Y*X]dY.
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Let us write | X| for
(X*x)t = (Z? xp)h.
We begin with a discussion of the convolution transform
2.3 VX, k) = I@mk(X - Y, B)e(Y)dY

under radial symmetry. A function ¢ defined on G, is said to be radically
symmetric if ¢(X") = ¢(X"') whenever ’X’l = ]X”l. If in formula 2.3 ¢(Y) is
radially symmetric, then for each £, ¢ (X, &) is also radially symmetric and the
m-fold integration in our formula may be collapsed to a single integration with
respect to a new kernel, which we need later and which we now compute.
Since ¢(Y) depends only upon |¥| = p we write ¢(p) instead of ¢(¥). Similarly
since ¢ (X, k) depends only upon lX [ = r and k, we write y(r, k) instead of

(X, h).
Introducing spherical coordinates,
Y1 = pCOS ¢
Y2 = psin ¢ cos ¢,
¥s3 =p sin b2 sin ¢ COS ¢3
Ym—1 = p SIN ¢y SIN ¢y . . . SIN ¢p_2 COS Pp_1
Ym = pSIN ¢1 SN Pa2...SIN Pp_2 SIN Pp_1,
and setting x; = 7, xs = x3 = ... = x,, = 0, we have

Y(r, h) = (47“)_%1" f f_,, f . f’rdJ(p)e_("'m cosg1+p7) /41

1. .. siNpp_2der...dén1dp.

From this we obtam

4(m—3)
'p(r, t) = (41rt)—}m§7(l'l(1r)_ f ¢(P) —(r34p2) /4L m—ld f TP cos¢./2t —2¢1 d¢1

By Watson [2, p. 79] we have
T o coses /20 m—2 _IrGm—-3Vr (ZB)
ﬁ € sin ¢>1 d¢1 = (7p/4t)*m_l Iim—l 2t .
We finally get
2.4 Y(r, t) = 27" J:) g e tp§m7’—%m+l-[}m—1(£2§> ¢ (p) dp.

The function #(X, %) is said to belong to S, #(X, k) € S, at (X, ho) if there
exists an open set in £,, X H containing (X, %), throughout which the partial
derivatives

du au

' ox.0x, Gj=1,...,m)

are continuous and if
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i Au for X = Xoh = ho.
We denote the set of points
|X| < R, 0<h<c
by Dg. and the set of points
IX] < R, t=0,
|X| =R, 0<t<e,
by BR¢:°
LEmMA 2a. If
1. u(X, k) € S for (X, h) € Dge;
2. lim #(X,5)>0 for (X, ho) € Bg,

XX o, hsho
then u(X, h) > 0 in Dpg,.
Suppose that there exists a point (X1, b)) € Dp. at which we have (X, h1) =
— 1 < 0. Form the function
v(X,h) =ulX, k) + k(h — k)
where & > 0 is chosen so small that
@ W(X, h) > - %l (Xo, ho) € BRc-
X5Xo,h5ho

For 6 > 0 suitably chosen »(X, ) > — ! within a distance § of Bg.. Conse-
quently the minimum of (X, &) in Dy, is attained at some point (X, k2) of
Dg.. The function »(X, k) satisfies the partial differential equation

dv
2.5 Ay = F7 k.
At (X3, hs) we must have
2.6 Av > 0,
dy
2.61 h <0.
(If B2 5~ ¢ the equality holds in 2.61.) Equations 2.5 and 2.6, 2.61 are in contra-
diction.
Lemma 2b. If
1. u(X, k) €8, X €6, 0<h<ec
2. lm (X, h) =0, Xo € Cn;
XXo, 0t
3. M(r) = lLub. [u(X,1)];
|X|=r, 0<n<c
4. M(f) = 0(6’"2), r— + o

for somea > 0; then u(X,H) =0for X € €,,0 <k <ec

https://doi.org/10.4153/CJM-1953-016-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1953-016-7

122 I. I. HIRSCHMAN, JR.

Take A > 1 and form the auxiliary function
Ur(X, k) = NM(R) (c)} 1=t e X1 +ED 4 pim |3 —imi Igm—l(%i—q)

Using the asymptotic formula
2.7 IvNez/ '\/_ZE (x_)+ m)’
we find that [2]

Ur(X, h)||x|=r ~~ Mc/h)* M(R), R— o,
uniformly for 0 < 2 < ¢. Thus when R is large

Ur(X, k) > M(R), X|=R0<h<ec
The function Uy (X, k) — u(X, k) belongs to S for X € €,, 0 < 2 < ¢. When
R is large

l_i_[_l’l_ UR(X! h’) - M(X, h) > 0, (X01 hO) € BRc—
XX, hosho

By Lemma 2a we have

u(Xr h’) < UR(X) h), (X, h) 6 DRG'

Fix X and % and let R — 4+ o. Making use of 2.7 we find that «(X, ) = 0
for 0 <h <1/4a, X € G,. If 4a < 1/c, our proof is complete. Otherwise
repeat the above argument with «(X, %) replaced by #(X, & + 1/4a), and so
forth.

L(G,) is the class of functions ¢(X) defined for X € &, and such that

J lo00)] ax

exists.
Exactly as in [3] we may establish

LemMmA 2c. If
1. ¢(X)e X" ¢ L(G,) for some a > 0,

2. F(X, h) = f@ E(X — Y, h)¢(Y)dY,
then F(X, k) is defined and belongs to S in the strip 0 < h < 1/4a.

LemMmA 2d.  Under the assumptions of Lemma 2c, we have
lim ¢(X) < lim F(X,h); lm F(X, k)< lim ¢(X).
XX,

XX, XX, h>0+ XoXo, b0+

LemMma 2e. If ¢(Y) s integrable for lYl < A then for any ¢ > 0, we have

lim (l.u.b. f RX -V, h)e(Y)dY ) = 0.
1X| 500 NO<B<c lri<a
Lemma 2f. If
1. (X, k) €5, 0<h<cX € Gy
2. u(X, k) >0, 0<h<e¢X €Gp;

then we have
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f@ EX = Y, 8)u(Y,8) dY < u(X,d + ),
0<60<8,64+6<c¢, X €G,.

Consider the function
(X, h) =uX,h+9) — fl | RX — Y, Bu(Y,8)dY
Y|<4

where A is a positive constant. If &’ < ¢/ < ¢ — § then v,(X, %) belongs to S
for (X, k) € Dpgy for any R. Let I > 0 be given. Using Lemmas 2d and 2e we
see that, if R is sufficiently large,

lim v,(X, k) > — |, (Xo, ko) € Bg,.

XX o,hsho

Lemma 2a implies that v4(X, %) > — I for (X, k) € Dg, . Letting I >0 +
and R — + «, we find that v,(X, %) > 0 for X € €,, 0 < & < (. Setting
h = & we have

f EX — Y, 8"u(Y,8)dY < u(X,d + 9).
lyvl<a

Letting 4 increase without limit, we obtain our desired result.

Lemma 2g. If
1. u(X, h) €S, 0<h<c, X € Gy
2. u(X, k) >0, 0<h<ce, X € G,
3. u(X,0) =0, X € G,
then u(X,h) =0 0<kE<c, X € G,
We set

w(X, h) = J;h u(X, t) dt.

It is easily verified that w(X, k) € Sfor0 <k < ¢, X € E,. We have w(X, k1)
> w(X, hy) if ¢ > k1 > ke > 0. It follows that

d
b@w(X’ h) >0

and hence that Aw(X, k) > 0 for 0 < & < c¢; equivalently w(X, k) is a subhar-
monic function of X for each valueof 7, 0 < & < c.

Let 6 be an arbitrary number 0 < § < cand let 8’ be such that0 < &’ < ¢ — 4.
By Lemma 2f we have

w(0, 8’ + 8) > (4wd)~" J'@ eI gy 8 Y.

m
Again we have

f 1T (Y 8 dY > M(X)f w(V,8)dY
GCn ly—x(<1

where
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M(X) = glb. [V,
Jy-xI<1
Since w(Y, ') is subharmonic

J‘ w(Y,8)dY > mw(X, ).
ly—x|<1
It follows that
w(X, 8') = O(exp a|X[*)
for a > 1/44. Since

i)
@ZU(X,h)}O

we find that
Lub. |w(X,8)| = 0(®).

0<n<e’, | X|=R

Applying Lemma 2b we see that w(X, ) = 0 for 0 < 2 < &, X € €,. Since
8’ < ¢ is arbitrary we have w(X, k) = 0 for 0 < 2 < ¢, X € €,. This in turn
implies that #(X, 2) = 0for X € €,, 0< h <c.

TrEOREM 2h. If
1. uX,h) €8 for X € €, a <h <b;
2.u(X,h) >0 for X € C,,a <h <b;
.a<hk, W <b KB >HK,
then
ulX, ') = J.@ EX =Y, h" — W)u(Y,h')dY.
By Lemma 2f we have
f@ EX — Y, h—hYu(Y, 1) <u(lX, h)
for B’ < & < b. This together with Lemma 2c¢ implies that
f@ EX —-Y, h—F)u(Y,W)dY € S
for ¥ <h <b, X € G,. Thus
(X, k) =u(X, k) — J‘@ EX =Y, h—K)u(Y,k)dY

belongs to S and is non-negative for &' < 2 < b, X € G,. Moreover, by

Lemma 2d,
lim (X, k) =0.
hoh', Y5X,
Lemma 2g implies that v(X, k) = 0. Setting 2 = h”/, we obtain the desired
result.

3. The main theorem. Let T € T}, 1) be positive definite and let X € G,.
We set
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3.1 BX, T) = 2m)™ f@ exp [— Y*TY — iV*X]dY.

Since T is positive definite, there exists a constant ¢ > 0 such that V*TY >
¢/ V|2 This insures the validity of our definition. Let ® = [¢,]ssm1, ..., » be a
real unimodular matrix. We assert that

3.2 B(®7X, T) = k(X, T3*).
We have

E@'X, T) = 2m)™ f@mexp [— V*TY — (Y*&'X]dY.
Making the change of variable ¥ = ®*Z we obtain
E@X, T) = 2m)™ f@mexp [— Z*®T®*Z — iZX]dZ = k(X, ®Td*).
This formula may be used to compute k(X, T') explicitly, see [1, p. 185]. By

this method, Cziiber has shown that
0 X*
3.3 X, T) = ex"( XT /4’T'>.

@m)™ |7

In particular if T is a diagonal matrix with equal entries,

70...0
07r...0
T=\...... ’
00...7

then (X, T) is equal to k(X, 7).
Consider the system of partial differential equations
du " d'u

== i o, -
3.4 6h, PR 8x, ax, 127} (aij Qjy l 1, s ey n),

where the a’s are real constants. The function % (X, H) is said to belong to S(a)
at (Xo, Ho) if there exists an open set in E,, X H, containing (Xo, Ho) throughout
which the partial derivatives

ou i

ou ..
ah,(l‘l”"'”)’ axiaxj(i,]—l,...,m)

are continuous and if equation 3.4 holds for X = X,, H = H,.

LemMma 3a. If:

1. w(X, H) € S(a), where N is an open subset of O, X €, HEN;

2. ® = [¢ilijm ..., m 1S a real unimodular matrix;
3. w(X, h) = u(®X, h);
- then
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dw 9w
De.g

3.5 ah, _a_ =1 0Xa axp

for X € €,, H € N, where
blg = Z a:j bai Pgj-
1, =1
(Briefly we have w(X, H) € S®) for X € €,, H € N.)
We have w(X, H) = u(Y, H) where X = &Y. Now

du _ dw  du % d'w s &
ah; ahl ay, ayj a, f=1 axa axﬂ ot Phr

Substituting in 3.4 we obtain 3.5.
If H € ©,, then H— H, is a mapping of 9, into E;,,,(,,,H), the (4, ) entry of

H, being
2 hibig
=1

It is easily verified that

3.6 ®H, * = H,.

LEMMA 3b. If:
1. u(X, H) is continuous for X € G,,, H € N where N is an

open subset of O,
2.H,H" ¢ W, H", > H,,

3. ulX,H") = f@ Y —-X,H", — H)u(Y,H')dY,

4. w(X, H) = uw(¥'X, H),
then w(X, H) is defined and continuous for X ¢ E,,, H € N, H", — H', > 0

and
w(X,H") = f@ Y- X H", — Hy)w(Y,H,)dY.

In 3, replace X by & 1X and make the change of variable ¥ = &~'Z to obtain

w(® X, H") = f G R(@'Z — X, H", — H)u(®'Z,H') dZ.

w(X, H") = f@ R 'Z — 37X, H", — H')w(Z, H') dZ.

By 3.2 and 3.6 we have
E(®'Z — X, H", — H,) = k(Z — X, ®H", * — ®H', 3*),
=k(Z-X,H'",— H,).

Our lemma follows.
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THEOREM 3c. If:
1. u(X, H) € S(a), X € E,,, H € N, where N is an open
convex subset of Oy,
2. w(X,H) >0, XecGC,HeN
3. H,H" ¢ N, H'", > H',,
then

uw(X,H") = f@ k(Y -X,H', — H,)u(Y,H")dY.

Let ® be a real unimodular m X m matrix. Because of Lemmas 3a and 3b,
it is sufficient to establish the corresponding relation for w(X, H) = u(®"'X, H),

w(X, H") = f ¢ P (Y = X, H'y = H')w(Y, H') dY.

By 3.6 we have
H’b - H’b = @(H"a - Ha)¢*.
It is possible to choose ® so that H'", — H’, is a diagonal matrix with equal

entries, i.e.,
70...0
H”,,—H’b=<07---0).
00...7

Having chosen ® in this manner, we consider

w [X, (1 - f) H + —‘H"] =0 (X, ).
T T

Since M is convex and open, v(X, ¢) is defined for ¢ < ¢ < b where a < 0,

b > 7. We have
v Jw "o
5;_ lz_lahz[ (h hl):l

Since
dw _ S _dw =3
(’ih, - i, j=1 ax, ax, 121 6xi Gx,
we find that
@ _ 1 m n L ] 627)
at - T izjl[z bi’( h l) Bxi axj’
dv
5; = Av.
Thusv(X,t) € SforX € E,,a <t < bwherea < 0,5 > 7. Applying Theorem
2h we have
v(X, 1) = f@ BX — Y, (Y, 0)dY.
Now
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v(X, 1) = wlX,H"), v(X,0) = wlX, H').
Thus

w(X,H") = f@ EX - Y, nw(¥Y,H)dY,

wX,H") = J‘@ kX - Y, H'",— Hy))w(Y,H")dY,

a relation which we have seen to be quivalent to our theorem.

There are some systems of equations 3.4 for which Theorem 3c gives no infor-
mation. This is because there do not exist real vectors ' and H” such that
H", > H',. The system consisting of the single equation

ou _ o' _ du
oh ~ axi  oxj
is of this type.

Making use of Theorem 3c and the concept of weak compactness, we may
demonstrate the following result.

THEOREM 3d. Let N be an open subset of O, such that H', H' € N imply
NH'"+NH €N for 0 <N, 0<N', N +N' <1, and such that H € N
implies that H, is positive definite. If:

1. u(X, H) € S (a), X €C,,HeN
2. u(X,H) >0, X eGy HENM

then
u(X,H) = f@ k(X — Y, H,) dm(Y) X €G,HEMR,

where m(Y) is a non-negative measure defined in the o-field of Borel sets of En.
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