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Abstract. In this work two aspects of momentum-dependent electron energy loss spectrometry are studied,
both in the core-loss and in the low-loss region. In the case of core losses, we focus on the demonstration and
the interpretation of an unexpected non-Lorentzian behavior in the angular part of the double-differential
scattering cross-section. The silicon L3 edge is taken as an example. Using calculations we show that the
non-Lorentzian behavior is due to a change in the wavefunction overlap between the initial and the final
states. In the case of low losses, we first analyze the momentum-dependent loss functions of coinage metals
Cu, Ag, and Au. We then demonstrate how advanced electronic structure calculations can be used to
build simple models for the dielectric function that can then serve as a basis for the calculation of more
complicated sample geometries.

1 Introduction

Electron energy loss spectrometry (EELS) in the transmis-
sion electron microscope (TEM) is a powerful technique,
not only for the chemical quantification but also for the in-
vestigation of the electronic structure of materials [1]. Like
photon absorption spectroscopies (optical, UV, or X-ray),
EELS can probe electronic transitions from both valence
and core electronic states. However, EELS has an addi-
tional degree of freedom: while the momentum transfer in
the photon absorption is given by the momentum (and
thus the energy) of that photon, the momentum transfer
in EELS is independent of the energy loss. The momen-
tum transfer is directly linked to the scattering angle and
is therefore accessible in the diffraction plane of an elec-
tron microscope. Since these momenta can cover several
Brillouin zones, this allows the observation of indirect elec-
tronic transitions. In Figure 1 a sketch of the scattering
geometry in the TEM is shown.

“Capturing EELS in the reciprocal space” (i.e., mea-
suring the momentum-dependent electronic response) not
only brings a variety of new information but is also linked
to new challenges, especially in terms of the interpretation.
Experimental methods have been developed for the acqui-
sition of angular-resolved EELS spectra like the HARE-
CES by Zaluzec et al. [2]. Angular-resolved EELS has
already been used, e.g., for the investigation of anisotropic
materials [3–8]. Sometimes, anisotropy effects have to be
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avoided, e.g., when the goal is the determination of the
sp2/sp3 ratio in different modifications of carbon [9].
Moreover, in reciprocal space one can select particular
channeling conditions, giving rise to site-selective mate-
rial characterization by choosing, for example, channeling
or anti-channeling conditions [10].

In EELS, the key quantity which characterizes the in-
elastic scattering is the double-differential scattering cross-
section (DDSC) ∂2σ/(∂E ∂Ω)(E,Q). The DDSC describes
the probability of experiencing a certain energy loss E in
a certain direction (unequivocally given by Q) in the en-
ergy interval ∂E and the solid angle ∂Ω. In both regions
of the spectrum, i.e., for low-energy losses (low-loss, for
short) and high-energy losses (core-loss, for short), the
electron-electron interactions dominate inelastic scatter-
ing. In the low-loss region, where the collective behavior
of the electron gas is often most important, the scatter-
ing is best described in terms of the macroscopic dielectric
function ε(Q, E). At variance, in the core-loss region the
initial state is rather well defined and thus the localized
description is often more appropriate. In this paper we
discuss the momentum dependence of EEL spectra both
in the core-loss and the low-loss region. In particular, we
focus on challenges related to the interpretation of those
spectra.

The paper is organized as follows. Section 2 deals with
the momentum dependence of EELS in the core-loss re-
gion. It is shown that at larger scattering vectors, ap-
proaching the first Bragg spots, the commonly accepted
Lorentzian behavior of the DDSC does not hold anymore.
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Fig. 1. Sketch of the scattering geometry in the TEM showing
the incoming and the outgoing wave vectors, k and k′, the wave
vector transfer Q and two diffraction spots. Q is decomposed
into its two components qE and q⊥.

In Section 3, we will consider the low-energy part of the
spectrum and review theoretical methods that can be used
to calculate momentum-dependent loss functions of bulk
systems. These are then applied to the metals Cu, Ag,
and Au. In the second half of the section we show how
these theoretical calculations provide insights that help
constructing model dielectric functions, suitable for the
analysis of low-dimensional systems. The paper ends with
conclusions.

2 Angular dependence in core-loss EELS

As elaborated in, e.g., [11,12], the DDSC for inelastic
electron scattering in single-electron, first-order Born ap-
proximation is given by

∂2σ

∂E ∂Ω
=

4γ2

a2
0

k′

k

S(Q, E)
Q4

, (1)

where γ = (1 − v2/c2)−1/2 is the relativistic factor, a0 is
the Bohr radius, k and k′ are the incident and the outgoing
wavenumbers, Q is the wave vector transfer, and S is the
dynamic form factor (DFF) which is essentially derived
from the transition matrix element of the sample electrons.
For core losses, its full form is given in, e.g., [11,13].

Most noteworthy for off-axis experiments is the angu-
lar dependence of the DFF which is given by

[Y μ
λ (Q/Q)〈jλ(Q)〉]2,

where the Y μ
λ are the spherical harmonics, λ is the tran-

sition order, and

〈jλ(Q)〉Elsj =
∫

r2uE
ls(r)jλ(Qr)Rjs(r)dr (2)

is the weighted wavefunction overlap integral, with the ini-
tial state wavefunction Rjs(r) and the final state
wavefunction uE

ls(r). jλ stands for the spherical Bessel
functions.
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Fig. 2. Relative deviations from Lorentzian scattering behav-
ior for the example of the Si L3 edge. The specimen was 35 nm
thick and oriented in a systematic row condition including the
(2 2 0) diffraction spot. q⊥ was chosen perpendicular to the
systematic row. The error bars were derived from the quality
of fit and the aperture used.

Commonly, equation (2) is expanded into a Taylor se-
ries in Q and only the first-order term is retained. This
leads to 〈jλ(Q)〉Elsj ∝ Qλ. In addition, one usually ignores
non-dipolar transitions which have λ �= 1. Taking the
properties of the spherical harmonics into account, this
then gives rise to the well-known Lorentzian angular de-
pendence of the DDSC:

∂2σ

∂E ∂Ω
=

f(E)
Q2

=
f(E)

q2
⊥ + q2

E

, (3)

which is the basis for many formulas for quantitative
EELS analysis in the core-loss region [1,14,15]. Here,
Q2 = q2

⊥ + q2
E with the characteristic momentum transfer

qE = kE/(2γT ) used in the last equality. For compar-
ison, qE ≈ 0.72 nm−1 for the Si L2,3 edges is small –
though not negligible – compared to values of q⊥ used in
the experiment and much smaller than the Bragg vector
|g(2 2 0)| ≈ 32.7 nm−1.

However, a recent investigation has shown that for
non-vanishing Q, which is always the case, since Q ≥ qE ,
this so-called dipole approximation does not strictly
hold [16]. Figure 2 shows relative deviations from the
Lorentzian on the energy scale. For this, spectra recorded
at different q⊥ were compared. By dividing spectra by
each other, the angular independent prefactor f(E) can-
cels out in the dipole approximation and one would be left
with only the Lorentzian behavior. The relative deviations
given in Figure 2 are determined from the difference be-
tween the quotient of spectra and a fitted Lorentzian curve.

It can be seen that the relative deviations are generally
negative and can be up to about 30% even at relatively
small scattering angles of the order of the Bragg angle.
These deviations are also material-specific [16].

For very large angles, non-dipolar transitions with
λ �= 1 can play an important role [17], owing to the
fact that their leading terms behave as Q2λ−4. In the
present case, this was ruled out by numerical calcula-
tions using the code WIEN2k [18], as the contributions from
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Fig. 3. Relative deviations from the Lorenzian behavior as
calculated by using the full form of equation (2) and Slater-
type orbitals for the example of the Si L3 edge.

those terms were smaller than 1% in the angular range in-
vestigated in the experiment. Consequently, only dipole-
allowed transitions with λ = 1 were used for this work.

Experimental inelastic electron scattering is compli-
cated by the strong elastic scattering effects, leading to
channeling behavior of both the incident and the outgoing
beam. Since this effect is well understood, it can easily be
dealt with in numerical simulations [16,19]. Calculations
show that for the relatively small thickness of the speci-
mens used for this work, the influence is of the order of
2%. Thus, it is smaller than the typical error bars in this
experiment (see Fig. 2).

The real cause for these observed deviations can be
found in higher-order terms of the expansion of equa-
tion (2). For non-vanishing Q, it is possible to measure
the influence of the wavefunction overlap of the initial
and final states. Indeed, calculations using simple Slater-
type orbitals (STO) [20] yield similar deviations as the
ones observed experimentally. Figure 3 shows that they
are negative and of the same order of magnitude.

Furthermore, it is possible to directly image 〈jλ(Q)〉 by
means of energy-filtered selected area diffraction
(EFSAD). Using the three window method [1], one can
directly obtain a map of the excitation edge in the recip-
rocal space, from which it is straightforward to extract
a line profile. Figure 4 shows such a line profile. It is
clearly visible that at momentum transfers of the order
of 20 nm−1, the experimental curve deviates significantly
from the Lorentzian line, but is in better agreement with
the STO calculations.

Furthermore, it is possible to directly image 〈j1(Q)〉 by
means of energy-filtered selected area diffraction
(EFSAD). Using the three window method [1], one can
directly obtain a map of the excitation edge in the recip-
rocal space, from which it is straightforward to extract
a line profile. Figure 4 shows such a line profile. It is
clearly visible that at momentum transfers of the order
of 20 nm−1, the experimental curve deviates significantly
from the Lorentzian line, but is in better agreement with
the STO calculations.

〈j 1
〉[

a.
u.

]

q⊥ [1/nm]

Experiment
Lorentzian

STO

0 5 15 20 2510 30

Fig. 4. Plot of 〈j1(Q)〉 as derived from an energy-filtered se-
lected area diffraction pattern of the Si L3 edge. The straight
line shows the Lorentzian behavior and the curved line shows
the results of STO calculations.

3 Angular dependence in low-loss EELS

In the low-loss regime the inelastic electron scattering is
best described using the dielectric formulation. The DDSC
for the momentum transfer Q and the energy loss E (the
equivalent of Eq. (1)) is proportional to |v(Q)|2 S(Q, E),
where S(Q, E) is the dynamic structure factor of the ma-
terial and v(Q) is the Fourier transform of the Coulomb
interaction (∼ 1/Q2) [1,21]. The momentum transfer �Q
can in principle have any value, and S(Q, E) ∼ Q2 for
small Q. However, apart from the “trivial” 1/Q2 depen-
dence (similar to the previous section), there is an intrin-
sic momentum dependence of the DDSC in the low-loss
case due to properties of the inhomogeneous electron gas,
described by S(Q, E). For the periodic solid, the dynamic
structure factor is proportional to the density response
function χ via S(Q, E) = −2� Im χG,G(q, E), where
Q = G + q, G is the reciprocal lattice vector so that
q is confined to the first Brillouin zone. Thus, the DDSC
can be expressed as:

∂2σ

∂E ∂Ω
∼ − |v(Q)|2 Im χG,G(q, E)

= v(Q)Im
( − ε−1

G,G(q, E)
)
, (4)

where the inverse dielectric matrix is:

ε−1
G,G′(q, E) = δG,G′ + v(q + G)χG,G′(q, E). (5)

The term L(Q, E) = Im
( − ε−1

G,G(q, E)
)

is called the loss
function. While the DDSC has an additional prefactor
1/Q2, the loss function is a convenient quantity since it is
dimensionless, and furthermore, loss functions for any Q
obey the so-called f-sum rule with a Q-independent inte-
gration constant. At variance, dynamic structure factors
are more convenient in inelastic X-ray spectroscopy since
they are directly proportional to the double-differential
scattering cross-section.

As seen from equation (4), the crucial ingredient to
determine the double-differential scattering cross-section
in the low-loss regime is the calculation of χ. In this work,
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Fig. 5. (Color online) (a) Calculated loss functions of bulk Cu, Ag, and Au for small momentum transfers (solid lines), compared
with experimental reflections EELS data of references [28,29]; (b) calculated momentum-dependent loss functions of bulk Cu,
Ag, and Au. Adapted from reference [24].

we have used the random phase approximation (RPA), in
which, symbolically, the interacting density response func-
tion is given by χ = χ0/(1 − vχ0) [22,23]. Here χ0 is the
response function of the non-interacting Kohn-Sham sys-
tem. The inclusion of exchange-correlation effects into the
dynamic response via the adiabatic local density approx-
imation kernel changes the result very little. These will
be discussed elsewhere [24]. In the present section, our
calculations have been performed with the full-potential
linearized augmented plane-wave code Exciting [25,26].
Local-field effects were included. The non-interacting den-
sity response functions have been calculated using the
single-electron wavefunctions and eigenvalues obtained
from density functional theory calculations. For the lat-
ter, the generalized-gradient approximation (GGA) of ref-
erence [27] has been used for the exchange-correlation
potential. More details on the methodology can be found
in, for example, references [22,23].

In Figure 5a, we present the calculated loss functions
for Cu, Ag, and Au for small momentum transfers, com-
pared with experimental data obtained from reflection
electron energy loss spectroscopy (REELS) by Werner
et al. [28,29]. All three metals exhibit a complex multi-
peak structure in the loss function. In the energy range
0–60 eV, 4 well-pronounced peaks are distinct in the case
of Cu, 7 in the case of Ag, and 7–8 in the case of Au. Peak
(1) of Ag, and, to a lesser extent, peak (1) of Au, peak (2)
of Ag, and peak (1) of Cu, originate from the vanishing (or
small) real part of the dielectric function and can thus be

classified as plasmon peaks [30]. However, except in Ag,
these excitations are severely damped. At variance, other
well-pronounced peaks are due to inter-band transitions
from occupied d states to the unoccupied continuum with
large density of states [30,31]. Overall, the agreement be-
tween the calculated and measured loss functions is very
good. One of the most important disagreements is the in-
tensity and also the position of the peak (1) of Ag, which
we discuss in some detail below. Noticeable other discrep-
ancies occur for peaks (6) and (7) of Ag. For the latter
two, theoretical values of peak positions are very good,
but peak intensities are substantially under-estimated.
Similar disagreement is evident in the case of Au for peaks
(7) and (8). While it is not impossible that theory does
not capture several important effects at higher energies,
the discrepancy can also stem from a small inaccuracy
of experimental loss functions. Indeed, in order to obtain
the bulk loss function from REELS, complicated math-
ematical algorithms have to be used to extract the bulk
contributions to the loss function and, in addition,
also to estimate its component for small momentum
transfers [28,29].

Given this overall good agreement between calculated
and measured loss functions of all three metals at
small momentum transfers, in Figure 5b, we show
momentum-dependent loss functions. For all three met-
als the overall picture is very similar. As the momentum
transfer increases, the peaks in the loss function decrease
in intensity. Thus, the loss functions become increasingly
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featureless for higher momentum transfers. At variance,
the tails of loss functions persist to increasingly higher
energies, so that the loss functions extend to larger ener-
gies. This guarantees that the f -sum rule is always sat-
isfied. Such behavior is universal for all metals and these
basic trends are already evident from the Lindhard dielec-
tric function of the homogenous electron gas [32].
Experimental measurements of momentum-dependent loss
functions of Cu, Ag, and Au are in progress [33].

The reasons of an inaccurate description of the plas-
mon peak (1) in the case of Ag are understood [34,35].
The main problem stems from the calculation of χ0. In-
deed, the band structure of Ag calculated with the GGA
exchange-correlation potential is not accurate enough.
Most importantly, due to the self-interaction error of
GGA, Ag 4d states are (i) under-bound by about 1 eV
and (ii) also somewhat broader than can be deduced from
photo-emission measurements or more accurate calcula-
tions. This problem can be solved, for instance, by correct-
ing the single-particle eigenvalues using the many-body
perturbation theory in the GW approximation [35]. This
gives significant improvement in the position and the in-
tensity of the plasmon peak [35]. In addition, the calcu-
lated plasmon dispersion is in excellent agreement with
available experimental data [24,36,37].

In this work, to illustrate general features related to re-
sponse functions in metals, we study the plasmon disper-
sion in Ag by first devising the model dielectric function
for energies <5 eV. More accurate calculations [24] show
that local-field effects are negligible in this energy range,
and thus instead of dealing with the inverse dielectric ma-
trix, we can directly deal with scalar dielectric functions.
The model dielectric function of Ag is defined as:

εAg,model(Q, E) = εLindhard(Q, E) + εinter-band(E). (6)

Here, εLindhard(Q, E) is the Lindhard dielectric function,
which describes the intra-band contribution (the only free
parameter is the effective electron mass in the sp band,
here set to m = 0.95me, the “optical electron mass” in
Ag), while εinter-band is the inter-band contribution. The
latter is taken to be momentum-independent and is
calculated using the methodology outlined above, in
which in addition the single-electron eigenvalues were
approximately corrected using the GW calculations of
reference [35].

In Figure 6, we show the two-dimensional plot of the
plasmon dispersion, calculated using the model dielectric
function. The plasmon dispersion can be fitted using the
quadratic equation ω(Q) = Ωp +α�Q2/m, and the fitting
procedure yields values of Ωp = 3.45 eV, α = 0.50. These
values are in very good agreement with those obtained
from full calculations [24], and present a significant im-
provement over the results obtained using the GGA band
structure. Comparisons with more accurate calculations
[24] show that the model dielectric function (Eq. (6)) is
accurate up to momentum transfers of Q = 0.20–0.25 Å−1.
At higher momentum transfers (0.25–0.40 Å−1) the
plasmon dispersion becomes significantly non-quadratic.

-1Q  [Å ]

0.0 0.1 0.2 0.3 0.4

3.0

3.5

4.0

4.5

en
er

gy
 [e

V
]

Fig. 6. Plasmon dispersion in bulk Ag, calculated using the
model dielectric function, equation (6).
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Fig. 7. (Color online) Bulk and surface contributions to loss
functions of the silver slab of thickness d = 100 Å for varying
momentum transfers.

This behavior comes from the momentum dependence of
the inter-band term in equation (6).

The dielectric function in equation (6) can also be used
to model loss functions of nanostructures. In Figure 7,
we show the loss function of a silver slab of thickness
d = 100 Å compared to the bulk loss function for varying
momentum transfers. The bulk loss function is defined as
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Lbulk = −Im(ε−1), whereas we define the “effective” loss
function of the slab as:

Lslab =
2

Qd
Im

[
− (1 − ε)2

ε(1 + ε)

]
. (7)

The meaning of this quantity is that the term ∼ Lslab/Q2

gives the surface contribution to the double-differential
cross-section [38] (which is multiplied by 2 to account for
two surfaces in the slab), in exactly the same manner,
as the term ∼ Lbulk/Q2 gives the bulk contribution. As
seen in Figure 7 this formulation yields automatically the
frequency of the surface plasmon, which is found to be
0.12 eV below the bulk plasmon, in excellent agreement
with experimental data [39]. The surface contribution de-
creases faster than the bulk contribution due to the pref-
actor 1/Qd, which is a well-established experimental fact.
Such simple models can serve as a good starting point
for more accurate calculations, for example those recently
reviewed in reference [40]. This approach is particularly
promising for modelling the optical properties of metallic
nanoparticles of various shapes and sizes [41,42].

4 Conclusion

In this paper we have considered two unconventional as-
pects of the angular-resolved EELS. In the core-loss re-
gion, noticeable deviation from the universally accepted
Lorentzian behavior of the angular distribution of the
double-differential cross-section has been demonstrated for
the Si L3 edge. This unexpected finding can be explained
by estimating the overlap between the initial and the final
states using Slater-type orbitals appropriate to Si. It is
therefore expected that the deviation from the Lorentzian
has a strong dependence on the material and the edge
studied. Further investigations via the band structure the-
ory are envisaged as they would also take into account
the changes due to the electronic structure of the solid.
For the low-loss region, we have first analyzed the
momentum-dependent loss functions of coinage metals.
We have showed that the complex structure of loss func-
tions mainly originates from inter-band transitions.
We have also showed how accurate electronic structure cal-
culations could be used to build simpler models that can
be, in turn, fed into more generalized calculation schemes
capable of dealing with complicated sample geometries.
This is a very promising approach for the investigation of
nanostructures like silver or gold nanoparticles.

This work was supported by the Swiss NSF (Grant No. 20021-
120308) and the Austrian Science Fund (FWF) (Grant No.
I543-N20).
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