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Abstract

Achieving net-zero carbon emissions by 2050 necessitates the integration of substantial wind power capacity into
national power grids. However, the inherent variability and uncertainty of wind energy present significant challenges
for grid operators, particularly in maintaining system stability and balance. Accurate short-term forecasting of wind
power is therefore essential. This article introduces an innovative framework for regional wind power forecasting
over short-term horizons (1–6 h), employing a novel Automated Deep Learning regression framework called
WindDragon. Specifically designed to process wind speed maps,WindDragon automatically creates Deep Learning
models leveraging Numerical Weather Prediction (NWP) data to deliver state-of-the-art wind power forecasts. We
conduct extensive evaluations on data fromFrance for the year 2020, benchmarkingWindDragon against a diverse set
of baselines, including both deep learning and traditional methods. The results demonstrate that WindDragon
achieves substantial improvements in forecast accuracy over the considered baselines, highlighting its potential
for enhancing grid reliability in the face of increased wind power integration.

Impact Statement

This article presents an optimization tool to automatically find efficient deep neural networks to forecast
aggregated wind power generation at the level of a region or a country. These models are based on wind speed
maps from numerical weather prediction (NWP) forecasts and take advantage of their spatio-temporal aspect.
These methods could play a crucial role in the smooth operation of power grids in the context of massive
renewable energy integration.

1. Introduction

1.1. Global context

To meet the 2050 net zero scenario envisaged by the Paris Agreement [United Nations Convention on
Climate Change, 2015], wind power stands out as a critical energy source for the future. Remarkable
progress has been made since 2010, when global electricity generation from wind power was 342 TWh,
rising to 2100 TWh in 2022 (International Energy Agency, IEA, 2023). The IEA targets approximately
7400 TWh ofwind-generated electricity by 2030 tomeet the zero-emissions scenario. However, to realize
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the full potential of this intermittent energy source, accurate forecasts of wind power generation are
needed to efficiently integrate it into the power grid.

1.2. Regional wind power forecasting

Most of the work in the literature on wind power forecasting is done at a local scale, that is, an individual
wind farm or turbine. In this article, we focus on a more global scale, the aggregated production of a
country or a large region. Regional wind power generation forecast is critical in the context of the
European electricitymarket for several reasons. (i) First, a short-term forecast of up to 48 h is useful for the
spot (day-ahead) market, which sets the “final” price of electricity hour by hour according to supply and
demand. (ii) Second, Short-term forecasts are useful for the TSO (Transmission System Operator), which
has to ensure the balance between supply and demand on the transmission network within its perimeter.
(iii) Finally, in the longer term, up to a few days, regional wind power forecasts can be used to anticipate
downturns. They correspond to a situation inwhich a large amount of renewable energy is fed into the grid
at the same time. Renewable energies indeed have market priority over, for example, nuclear or coal,
which are more expensive to produce.

Wind power generation forecast at a global scale can be done in two ways, either by forecasting each
farm in the region (or even each wind turbine) and then adding these forecasts together, or by directly
forecasting the aggregated signal. The first method is impractical for the majority of operators, as it
requires production data for each park, which is confidential. Moreover, even in cases where the data is
available, Wang et al. (2017) pointed out that having a forecast system for each wind farm in the region
considered can be too costly for some forecast service providers. In this article, we focus on wind power
generation forecast at a global scale.

1.3. Contributions

In this study, we propose to leverage the spatial information in NWPwind speed maps for national wind
power forecasting by exploiting the capabilities of Deep Learning (DL) models. The overall method-
ology is illustrated in Figure 1. To fully exploit the potential of the DL mechanisms, we introduce
WindDragon, an automated deep-learning framework that uses the tools developed in the DRAGON1

Figure 1. Global scheme for wind power forecasting. Every 6 h, the NWP model produces hourly
forecasts. Each map is processed independently by the regressor which maps the grid to the wind power
corresponding to the same timestamp.

1 https://dragon-tutorial.readthedocs.io/en/latest/index.html.
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package (Keisler et al., 2024b). WindDragon attempts to automatically design well-performing neural
networks for short-term wind power forecasting using NWP wind speed maps. WindDragon’s per-
formance will be benchmarked against conventional computer vision models such as Convolutional
Neural Networks (CNNs) as well as standard baselines in wind power forecasting. The contributions of
this study can be summarized as follows:

• We develop a novel automated deep learning framework specifically tailored to forecast aggregated
wind power generation from wind speed maps.

• The proposed framework, namedWindDragon, is designed to fully leverage the spatial information
embedded in wind speed maps and can accommodate increases in installed capacity, making it
adaptable and reusable.

• We conduct extensive experiments that demonstrate that WindDragon, when combined with
Numerical Weather Prediction (NWP) wind speed maps, significantly outperforms both traditional
and state-of-the-art deep learning models in wind power forecasting.

2. State-of-the-art

Wind power forecasting at the level of a single wind farm is a mature discipline (Jonkers et al., 2024) on
forecast horizons ranging from the next minutes to the next days (see Kariniotakis 2017 for a book on the
subject).However, regional forecasting remains largely unexplored in the literature (Higashiyama et al., 2018).

2.1. Regional wind power forecasting

2.1.1. Transfer strategy
Some studies have attempted to take advantage of the wealth of research at the turbine or wind farm scale
to forecast regional wind energy. The general idea is to apply a forecastingmodel towind turbines or farms
whose data are available within the region and use a transfer function to move from local to regional data.
For instance, Pinson et al. (2003) mentioned a model based on online persistence scaled with a ratio of the
total installed capacity in the region and the capacity of wind farms for which online measures are
available. Camal et al. (2024) forecasted the production of any wind farm in the control area of a TSO,
taking into account the information collected from other wind farms. The method combines feature
selection, regularization, and local-learning via conditioning on recent production levels or expected
weather conditions.

2.1.2. Input dimension reduction
Approaches that have attempted to forecast regional wind production directly from meteorological data
such as NWPmaps, or by incorporating operational variables from the (potentially numerous) wind farms
in the region, have quickly run into the problem of the large size of the input data. Camal et al. (2024)
noticed that at the scale of a region or of a country, the number of explanatory variables grows linearlywith
the number of explanatory sites or the number of variables considered per site. Both statistical and
Machine Learning models face in this case the curse of dimensionality. Therefore, regularization or
feature selection was investigated to mitigate the high dimensionality of the input features. Siebert (2008)
used a clustering algorithm based on k-means and amutual information-based feature selection algorithm
to determine the best set of features for the forecast model. Lobo and Sanchez (2012) searched for samples
with similar weather conditions. Davò et al. (2016) leveraged the principal component analysis (PCA)
method to reduce the dimension of the data sets when forecasting regional wind power and solar
irradiance. Wang et al. (2017) reduced the dimension of the NWP grid with the selection of minimum
redundancy characteristics (mRMR) and PCA. They then applied a weighted average learning strategy to
forecast the production of a Chinese region. In the study from Wang et al. (2018), the spatio-temporal
weather data is represented using a distance-weighted kernel density estimation model (DWKDE) which

Environmental Data Science e19-3

https://doi.org/10.1017/eds.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.10


is the basis for a feature selection method based on mRMR. Finally, Wang et al. (2019) performed a
probabilistic forecasts with regular vine copulad to reduce the weather dataset.

Although this input reduction is necessary for most Machine Learning models, deep learning models
have demonstrated high capacities for extracting complex features from high-dimensional data.

2.2. Deep learning for wind power forecasting

Deep learning models have been highly investigated for wind power forecasting both at the turbine level
and at the regional aggregation level. A large variety of architectures have been used, depending on the
input data available and the features that are sought to be extracted.

Yu et al. (2021) recognized the abilities of the deep learningmodel for non-linear mapping andmassive
data handling and used a feedforward neural network based on historical wind power and NWP
information for regional wind power forecasting. To model the time dependencies of the wind power
time series, many works leveraged recurrent neural networks and their variants (long short-term memory
or gated recurrent unit) such as Liu et al. (2021) or Alkabbani et al. (2023). The interactions between
several wind farms have been investigated using the Transformer model by Lima et al. (2022) and using
graph neural networks by Qiu et al. (2024). The direct use of DNN directly on wind speed maps has been
tackled using convolutional neural networks (CNNs) which have shown strong capabilities for extracting
relevant features from image data. Higashiyama et al. (2018) used 3-dimensional CNNs to forecast the
production of a single wind farm based on NWP grids. Bosma andNazari (2022) and Jonkers et al. (2024)
proposed day-ahead regional wind power forecasting CNNs whose architecture was inspired by Com-
puter Vision models such as ResNet (see He et al. 2016).

The challenge of wind power forecasting is that it combines dependencies to weather variables but
remains a time series. Therefore, architectures mixing various types of layers have been investigated to
capture various dependencies.Miele et al. (2023) compared the performance of CNN-LSTMwith amulti-
modal neural network with two branches: one for the NWP grid and one for past data, for a single wind
farm. Zhou and Lu (2023) combined convolution, LSTM, and attention layers to forecast the production
of a wind farm. Given this large variety of possible architectures, onemight want to use automated tools to
find the best one for the dataset at hand.

2.3. Automated deep learning

2.3.1. Main concepts
The research field related to the automation of deep neural network design is called Automated Deep
Learning (AutoDL). It belongs to a more global research area called Automated Machine Learning
(AutoML) which studies the automatic design of high-performance Machine Learning models. As with
any AutoML approach, AutoDL systems consist of three main components: the search space, the search
strategy, and the performance evaluation. The search space should contain all the considered neural
network architectures and hyperparameters which is the set of all available design choices, like the
number and type of layers in the neural network, the connection between the layers, or the training
parameters, like the learning rate. The search strategy will determine how to navigate within the search
space to select promising configurations. The bigger the search space, the more sophisticated the search
strategy should be for effective exploration. The performance evaluation will assess the performance of
the candidate configurations until the search strategy finds a suitable neural network (usually the best
configuration found after a given number of evaluations).

2.3.2. AutoDL for wind power forecasting
A few works have applied AutoDL to wind power forecasting, such as Tu et al. (2022) or Jalali et al.
(2022). However, these approaches are limited to optimizing the hyperparameters of one type of
architecture, possibly integrating a few architectural hyperparameters such as the number of layers.
The AutoDL community has developed a large number of tools to optimize neural network architectures
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more broadly, but as Tu et al. (2022) points out, the search spaces used by these approaches are tailored to
Computer Vision and Natural Language Processing tasks. For example, Hutter et al. (2019) reviewed
many approaches based on (hierarchical) cell-based search spaces, where the neural networks are
represented as a sequence of small iterated Directed Acyclic Graphs (DAGs) called cells. The architecture
of the cell is optimized and then the pattern is repeated throughout the network. Such an approach is
efficient for Computer Vision tasks, where models that repeat sequences of convolutional pooling layers
and skip connections are very powerful. Another popular approach is DARTS, proposed by Liu et al.
(2018), which uses a meta-architecture that is designed to include all possible architectures. The general
structure of the network is fixed, and for each layer several candidate operations are possible. Each is
associated with a probability of being chosen, which is optimized by gradient descent. This approach,
which is effective for generating architectures based on 3× 3 or 5× 5 convolutions, has a very limited
search space and assumes that the subgraph obtained by keeping only the operation with the highest
probability for each layer is the optimal graph. More diverse tasks have been tackled by the AutoDL
frameworkAutoPytorch, which offers a version for tabular data, described in Zimmer et al. (2020), and for
time series forecasting, see Deng et al. (2022), providing search spaces ofMLPs and residual connections
for the tabular version, and various encoder/decoder blocks for the time series version to cover several
state-of-the-art architectures in time series (e.g., TFT fromLim et al., 2021, NBEATS fromOreshkin et al.,
2019, or DeepAR from Salinas et al., 2020). All search spaces for the above AutoDL approaches have
been restricted to allow effective searching. This observation is shared more generally by recent reviews
such as White et al. (2023) on AutoDL and Baratchi et al. (2024) on AutoML. In the case of wind
production forecasting, as indicated by Tu et al. (2022), wewould like to have a search space for designing
architectures that combine different types of layers such as MLPs, CNNs, or attention, that also have
computational graphs that are more complex than a linearly sequential architecture, and whose hyper-
parameters can be optimized, as they are crucial in this type of task. The AutoDL package DRAGON,
recently introduced in Keisler et al. (2024b), provides tools for designing such search spaces. The package
has already been used to create EnergyDragon (see Keisler et al., 2024a), an AutoDL framework for
forecasting load consumption.

2.4. DRAGON package

DRAGON, or DiRected Acyclic Graphs optimizatioN, is an open-source Python package2 offering
tools to conceive Automated Deep Learning frameworks for diverse tasks. The package is based on
three main elements: building bricks for search space design, search operators for those bricks, and
search algorithms.

2.4.1. Search space
DRAGON offers several building bricks to encode deep neural network architectures and hyperpara-
meters. The network structures are represented as Directed Acyclic Graphs, where the nodes represent the
layers and the edges the connection between them. The layers are encoded by a succession of three
elements: a combiner, an operation, and an activation function. As no constraint is made on the graph
structure, each node may receive an arbitrary number of incoming inputs of various sizes. They are
gathered into a single input through the combiner. The operation can be any PyTorch building block
parametrized by a set of hyperparameters. The DRAGON user has to specify which kind of building
blocks the search space should contain, and for each, the associated hyperparameters. Besides the DAGs,
the user can choose to optimize other hyperparameters such as the learning rate, the output shape of the last
layer, etc. The hyperparameters may be numerical or categorical. The graph encoding can be used to
represent the entire structure, but it is also possible to design more specific search spaces for certain
applications. For example, it is possible to combine different graphs for a Transformer-type structure (see

2 https://dragon-tutorial.readthedocs.io/en/latest/.
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Vaswani et al., 2017 for an introduction to the Transformermodel), with one graph for the encoder part and
another graph for the decoder part, in order to impose a two-part structure. In the process of creating an
AutoDL framework based on DRAGON, the selection of appropriate building blocks from the package is
essential for generating a suitable search space.

2.4.2. Performance evaluation
The search space has been designed for a specific performance evaluation strategy, which will assess the
score of a given configuration from the search space. DRAGONdoes not provide any default performance
evaluation, which depends on the task at hand. Therefore, it should be implemented within the created
AutoDL framework. Given an element from the search space, the performance evaluation should at least
build a model and perform any type of training/validation process on the data.

2.4.3. Search Operators
Each building block from DRAGON comes with a neighbor attribute that defines how to create a
neighboring value from a representation. Those operators can be seen as mutations in the case of an
evolutionary algorithm or neighborhood operators for a simulated annealing or a local search. In the case
of an integer, for example, the neighbor attribute will pick the new value in a range surrounding the actual
one. For the DAGs, it is possible to add or delete nodes, or to modify the edges and the node’s contents.

2.4.4. Search Algorithms
The package implements several search strategies which may use the search operators and can be
distributed in a high-performance computing (HPC) environment. Besides the random search, Hyperband
(see Li et al. (2018)), an evolutionary algorithm andMutant-UCB presented in Brégère andKeisler (2024)
are available. They take as input the search space and the performance evaluation designed by the user and
return the best configuration.

For more information on the DRAGON package see the original article Keisler et al. (2024b) or the
documentation online3.

3. WindDragon

Weused the tools provided byDRAGON to createWindDragon, anAutoDL framework for regression on
wind speed maps toward regional wind power forecasting. The framework takes as input two datasets
Dtrain and Dvalid. Each dataset D is made up of pairs Xt,Ytð Þ for several time steps t, where Xt ∈R2 is a
wind speed map and Yt ∈RR are the associated wind production values, one for each of the R regions.
First, the framework creates wind speed maps by region r: Xr

t . Two datasetsD
r
train ¼ Xr,Yrð Þ andDr

valid ¼
Xr,Yrð Þ are put together for each region rwith these regional wind speedmaps and the associated regional
production. WindDragon aims at finding, for each region r, the optimal model f̂

r
from a search space Ω

with respect to a loss function ℓ such that:

f̂
r
argmin

f ∈Ω
ℓ f δ̂,D

r
valid

� �
, (1)

where the model f δ̂ corresponds to the model f ∈Ω trained on Dr
train.

3.1. Search space and performance evaluation

3.1.1. Data processing
The input data Xt contains the wind speed map corresponding to the whole country and has to be divided
into regional data. As shown Figure 2 for a specific region (here Auvergne-Rhône-Alpes), wind turbines

3 https://dragon-tutorial.readthedocs.io/en/latest/index.html.
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are not evenly distributed across the administrative regions. Therefore, instead of using them, we draw
areas around each wind farm in the region and took the convex hull of all the considered points. The result
is a seamless map Xr

t ⊂Xt ∈R2 that includes local wind turbines with no gaps to disrupt the models. The
areas surrounding the wind farms are drawn according to a distance parametrized by a parameter called
g∈ℕ⋆.When g gets higher, the convex hull becomes larger. Installed capacity data—corresponding to the
maximumwind power a region can produce—for each region and each time step t is available and updated
every 3 months. It was collected and used to scale the wind power target to train the models. Training the
model f on the region r with respect to the training loss ℓtrain, means finding the model optimal weights

δ̂∈Δ such that:

δ̂∈ argmin
δ∈Δ

ℓtrain f δ Xrð Þ, Y
r

cr

� �
, (2)

where cr ∈R is the installed capacities for the region r andDr
train ¼ Xr,Yrð Þ. The evaluation of themodel f on

Dr
valid is made on the denormalized value Yr.

3.1.2. Search space
Each model f ∈Ω has to forecast a one-dimensional output Yr

t ∈R from a two-dimensional input: the
wind speed map Xr

t ∈R2. Therefore, each neural network from Ω is made of two Directed Acyclic
Graphs as represented in Figure 3. A first graph Γ1 processes 2D data and can be composed of
convolutions, pooling, normalization, dropout, and attention layers. Then, a flattened layer and a second
graph Γ2 follow. This one is composed ofMLPs, self-attention, convolutions, and pooling layers. A final

Wind Map

Deep Neural Network

2D Graph Γ1

Flatten

1D Graph Γ2

MLP

Wind Production

forecast

Figure 3. WindDragon’s meta-model for wind power forecasting.

Figure 2.Data preparation for the region Auvergne-Rhône-Alpes. The wind farms are represented in red.
The first image shows the distribution of wind farms across the administrative region.
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MLP layer is added at the end of the model to convert the latent vector to the desired output format. The
detailed operations and hyperparameters available within WindDragon are detailed in Table 1. Regard-
ing the parameters that are external to the architecture, the weather map size parameter g is also
optimized. The search space is then: Γ1,Γ2,o,g½ � where o represents the final MLP layer, which is a
constant.

3.1.3. Performance Evaluation
The performance evaluation takes as input a region r and a configuration from the search space and will:

• Construct the datasets Dr
train and Dr

valid from Dtrain and Dvalid according to the parameter g
parameterizing the grid size, from the configuration.

• Build the model f r with the elements from the configuration and train the model onDr
train according

to Equation (2).
• Evaluate the performance of f r

δ̂
on Dr

valid according to Equation (1).

3.2. Search algorithm

Regarding the search algorithm, four are available within DRAGON: the Random Search, HyperBand
(Li et al., 2018), an Evolutionary Algorithm, andMutant-UCB. In Brégère andKeisler (2024) introducing
this last algorithm, the four are compared and Mutant-UCB appears as the most efficient one.

3.2.1. Mutant-UCB
This algorithm combines a multi-armed bandits approach with evolutionary operators. Each model f ∈Ω
corresponds to an arm, an choosing arm corresponds to a partial training of the model. Indeed, training a
neural network takes a lot of time, and a lot of algorithms such as the Random Search or the Evolutionary
Algorithms give the same amount of resources for all the evaluated configurations. It means such
algorithms are losing a lot of time and computational resources on bad configurations. Resource allocation
strategies used for example by HyperBand, allows to gradually attribute resources to the most promising

Table 1. Layers available and their associated hyperparameters in the WindDragon search space (for
the first and the second graph)

Layer type Graph concerned Optimized hyperparameters

Identity Both -
Fully connected (MLP) Both Output shape Integer
Self-Attention Both Initialization type [convolution, random]

Heads number Integer
Output dimension Integer

1D Convolution 1D Graph Γ2 Kernel size Integer
Output dimension Integer

2D Convolution 2D Graph Γ1 Kernel size Integer
Output dimension Integer

1D Pooling 1D Graph Γ2 Pooling size Integer
Pooling type [Max, Average]

2D Pooling 2D Graph Γ1 Pooling size Integer
Pooling type [Max, Average]

1D Normalization 1D Graph Γ2 Normalization type [Batch, Layer]
2D Normalization 2D Graph Γ1 Normalization type [Batch, Layer]
Dropout Both Dropout rate Float
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solutions. A partial training can then be, for example, a training on a small set of data or with a small
number of epochs. In short, Mutant-UCB generates a population ofK ∈ℕ⋆ of random configurations. For
each arm k from this population, a partial training is made to get a first loss ℓk . Then, at each iteration i, an
arm Ii from the population is drawn following an Upper-Confidence-Bound strategy:

Ii ∈ argmin
k∈ 1,…Kf g

bℓk�
ffiffiffiffiffiffi
E
Nk

r� �
,

where ℓ̂k is the average loss for all the previous partial training of themodel associated to the arm k,E is the
exploration parameters and Nk the number of times the arm k has been picked. Once the arm Ii is chosen,
with a probability 1�NIi=N, the model is mutated. Otherwise, a new partial training is done. The valueN
corresponds to the maximum number of partial training a model can have (to prevent overfitting) and NIi
corresponds to the number of times the model associated to Ii has been trained. In the case of a mutant
creation, the number of armsK increases, and the newmodel is partially trained for the first time. Formore
information on Mutant-UCB please refer to Brégère and Keisler (2024).

3.2.2. Partial training
In the original article, the partial training were done on a small number of epochs. For WindDragon, we
changed it to be a small number of epochs on a given region. Instead of running one version of Mutant-
UCB, we performed one optimization for all regions. We indeed make the assumption that a similar
architecture will fit for all the regions, even if some layers or hyperparameters might change from one
region to another. The input Xr might be of different shapes for different regions. This shape change is
handled byDRAGONwhen building the neural network f.The layers andDAGs from the packagemay be
adapted by weight cropping or padding to any new shape during the network initialization. Splitting the
training between different regions follows the spirit ofMutant-UCB, where the loss minimized to pick the
future arm relies on the empirical mean of the various partial trainings of a model f. The performance
across the regions might be different, and converging towards amodel generally good over all regions can
be done by taking this empirical mean. To reduce the variance between the performance of the region, the
loss ℓ considered to evaluate a model f on a given region would be an error function (such as the mean
squared error, the mean absolute error or a variant) of f, divided by this same error function but of a
reference model. See Section 4 for more information.

4. Experiments

4.1. Datasets

The wind speed maps used are 100-m high forecasts at a 9 km resolution provided by the HRES4 model
from the European Centre forMedium-RangeWeather Forecasts (ECMWF). Themaps are provided at an
hourly time step and there are four forecast runs per day (every 6 h). Only the six more recent forecasts are
used here as the forecasting horizon of interest is 6 h. The hourly French regional and national wind power
generation data as well as the French TSO hourly forecasts and the installed capacities values come from
the ENTSOE-E Transparency Platform5.

4.2. Baselines

We use the following baselines to compare hourly forecasts for a horizon h h∈ 1,…,6f gð Þ:

• Persistence: Given access to forecasts every 6 h derived from the ground truth situation, the wind
power value is also available at the same intervl. Persistence involves replicating this value for the

4 https://www.ecmwf.int/en/forecasts/datasets/set-i.
5 https://transparency.entsoe.eu/.
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subsequent 6 h. Therefore, themodel predicts wind power generation at future times tþh as equal to
the observed generation at the current time t.

• XGB onWind Speed Mean: Forecasts wind power at tþh using a two-step approach as depicted
Figure 4: (i) Compute the mean wind speed for the considered region at tþh using NWP forecasts.
(ii) Apply an XGBoost regressor (Chen and Guestrin, 2016) to predict power generation based on
the computed mean wind speed.

• Convolutional Neural Networks (CNNs). Use the same training setup as WindDragon: forecasts
wind power at tþh using the NWP forecasted wind speed map. CNNs can efficiently regress a
structured map on a numerical value by learning local and spatial patterns (LeCun et al., 1995). In
addition, the weight sharing induced by the convolutional mechanism reduces the number of learned
weights compared to alternative deep learning mechanisms like dense (Haykin, 1994) or self-
attention layers (Vaswani et al., 2017). This feature makes CNNs particularly effective when dealing
with relatively small amounts of data. Figure 5 shows the architecture of the CNN baseline we
implemented. We used a simple grid search to optimize the hyperparameters (e.g., the number of
layers, the kernel sizes, the activation functions).

• French TSO (RTE). The European TSOs have to provideCurrent, IntraDay, andDay-Aheadwind
and solar forecasts. We have used the Current forecast within our baseline to put the results into
perspective with operational values. The forecasting methods and horizons are not detailed. The
regulatory article6 only states that the published “Current” forecast is the latest update of the forecast.
The information is regularly updated and published during intra-day trading. It is the closest setup
from our experiments.

4.2. Experimental setup

We used the years from 2018 to 2019 to train the models, and the data from 2020 is used to evaluate how
the models perform. All the neural networks were trained using the Adam optimizer. The CNN was

Figure 4. Visual illustration of the XGB two-step approach on the Auvergne-Rhône-Alpes region.
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Figure 5. CNN architecture applied to the Grand Est region.

6 https://transparencyplatform.zendesk.com/hc/en-us/articles/16648445340180-Generation-Forecasts-for-Wind-and-Solar-14-
1-D.
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trained for 200 epochs.Mutant-UCBwas parametrized withN ¼ 10,K¼ 600, E¼ 0:01 and 20 epochs by
partial training. The CNN model was given as input to the search algorithm. Among the first K models
initialized, 10 had the CNN architecture, with values of g ranging from 1 to 10. The CNN losses were used to
scale the regional errors forWindDragon.Mutant-UCBwas distributed over 20V100GPUs and ran for 72 h.

4.3. Results

We computed two scores: Mean Absolute Error (MAE) in Megawatts (MW), showing the absolute
difference between ground truth and forecast, and Normalized Mean Absolute Error (NMAE), a
percentage obtained by dividing the MAE by the average wind power generation for the test year. The
MAEgives an idea of the amount of energy contained in the errors, while theNMAE enables performance
to be compared between regions. We run experiments for each of the 12 French metropolitan regions and
then aggregate the forecasts to derive national results. Let us have ŷrt,m the forecast of the baselinem on the
region r at time t.Weget the national forecast Ŷm ¼ ŷt,m

	 
N
t¼1 by aggregating the forecasts of the 12 French

metropolitan regions:

ŷt,m ¼
X12
r¼1

ŷrt,m:

Then, the national metrics for each baselinem are retrieved between the national value Y and the national
forecast of this baseline: Ŷm. The national results are presented in Table 2, while detailed regional results
can be found in Table 3. It is interesting to note that the sum of the regional errors is greater than the
national error for each model. This is due to the fact that the regional errors offset each other when the
signals are aggregated.

The results in Table 2 highlight three key findings:

i. Improved performance with aggregated NWP statistics.Using the average of NWP-predicted
wind speed maps coupled with an XGB regressor significantly outperforms the naive persistence
baseline. It shows that the signal is closer to a regression problem than to a time series forecasting
one. It is also interesting to note that this simple model is already better than the signal produced by
the French TSO.

ii. Gains from full NWPmap utilization. More complex patterns can be captured by using the full
predicted wind speed map, as opposed to just the average, thereby improving forecast accuracy. In
this context, the CNN regressor applied to full maps yielded gains of 47 MW (11.5%) over the
mean-based XGB.

iii. WindDragon’s superior performances. WindDragon outperforms all baselines, showing an
improvement of 69 MW (19%) over the CNN. On an annual basis, this corresponds to approxi-
mately 600 GWh. The average French citizen consumes between 2500 and 3000 kWh7 of

Table 2. National results: metrics computed on the aggregation of the regional forecasts for each
model. The best results are highlighted in bold and the best second results are underlined

WindDragon RTE CNN XGB on mean Persistence

MAE
(MW) NMAE

MAE
(MW) NMAE

MAE
(MW) NMAE

MAE
(MW) NMAE

MAE
(MW) NMAE

France 300.0 6.6% 482.1 10.6% 369.0 8.1% 416.7 9.2% 779.7 17.3%

7Based on the average European per capita consumption [Statista Research Department, 2022].

Environmental Data Science e19-11

https://doi.org/10.1017/eds.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.10


electricity per year. Therefore, 600 GWh per year is equivalent to the consumption of around
200,000 French inhabitants. The results underscoreWindDragon’s effectiveness in autonomously
discovering the optimal deep-learning configurations for wind power regression. Moreover,
Table 3 indicates that the improvement is effective in all regions. During optimization, Wind-
Dragon managed to find, for each region, a model that outperformed each other from the baseline.
The architectures found vary a bit from one region to another. Examples of themodels produced by
WindDragon for various regions can be found Figures A1–A5 The architectures mix various
layers such as convolutions, pooling, and normalization layers. The structures are, for themajority,
composed of a large two-dimensional graph, efficiently extracting spatial information from the
input wind speed map and a small one-dimensional graph. The hyperparameters are however
unique for each model.

4.4. Forecasts comparison

In Figure 6, we present the aggregated national wind power forecasts using bothWindDragon and the CNN
baseline during a givenweek.While bothmodels deliver highly accurate forecasts, it is important to highlight
that DRAGONdemonstrates superior accuracy, particularly during the high production level at the end of the
signal. Figure A6 shows visual comparisons of all baseline performances on this same week. It appears that
the models perform well at different times. For example, the RTE forecast is best for the small production
spike in themiddle of the day on11 January, butworst for the production dip on the night of 10 January. These
differences in performance open the way to mixtures of models to further improve forecasts.

4.5. Performance analysis

We compared the performance of the two best baselines, CNN andWindDragon, in more detail. Figure 7
shows the absolute errors and the normalized absolute errors by hour of the day and by month. In general,
WindDragon is significantly better than CNN at all times of the day and for all months. In Figure 7a,b, the

Table 3. Regional results. The best results are highlighted in bold and the best second results are
underlined

Region

WindDragon CNN XGB on mean Persistence

MAE
(MW) NMAE

MAE
(MW) NMAE

MAE
(MW) NMAE

MAE
(MW) NMAE

Auvergne-Rhône-
Alpes

19.3 14.8% 19.6 15.0% 29.2 22.4% 28.7 22.0%

Bourgogne-Franche-
Comté

30.0 13.6% 34.1 15.4% 42.3 19.1% 58.7 26.6%

Bretagne 33.7 13.2% 38.0 14.9% 47.1 18.4% 67.2 26.3%
Centre-Val de Loire 50.5 14.2% 57.3 16.1% 61.9 17.5% 96.7 27.3%
Grand Est 108.2 10.8% 130.5 13.1% 148.8 14.9% 251.2 25.1%
Hauts-de-France 140.7 10.6% 167.6 12.7% 178.8 13.5% 320.1 24.2%
Île-de-France 6.2 20.5% 7.2 23.7% 7.5 24.9% 9.5 31.5%
Normandie 27.4 11.8% 30.8 13.2% 36.8 15.8% 55.9 24.0%
Nouvelle-Aquitaine 37.8 13.8% 44.0 16.4% 53.7 19.6% 77.9 28.4%
Occitanie 51.1 12.3% 55.8 13.5% 91.6 22.1% 96.3 23.2%
PACA 3.2 29.7% 3.5 32.4% 4.5 41.4% 4.3 39.5%
Pays de la Loire 34.1 12.5% 39.0 14.3% 41.9 15.4% 74.9 27.5%
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dotted line represents the hour when a newNWP forecast arrives (every 6 h). For the first two forecasts of
the day (at midnight and 6 a.m.), the performance of both models decreases as the forecast horizon
increases. This is much more marked in the case of CNN, whose performance deteriorates dramatically,

(a) Hourly error. (b) Normalized hourly error

(c) Monthly error (d) Monthly normalized error

Figure 7. Errors comparison betweenWindDragon and the CNN. The dotted vertical lines in Figure 7a,b
represent the beginning of the new NWP forecast.

Figure 6.Wind power forecasts for aweek in January 2020. The figure displays the ground truth as dotted
lines, and the forecasts from the two top-performing models, WindDragon and CNN.
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(a) MAE repartition of the CNN and WindDragon over 20 quantiles.

(b) Percentage improvement of WindDragon compared to CNN over 20 quantiles.

Figure 8. Comparison of the CNN and WindDragon performance over 20 quantiles. The two figures show
WindDragon’s superiority over CNN over the entire distribution, but particularly over the distribution tails.
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particularly at 6 a.m. (when the forecast horizon is therefore 6 h). This observation is less true for the later
hours of the day. As for the months, the differences are more pronounced in summer, when wind power
production is lower. Finally, we have plotted Figure 8a themean absolute errors of CNN andWindDragon
per quantile of the wind power distribution. We can see from this distribution that the two curves diverge
particularly at the first quantile, where the production values are extremely low, and at the last quantile,
where they are extremely high. The two curves never cross, demonstrating the homogeneous superiority
of WindDragon over CNN. Figure 8b shows the skill score between the MAE of WindDragon and the
MAE of the reference model, the CNN, which confirms the impression given by Figure 8a.

4.6. WindDragon search algorithm (Mutant-UCB) time convergence

Mutant-UCB ran for 72 h on 20GPUs.However, we saved the losses of themodels found by the algorithm
as it ran so that we could analyze its convergence time. Figure 9a shows the best NMAE found per time
step for each region. We can see that the performance converges very quickly during the first 2 h of the
algorithm before stabilizing. Only a few regions such as Ile-de-France, Auvergne-Rhône-Alpes, and
Centre-Val de Loire show improvements in the last hours. Figure 9b zooms in on the first 3 h of the
algorithm. Except for PACA and Ile-de-France, most regions fall below 15% of NMAE in about an hour.
Thus, althoughMutant-UCB has run for a long time to achieve very good performance, it was possible to
obtain correct models in just 1 h.

5. Conclusion and impact statement

5.1. Summary

This article presentsWindDragon, anAutomatedDeep Learning framework for forecasting regional wind
power. WindDragon automated the creation of performing Deep Neural Networks leveraging Numerical
Weather Prediction wind speed maps to deliver wind production forecasts. We demonstrate on the French
national and regional wind production data that WindDragon can find deep neural networks outperform-
ing traditional and state-of-the-art deep learning models in regional wind power forecasting. Compared to
the handcrafted deep learning model inspired by the state of the art in computer vision, WindDragon
allows us to find models that perform particularly well in winter and at high wind values, which is all the
more interesting in the context of wind power forecasting.

5.2. Limitations

WindDragon, like many AutoML systems, is limited by its high running time compared to handcrafted
baselines. However, this duration should be compared to the time spent creating powerful models by

(a) NMAE through time for each region. (b) NMAE through time: zoom on the 3 first hours

Figure 9.WindDragon search algorithm (Mutant-UCB) convergence:NMAE through time foreach region.
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hand, which is often hard to measure. Besides, once the model has been found, the inference speed
remains competitive with other deep learningmodels. However, future study could focus on reducing this
running training time through even more efficient search algorithms or reducing the search space. This
gained efficiency could also be achieved by reducing the input weather map dimension, for example,
using unsupervised representation techniques. The high number of model training and evaluations could
be leveraged by creating a mix of models instead of just identifying the best one by region. Section 4
highlighted that the baseline models produced quite different forecasts. These differences, if comple-
mentary, could enable a mix of models to achieve better performance.

5.3. Future study

Finally, with the rise of data-driven weather forecasting tools, the accuracy of weather forecasting has
increased at various forecast horizons (Ben Bouallègue et al., 2024) and for multiple weather variables.
With its non-dependency on past data, our methodology could easily be applied to longer forecast
horizons (to be used for other industrial use cases) but also for photovoltaic (PV) regional forecasting, by
applying it to solar radiation maps generated by NWP models.
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A. Appendix

A.1. Models found by WindDragon for various regions

Grid Size 11

mul,MLP,451,SiLU

add,LayerNorm2d,Identity

mul,Conv2d,8,162,True,Tanh

mul,LayerNorm2d,SiLUadd,Conv2d,1,16,True,LeakyReLUadd,LayerNorm2d,Identity 1

mul,Conv2d,10,32,True,Sigmoid

add,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 2

add,AVGPooling2D,10,SiLU

Flatten

concat,AVGPooling1D,15,Tanh

mul,Identity,Identity

add,MLP,1,Identity

Figure A1. Architecture found by WindDragon on Grand Est.

Grid Size 6

mul,MLP,451,SiLU

add,LayerNorm2d,Identity

mul,Conv2d,8,162,True,Tanh

mul,LayerNorm2d,SiLUadd,Conv2d,1,16,True,LeakyReLUadd,LayerNorm2d,Identity 1

mul,Conv2d,10,32,True,Sigmoid

add,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 2

add,AVGPooling2D,9,ELU

Flatten

concat,AVGPooling1D,9,Identity

add,Identity,ELU

add,MLP,1,Identity

Figure A2. Architecture found by WindDragon on Auvergne-Rhône-Alpes.
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A.2. Forecasts comparison

Grid Size 7

mul,MLP,451,SiLU

mul,Conv2d,8,162,True,Tanh

add,LayerNorm2d,Identity 1

add,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 2

add,LayerNorm2d,Identity

add,Conv2d,1,16,True,LeakyReLU

add,AVGPooling2D,10,SiLU

Flatten

concat,AVGPooling1D,15,Tanh

mul,Identity,Identity

add,MLP,1,Identity

Figure A3. Architecture found by WindDragon on Hauts-de-France.

Grid Size 6

mul,MLP,451,SiLU

add,LayerNorm2d,Identity

add,Conv2d,1,16,True,Sigmoid

mul,Conv2d,10,32,True,Sigmoid

mul,Conv2d,8,162,True,Tanh

add,BatchNorm2d,SiLUadd,LayerNorm2d,Sigmoid

concat,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 1

add,AVGPooling2D,10,SiLU

Flatten

mul,Identity,Identity

add,MLP,1,Identity

Figure A4. Architecture found by WindDragon on Île-de-France.
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Grid Size 4
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add,LayerNorm2d,Identity
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Figure A5. Architecture found by WindDragon on Occitanie.
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(a) Persistence forecast

(b) XGB on mean forecast

(c) RTE forecast

(d) Convolutional Neural Network forecast

(e) WindDragon forecast

Figure A6. Weekly comparative visuals.
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