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Abstract
We revisit the time evolution of initially trapped Bose-Einstein condensates in the Gross-Pitaevskii regime. We show
that the system continues to exhibit BEC once the trap has been released and that the dynamics of the condensate
is described by the time-dependent Gross-Pitaevskii equation. Like the recent work [15], we obtain optimal bounds
on the number of excitations orthogonal to the condensate state. In contrast to [15], however, whose main strategy
consists of controlling the number of excitations with regard to a suitable fluctuation dynamics 𝑡 ↦→ 𝑒−𝐵𝑡 𝑒−𝑖𝐻𝑁 𝑡

with renormalized generator, our proof is based on controlling renormalized excitation number operators directly
with regards to the Schrödinger dynamics 𝑡 ↦→ 𝑒−𝑖𝐻𝑁 𝑡 .
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1. Introduction and main result

The mathematical analysis of spectral and dynamical properties of dilute Bose gases has seen tremendous
progress in the past decades after the first experimental observation of Bose-Einstein condensates in
trapped atomic gases [2, 24]. In this work, we model such experimental setups by considering N bosons
moving in R3 with energies described by

𝐻
trap
𝑁 =

𝑁∑
𝑗=1

(
−Δ 𝑥 𝑗 +𝑉ext(𝑥 𝑗 )

)
+

∑
1≤𝑖< 𝑗≤𝑁

𝑁2𝑉 (𝑁 (𝑥𝑖 − 𝑥 𝑗 )), (1.1)
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2 C. Brennecke and W. Kroschinsky

which acts on a dense subspace of 𝐿2
𝑠 (R3𝑁 ), the subspace of 𝐿2 (R3𝑁 ) that consists of wave functions

that are invariant under permutation of the particle coordinates. We assume the two body interaction
𝑉 ∈ 𝐿1 (R3) to be pointwise nonnegative, radially symmetric and of compact support. The trapping
potential 𝑉ext ∈ 𝐿∞

loc(R
3) is assumed to be locally bounded and to satisfy lim |𝑥 |→∞𝑉ext(𝑥) = ∞.

The scaling 𝑉𝑁 = 𝑁2𝑉 (𝑁.) characterizes the Gross-Pitaevskii scaling which can be understood as a
joint thermodynamic and low density limit as 𝑁 → ∞ (see, for example, [37] for a detailed introduction).
It ensures that the rescaled potential 𝑉𝑁 has a scattering length 𝔞(𝑉𝑁 ) = 𝑁−1𝔞(𝑉) of order 𝑂 (𝑁−1) so
that both the kinetic and potential energies in (1.1) are typically of size 𝑂 (𝑁) w.r.t. low energy states.
In fact, it is well known [38] that the scattering length 𝔞 ≡ 𝔞(𝑉) completely characterizes the influence
of the interaction on the leading order contribution to the ground state energy 𝐸𝑁 = inf spec(𝐻trap

𝑁 ):

lim
𝑁→∞

𝐸𝑁

𝑁
= inf

𝜑∈𝐿2 (R3)
E trap

GP (𝜑) ≡ 𝑒
trap
GP . (1.2)

Here, E trap
GP denotes the Gross-Pitaevskii energy functional defined by

E trap
GP (𝜑) =

∫
R3
𝑑𝑥

(
|∇𝜑(𝑥) |2 +𝑉ext(𝑥) |𝜑(𝑥) |2 + 4𝜋𝔞 |𝜑(𝑥) |4

)
(1.3)

and the scattering length 𝔞 of the potential V is characterized by

𝔞 =
1

8𝜋
inf

{ ∫
R3
𝑑𝑥

(
2|∇ 𝑓 (𝑥) |2 +𝑉 (𝑥) | 𝑓 (𝑥) |2

)
: lim
|𝑥 |→∞

𝑓 (𝑥) = 1
}
. (1.4)

By standard variational arguments, the functional (1.3) admits a unique positive, normalized minimizer,
denoted in the sequel by 𝜑GP, and it turns out that the normalized ground state 𝜓𝑁 of 𝐻trap

𝑁 exhibits
complete Bose-Einstein condensation into 𝜑GP: if 𝛾 (1)

𝑁 = tr2,...,𝑁 |𝜓𝑁 〉〈𝜓𝑁 | denotes the one-particle
reduced density of 𝜓𝑁 , then [35]

lim
𝑁→∞

〈𝜑GP, 𝛾
(1)
𝑁 𝜑GP〉 = 1. (1.5)

Physically, the identity (1.5) means that the fraction of particles occupying the condensate state 𝜑GP
tends to one in the limit 𝑁 → ∞. Mathematically, it is equivalent to the convergence of 𝛾 (1)

𝑁 to the rank-
one projection |𝜑GP〉〈𝜑GP | in trace class which implies that one body observables are asymptotically
completely determined by 𝜑GP.

It should be noted that the convergence in (1.5) holds true more generally for approximate ground
states 𝜓𝑁 that satisfy 𝑁−1〈𝜓𝑁 , 𝐻

trap
𝑁 𝜓𝑁 〉 ≤ 𝑒

trap
GP + 𝑜(1) for an error 𝑜(1) → 0 as 𝑁 → ∞. This

has been proved in [36] and later been revisited with different tools in [43]. Moreover, very recent
developments have lead to a significantly improved quantitative understanding of (1.2) and (1.5):
generalizing previously obtained results in the translation invariant setting [4, 5, 6, 7, 1], the works
[42, 16] determine the optimal convergence rates in (1.2) and (1.5) while [44, 17] go a step further and
determine the low energy excitation spectrum of 𝐻trap

𝑁 up to errors 𝑜(1) → 0 that vanish in the limit
𝑁 → ∞. In particular, the main results of [44, 17] imply that the ground state and elementary excitation
energies of 𝐻trap

𝑁 depend on the interaction up to second order only through its scattering length, in
accordance with Bogoliubov’s predictions [9]. It is remarkable that this even remains true up to the
third-order contribution to the ground state energy of size log 𝑁/𝑁 , as recently shown for translation
invariant systems in [21].

In view of experimental observations of Bose-Einstein condensates, it is natural to study the dynamics
of initially trapped Bose-Einstein condensates and to ask whether the system continues to exhibit BEC
once the trap is released. Based on the preceding remarks, it is particularly interesting to consider an
approximate ground state 𝜓𝑁 of 𝐻trap

𝑁 and to analyze its time evolution after releasing the trap 𝑉ext. We
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model this situation by studying the Schrödinger dynamics

𝑡 ↦→ 𝜓𝑁 ,𝑡 = 𝑒−𝑖𝐻𝑁 𝑡𝜓𝑁

generated by the translation invariant Hamiltonian 𝐻𝑁 , which is given by

𝐻𝑁 =
𝑁∑
𝑗=1

−Δ 𝑥 𝑗 +
∑

1≤𝑖< 𝑗≤𝑁
𝑁2𝑉 (𝑁 (𝑥𝑖 − 𝑥 𝑗 )). (1.6)

As in the spectral setting, it turns out that also the dynamics is determined to leading order by the Gross-
Pitaevskii theory: if 𝛾 (1)

𝑁 ,𝑡 = tr2,...,𝑁 |𝜓𝑁 ,𝑡 〉〈𝜓𝑁 ,𝑡 | denotes the reduced one-particle density with regard
to the evolved state 𝜓𝑁 ,𝑡 , then [25, 26, 27, 28]

lim
𝑁→∞

〈𝜑𝑡 , 𝛾 (1)
𝑁 ,𝑡𝜑𝑡 〉 = 1 (1.7)

for all 𝑡 ∈ R, where 𝑡 ↦→ 𝜑𝑡 solves the time-dependent Gross-Pitaevskii equation

𝑖𝜕𝑡𝜑𝑡 = −Δ𝜑𝑡 + 8𝜋𝔞 |𝜑𝑡 |2𝜑𝑡 . (1.8)

Like in the spectral setting, the convergence (1.7) can be quantified with an explicit rate as shown first
in [45], later in a Fock space setting in [3] and, generalizing the main strategy of [3], with optimal
convergence rate in [15]. Moreover, quite recently, the dynamical understanding has been further
improved in [20], which provides a quasi-free approximation of the many body dynamics 𝑡 ↦→ 𝜓𝑁 ,𝑡

with regard to the 𝐿2
𝑠 (R3𝑁 )-norm. Comparable norm approximations were previously only available in

scaling regimes that interpolate between the mean field and Gross-Pitaevskii regimes, but excluding the
latter; for more details on this, see, for example, [29, 30, 23, 34, 39, 8, 40, 41, 33, 14, 10, 11].

Although the norm approximation provided in [20] is of independent interest, the results of [20]
unfortunately do not suffice, yet, to effectively compute important observables such as the time evolved
number of excitations orthogonal to the condensate 𝜑𝑡 or their energy in terms of the quasi-free dynamics,
up to errors that vanish in the limit 𝑁 → ∞ (see also Remark 5) below for a related comment). This likely
requires stronger a priori estimates on the full many body evolution 𝑡 ↦→ 𝜓𝑁 ,𝑡 than those proved in [15],
which are an important ingredient in the proof of [20]. Since the arguments of [15] are rather involved,
it thus seems first of all worthwhile to revisit and streamline its proof. This is our main motivation and,
inspired by recent simplifications in the spectral setting [18, 31, 32, 19, 12], we provide a novel and,
compared to previous derivations, substantially shorter proof of (1.7). To this end, we combine some
algebraic ideas as introduced in [19] with some of the main ideas of [15]. Our main result is as follows.

Theorem 1.1. Let 𝑉 ∈ 𝐿1 (R3) be nonnegative, radial and of compact support, and let 𝑉ext ∈ 𝐿∞
loc (R

3)
be such that lim |𝑥 |→∞𝑉ext(𝑥) = ∞. Let 𝜓𝑁 ∈ 𝐿2

𝑠 (R3𝑁 ) be normalized with one-particle reduced density
𝛾 (1)
𝑁 and assume that

𝑜1 (1) =


𝑁−1〈𝜓𝑁 , 𝐻

trap
𝑁 𝜓𝑁 〉 − 𝑒

trap
GP



 → 0, 𝑜2 (1) = 1 − 〈𝜑GP, 𝛾
(1)
𝑁 𝜑GP〉 → 0, (1.9)

in the limit 𝑁 → ∞, where 𝜑GP denotes the unique positive, normalized minimizer of the Gross-
Pitaevskii functional (1.3). Assume furthermore that 𝜑GP ∈ 𝐻4(R3).

Then, if 𝑡 ↦→ 𝜓𝑁 ,𝑡 = 𝑒−𝑖𝐻𝑁 𝑡𝜓𝑁 denotes the Schrödinger evolution and 𝛾 (1)
𝑁 ,𝑡 its reduced one-particle

density, there are constants 𝐶, 𝑐 > 0 such that

1 − 〈𝜑𝑡 , 𝛾 (1)
𝑁 ,𝑡𝜑𝑡 〉 ≤ 𝐶

[
𝑜1 (1) + 𝑜2 (1) + 𝑁−1] exp (𝑐 exp (𝑐 |𝑡 |)) (1.10)

for all 𝑡 ∈ R, where 𝑡 ↦→ 𝜑𝑡 denotes the solution of the time dependent Gross-Pitaevskii equation (1.8)
with initial data 𝜑 |𝑡=0 = 𝜑GP.
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Remarks.

1. Theorem 1.1 was previously shown in [15, Theorem 1.1] under the slightly stronger assumption
𝑉 ∈ 𝐿3 (R3). Our main contribution is a novel and short proof, valid for 𝑉 ∈ 𝐿1 (R3), which is
outlined in detail in Section 2. The same method can be used with straightforward modifications to
provide a simplified proof of [15, Theorem 1.2], which considers more general initial data related to
the translation invariant Gross-Pitaevskii energy functional. Since our focus in the present paper is
to provide a short proof of the main results of [15], we focus for simplicity of the presentation only
on the physically more relevant initial data considered in Theorem 1.1.

2. Under suitable conditions on𝑉 and𝑉ext, the main results of [42, 16, 44, 17] imply that the assumptions
(1.9) are satisfied for low energy states with an explicit rate. Applying these results to the ground
state of 𝐻trap

𝑁 , one finds that 𝑜1 (1) = 𝑂 (𝑁−1) and 𝑜2 (1) = 𝑂 (𝑁−1), so that the overall convergence
rate in (1.10) is of order 𝑂 (𝑁−1). The quasi-free approximation obtained in [20] implies that this
rate is optimal in N.

3. As mentioned earlier, we adapt recent ideas from [19] (see also [18]), which analyzes the spectrum
of Bose gases for translation invariant systems, to the dynamical setting. To illustrate further the
usefulness of the method – in particular, in the context of Theorem 1.1 – we sketch in Appendix D
an elementary proof of (1.9) with optimal rate for the ground state 𝜓𝑁 of 𝐻trap

𝑁 if ‖𝑉 ‖1 is sufficiently
small. This is analogous to the main result of [4] in the translation invariant setting. Note that [42]
provides a different proof for 𝑉 ∈ 𝐿1 (R3) under the milder assumption that 𝔞 is small and that [16]
proves a similar result for 𝑉 ∈ 𝐿3 (R3) without smallness assumption on 𝔞. Compared to Appendix
D, these results have required, however, substantially more work.

4. As already pointed out in [15], the assumption that 𝜑GP ∈ 𝐻4 (R3) follows, for example, from suitable
growth and regularity assumptions on𝑉ext, based on the Euler-Lagrange equation for 𝜑GP and elliptic
regularity arguments. Since we are not aware of a precise condition on 𝑉ext that guarantees the
improved regularity of 𝜑GP, we explicitly assume 𝜑GP ∈ 𝐻4 (R3) for simplicity.

5. One can use [44, 17] to compute 1− 〈𝜑GP, 𝛾
(1)
𝑁 𝜑GP〉 = 𝑂 (𝑁−1) in the ground state of 𝐻trap

𝑁 explicitly,
up to subleading errors of order 𝑜(𝑁−1) as 𝑁 → ∞. This follows from arguments presented in
[7] (in fact, based on [7], one can derive second order expressions for reduced particle densities at
low temperature in the trace class topology [13]). In contrast to that, it remains an interesting open
question whether the time evolved condensate depletion 1 − 〈𝜑𝑡 , 𝛾 (1)

𝑁 ,𝑡𝜑𝑡 〉 is similarly determined by
the quasi-free evolution derived in [20]. The methods developed in the present paper may be helpful
in this context, and we hope to address this point in some future work.

In Section 2, we outline the strategy of our proof and we conclude Theorem 1.1 based on a technical
auxiliary result, Proposition 2.1, which is proved in Section 3. Standard results on the variational problem
(1.4) and its minimizer, on the solution of the time-dependent Gross-Pitaevskii equation (1.8) and on
basic Fock space operators, are summarized for completeness in Appendices A, B and C. Similar results
as in Appendices A, B and C have been explained in great detail in several previous and related works
on the derivation of effective dynamics; see, in particular, [3, 8, 15, 14].

2. Outline of strategy and proof of Theorem 1.1

In this section, we explain the proof of Theorem 1.1. Our approach is based on ideas previously developed
in [15], which we now briefly recall and which are most conveniently formulated using basic Fock space
operators. To this end, let us start with the identity

1 − 〈𝜑𝑡 , 𝛾 (1)
𝑁 ,𝑡𝜑𝑡 〉 = 𝑁−1〈N⊥𝜑𝑡 〉𝜓𝑁,𝑡 , (2.1)

where N⊥𝜑𝑡 denotes the number of excitations orthogonal to 𝜑𝑡 , that is,

N⊥𝜑𝑡 = 𝑁 − 𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 ), (2.2)
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and where, in the rest of this paper, we abbreviate expectations of observables O in 𝐿2
𝑠 (R3𝑁 ) by

〈O〉𝜙𝑁 = 〈𝜙𝑁 ,O𝜙𝑁 〉. In (2.2), the operators 𝑎∗( 𝑓 ), 𝑎(𝑔), for 𝑓 , 𝑔 ∈ 𝐿2 (R3) denote the bosonic creation
and annihilation operators that are defined by

(𝑎∗( 𝑓 )Ψ) (𝑛) (𝑥1, . . . , 𝑥𝑛) =
1
√
𝑛

𝑛∑
𝑗=1

𝑓 (𝑥 𝑗 )Ψ (𝑛−1) (𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗+1, . . . , 𝑥𝑛),

(𝑎(𝑔)Ψ) (𝑛) (𝑥1, . . . , 𝑥𝑛) =
√
𝑛 + 1

∫
𝑔(𝑥)Ψ (𝑛+1) (𝑥, 𝑥1, . . . , 𝑥𝑛),

for all Ψ = (Ψ0,Ψ1, . . .) ∈ F = C ⊕
⊕∞

𝑛=1 𝐿
2
𝑠 (R3𝑛) – in particular for 𝜓𝑁 ∈ 𝐿2

𝑠 (R3𝑁 ) ↩→ F . Note
that 𝑎∗( 𝑓 )𝑎(𝑔) : 𝐿2

𝑠 (R3𝑁 ) → 𝐿2
𝑠 (R3𝑁 ) is bounded and preserves the number of particles N, for every

𝑓 , 𝑔 ∈ 𝐿2 (R3). Moreover, we have the commutation relations

[𝑎( 𝑓 ), 𝑎∗(𝑔)] = 〈 𝑓 , 𝑔〉, [𝑎( 𝑓 ), 𝑎(𝑔)] = 0, [𝑎∗( 𝑓 ), 𝑎∗(𝑔)] = 0

for all 𝑓 , 𝑔 ∈ 𝐿2 (R3). Further results on the creation and annihilation operators and their distributional
analogues 𝑎𝑥 , 𝑎∗𝑦 , for 𝑥, 𝑦 ∈ R3, defined through

𝑎( 𝑓 ) =
∫

𝑑𝑥 𝑓 (𝑥)𝑎𝑥 , 𝑎∗(𝑔) =
∫

𝑑𝑦 𝑔(𝑦)𝑎∗𝑦 , (2.3)

are collected in Appendix B.
Based on (2.1) and the assumption on 𝑜1 (1) in (1.9), a natural first attempt to prove Theorem 1.1

might consist in trying to control the growth of the number of excitations N⊥𝜑𝑡 based on Gronwall’s
lemma. However, when examining the derivative

𝜕𝑡
〈
N⊥𝜑𝑡

〉
𝜓𝑁,𝑡

=
〈
[𝑖𝐻𝑁 ,N⊥𝜑𝑡 ]

〉
𝜓𝑁,𝑡

− 2Re
〈
𝑎∗(𝜕𝑡𝜑𝑡 )𝑎(𝜑𝑡 )

〉
𝜓𝑁,𝑡

,

one soon realizes that [𝐻𝑁 ,N⊥𝜑𝑡 ] contains several contributions of size 𝑂 (𝑁). This is actually not
very surprising and a consequence of the fact that 𝜓𝑁 ,𝑡 contains short scale correlations related to (1.4):
heuristically, 𝜓𝑁 ,𝑡 can be thought of as a wave function

𝜓𝑁 ,𝑡 ≈ 𝐶
∏

1≤𝑖< 𝑗≤𝑁
𝑓 (𝑁 (𝑥𝑖 − 𝑥 𝑗 ))𝜑⊗𝑁

𝑡 , (2.4)

where C is a normalization constant and 𝑓 solves the zero energy scattering equation

−2Δ 𝑓 +𝑉 𝑓 = 0 (2.5)

with lim |𝑥 |→∞ 𝑓 (𝑥) = 1. Notice that f minimizes the functional on the r.h.s. in (1.4) and that 𝑓 (𝑁.)
solves the zero energy scattering equation with rescaled potential𝑉𝑁 . Further properties of f and related
functions are summarized in Appendix C.

Although the correlations 𝑓 (𝑁 (𝑥𝑖 − 𝑥 𝑗 )) live on a short length scale of order 𝑂 (𝑁−1), basic com-
putations imply that the orthogonal excitations in states as in (2.4) carry a large energy of size 𝑂 (𝑁),
prohibiting a naive control of N⊥𝜑𝑡 . However, if one could factor out these correlations, one would re-
main with a state closer to 𝜑⊗𝑁

𝑡 . In this case, the number and energy of the excitations around 𝜑𝑡 should
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be easier to control. Motivated by this heuristics, the main idea of [15] is to approximate 𝜓𝑁 ,𝑡 by

𝜓𝑁 ,𝑡 ≈ 𝐶
∏

1≤𝑖< 𝑗≤𝑁

(
1 − (1 − 𝑓 ) (𝑁 (𝑥𝑖 − 𝑥 𝑗 ))

)
𝜑⊗𝑁
𝑡

≈ 𝐶
(
1 −

∑
1≤𝑖< 𝑗≤𝑁

(1 − 𝑓 ) (𝑁 (𝑥𝑖 − 𝑥 𝑗 )) + . . .
)
𝜑⊗𝑁
𝑡

≈ 𝐶 exp
(
− 1

2

∫
𝑑𝑥𝑑𝑦 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦))𝑎∗𝑥𝑎∗𝑦𝑎𝑥𝑎𝑦

)
𝜑⊗𝑁
𝑡 ≈ 𝑒𝐵𝑡𝜑⊗𝑁

𝑡 .

(2.6)

This incorporates the expected correlation structure into the product state 𝜑⊗𝑁
𝑡 by applying a unitary,

generalized Bogoliubov transformation 𝑒𝐵𝑡 with exponent

𝐵𝑡 = −1
2

∫
𝑑𝑥𝑑𝑦

(
(1 − 𝑓 ) (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗𝑥𝑎∗𝑦𝑎(𝜑𝑡 )𝑎(𝜑𝑡 ) − h.c.

)
.

In other words, we expect the state 𝑒−𝐵𝑡𝜓𝑁 ,𝑡 ≈ 𝜑⊗𝑁
𝑡 to behave approximately like a product state,

and the main result of [15] is to establish this intuition rigorously. Ignoring minor technical details, this
is achieved by controlling the number and energy of excitations around 𝜑𝑡 w.r.t. the fluctuation dynamics
U𝑁 ,𝑡 = 𝑒−𝐵𝑡 𝑒−𝑖𝐻𝑁 𝑡 that satisfies

𝑖𝜕𝑡 U𝑁 ,𝑡 = S𝑁 ,𝑡 U𝑁 ,𝑡 =
(
𝑒−𝐵𝑡𝐻𝑁 𝑒

𝐵𝑡 + (𝑖𝜕𝑡𝑒−𝐵𝑡 )𝑒𝐵𝑡

)
U𝑁 ,𝑡 .

As turns out, the energy of the excitations is comparable to S ′
𝑁 ,𝑡 = S𝑁 ,𝑡 − 𝑐𝑁 ,𝑡 for a suitable constant

𝑐𝑁 ,𝑡 , so that the main result of [15] can be recast as a Gronwall bound

𝜕𝑡
〈
S ′
𝑁 ,𝑡 +N⊥𝜑𝑡

〉
U𝑁,𝑡𝜓𝑁

�
〈
S ′
𝑁 ,𝑡 +N⊥𝜑𝑡

〉
U𝑁,𝑡𝜓𝑁

. (2.7)

Although conceptually straightforward, the main difficulty of the above strategy consists in the fact
that the action of 𝑒−𝐵𝑡 (·)𝑒𝐵𝑡 , that is needed to compute S𝑁 ,𝑡 , is not explicit. The novelty of [15]
has therefore been to analyse 𝑒−𝐵𝑡 (·)𝑒𝐵𝑡 in detail, providing an explicit description of S𝑁 ,𝑡 in terms
of a convergent commutator series expansion. This can be used to explicitly evaluate the commutator
[S𝑁 ,𝑡 ,N⊥𝜑𝑡 ] that occurs on the left-hand side in (2.7), and this is crucial to close the Gronwall argument.

The drawback of this method is that the series expansions are rather involved and produce a large
number of irrelevant error terms. It would therefore be quite desirable to extract only the relevant terms
without the need for operator exponential expansions, similarly as in [19, 12] in the spectral setting. Our
key observation in this regard is that (2.7) is essentially equivalent to controlling the modified energy
and excitation operators

〈
𝑒𝐵𝑡

(
S ′
𝑁 ,𝑡 +N⊥𝜑𝑡

)
𝑒−𝐵𝑡

〉
𝜓𝑁,𝑡

≈
〈
H𝑁

〉
𝜓𝑁,𝑡

+
〈
Qren

〉
𝜓𝑁,𝑡

+
〈
Nren

〉
𝜓𝑁,𝑡

, (2.8)

where we have inserted heuristically several approximations from [15]. In (2.8), we set

H𝑁 = 𝐻𝑁 − 𝑁𝑒GP −
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 (2.9)

and 𝑒GP ≡ EGP (𝜑𝑡 ) for the translation invariant energy functional EGP, defined by

EGP (𝜑) =
∫

𝑑𝑥
(
|∇𝜑(𝑥) |2 + 4𝜋𝔞 |𝜑(𝑥) |4

)
.

Recall that 𝑒GP is a conserved quantity if 𝑡 ↦→ 𝜑𝑡 is a sufficiently regular solution of (1.8), in particular
under the assumptions on 𝜑GP in Theorem 1.1 (see Proposition A.1).
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In (2.8), we have furthermore introduced renormalized excitation operators

Nren = N⊥𝜑𝑡 +
∫

𝑑𝑥𝑑𝑦
(
𝑘𝑡 (𝑥, 𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
,

Qren =
1
2

∫
𝑑𝑥𝑑𝑦 𝑖𝜕𝑡 𝑘𝑡 (𝑥, 𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
(2.10)

in terms of orthogonal excitation fields 𝑎∗(𝑄𝑡 ,𝑥), 𝑎(𝑄𝑡 ,𝑦), defined as follows: denoting by 𝑄𝑡 the
projection 𝑄𝑡 = 1 − |𝜑𝑡 〉〈𝜑𝑡 | onto the orthogonal complement of 𝜑𝑡 , we set

𝑎∗(𝑄𝑡 𝑓 ) =
∫

𝑑𝑥 𝑓 (𝑥)𝑎∗(𝑄𝑡 ,𝑥), 𝑎(𝑄𝑡𝑔) =
∫

𝑑𝑥 𝑔(𝑥)𝑎∗(𝑄𝑡 ,𝑥). (2.11)

It is then straightforward to verify that N⊥𝜑𝑡 =
∫
𝑑𝑥 𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡 ,𝑥) and that

𝑎∗(𝑄𝑡 ,𝑥) = 𝑎∗𝑥 − 𝜑𝑡 (𝑥)𝑎∗(𝜑𝑡 ), 𝑎(𝑄𝑡 ,𝑦) = 𝑎𝑦 − 𝜑𝑡 (𝑦)𝑎(𝜑𝑡 ),
[𝑎(𝑄𝑡 ,𝑥), 𝑎∗(𝑄𝑡 ,𝑦)] = [𝑎𝑥 , 𝑎∗(𝑄𝑡 ,𝑦)] = 𝑄𝑡 (𝑥, 𝑦), [𝑎(𝑄𝑡 ,𝑥), 𝑎∗(𝜑𝑡 )] = (𝑄𝑡𝜑) (𝑥) = 0,

where 𝑄𝑡 (𝑥, 𝑦) = 𝛿(𝑥, 𝑦) − 𝜑𝑡 (𝑥)𝜑𝑡 (𝑦) denotes the integral kernel of 𝑄𝑡 .
Finally, fixing some 𝜒 ∈ 𝐶∞

𝑐 (𝐵2𝑟 (0)) with 𝜒 |𝐵𝑟 (0) ≡ 1, we define the kernel 𝑘𝑡 by

(𝑥, 𝑦) ↦→ 𝑘𝑡 (𝑥, 𝑦) = 𝑁 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦))𝜒(𝑥 − 𝑦)𝜑𝑡 (𝑥)𝜑𝑡 (𝑦) ∈ 𝐿2 (R3 × R3). (2.12)

Notice that H𝑁 ,Nren and Qren are time-dependent. For simplicity, we suppress this dependence in
our notation. Moreover, we remark that the cutoff 𝜒 in the definition of 𝑘𝑡 is for technical reasons only
(we ignored this technicality in the heuristic arguments outlined above). Basic properties of the kernel
𝑘𝑡 are collected in Appendix C.

We assume throughout the remainder that the radius 𝑟 > 0, related to 𝜒 ∈ 𝐶∞
𝑐 (𝐵2𝑟 (0)) in (2.12),

is chosen sufficiently small, but fixed (independently of N). As explained below in Lemma 3.1, this
implies that1 for some 𝐶 > 0 and every 𝑡 ∈ R, it holds true that

𝐶−1(N⊥𝜑𝑡 + 1) ≤ (Nren + 1) ≤ 𝐶 (N⊥𝜑𝑡 + 1), ±Qren ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1). (2.13)

Having introduced all objects that are relevant in the sequel, let us briefly comment on the heuris-
tics underlying the approximation (2.8). What [15] has shown rigorously is that transformations 𝑒𝐵𝑡

as above act on creation and annihilation operators approximately like standard Bogoliubov trans-
formations. It then turns out that 𝑒−𝐵𝑡 (·)𝑒𝐵𝑡 regularizes certain singular contributions to 𝐻𝑁 , and
these renormalizations are essentially obtained from the contributions linear in 𝐵𝑡 when expanding
𝑒−𝐵𝑡 𝑎𝑥𝑒

𝐵𝑡 ≈ 𝑎𝑥 + [𝑎𝑥 , 𝐵𝑡 ]. In (2.8), we simply inserted this linear approximation on the level of
𝐿2
𝑠 (R3𝑁 ).

Finally, let us point out that it is straightforward to compute the time derivative of the right-hand side
in (2.8) explicitly – in strong contrast to the computation of the left-hand side in (2.7). This naturally
raises the question whether a Gronwall bound can be proved directly on the right-hand side of (2.8),
avoiding the use of operator exponential expansions altogether, similarly as in [18, 19, 12] in the spectral
setting. On the technical level, this is our main contribution, and it leads to the following result.
Proposition 2.1. Let H𝑁 be as in (2.9) and set 𝜓𝑁 ,𝑡 = 𝑒−𝑖𝐻𝑁 𝑡𝜓𝑁 for 𝑡 ∈ R and initial data 𝜓𝑁 ∈
𝐿2
𝑠 (R3𝑁 ) as in Theorem 1.1. Then, for suitable constants 𝑐, 𝐶 > 0 which are independent of 𝑡 ∈ R, we

have that

N⊥𝜑𝑡 ≤ H𝑁 +Qren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1)

1By ±𝐴 ≤ 𝐵 for self-adjoint operators 𝐴, 𝐵, we abbreviate that −𝐵 ≤ 𝐴 ≤ 𝐵. Moreover, generic constants independent of N
and t are typically denoted by 𝑐, 𝐶 > 0 and may vary from line to line.

https://doi.org/10.1017/fms.2025.10073 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10073


8 C. Brennecke and W. Kroschinsky

as well as the Gronwall bound

𝜕𝑡
〈
H𝑁 +Qren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1)

〉
𝜓𝑁,𝑡

≤ 𝑐 𝑒𝑐 |𝑡 |
〈
H𝑁 +Qren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1)

〉
𝜓𝑁,𝑡

.

Assuming the validity of Proposition 2.1, whose proof is explained in detail in the next Section 3,
we conclude this section with the proof of Theorem 1.1.

Proof of Theorem 1.1. This was already explained in [15]; we recall the main steps. Without loss of
generality, assume 𝑡 ≥ 0. By (2.1), note that (1.10) is equivalent to

〈
N⊥𝜑𝑡

〉
𝜓𝑁,𝑡

≤ 𝐶
(
1 + 𝑁𝑜1 (1) + 𝑁𝑜2 (1)

)
exp(𝑐 exp 𝑐 𝑡). (2.14)

By Proposition 2.1, Gronwall’s lemma and the bound (2.13), we know that
〈
N⊥𝜑𝑡

〉
𝜓𝑁,𝑡

≤
〈
H𝑁 +Qren + 𝐶𝑒𝐶𝑡 (Nren + 1)

〉
𝜓𝑁,𝑡

≤ 𝑐𝑡
〈
(H𝑁 +Qren + 𝐶Nren + 1)|𝑡=0

〉
𝜓𝑁

≤ 𝑐𝑡
〈
(H𝑁 +Qren)|𝑡=0 +N⊥𝜑GP + 1

〉
𝜓𝑁

for some time-dependent constant 𝑐𝑡 ≤ 𝐶 exp(𝑐 exp(𝑐 𝑡)). Here, the last step used (2.13). Hence, it is
enough to analyze 〈(H𝑁 )|𝑡=0〉𝜓𝑁 , 〈(Qren)|𝑡=0〉𝜓𝑁 and 〈N⊥𝜑GP〉𝜓𝑁 . Using once again (2.1), we have that

〈
N⊥𝜑GP

〉
𝜓𝑁

= 𝑁
(
1 − 〈𝜑GP, 𝛾

(1)
𝑁 𝜑GP〉

)
= 𝑁𝑜2 (1)

and, by (2.13), that

〈(Qren)|𝑡=0〉𝜓𝑁 ≤ 𝐶
〈
N⊥𝜑GP + 1

〉
𝜓𝑁

= 𝐶
(
1 + 𝑁𝑜2 (1)

)
.

By (2.9), however, we have that
〈
(H𝑁 )|𝑡=0

〉
𝜓𝑁

=
〈
𝐻𝑁 −𝑁𝑒GP −

(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
|𝑡=0+〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉|𝑡=0 N⊥𝜑GP

〉
𝜓𝑁

=
〈
𝐻𝑁 −𝑁𝑒GP −

(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
|𝑡=0

〉
𝜓𝑁

+〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉|𝑡=0 𝑁𝑜2 (1)

and, by (1.8), that 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉|𝑡=0 = 𝑒GP + 4𝜋𝔞‖𝜑GP‖4
4 = 𝑂 (1). Since we assume that 𝜑GP minimizes the

Gross-Pitaevskii functional E trap
GP , it solves the Euler-Lagrange equation

(
− Δ +𝑉ext + 8𝜋𝔞 |𝜑GP |2

)
𝜑GP = 𝜇GP𝜑GP, 𝜇GP = 𝑒GP + 4𝜋𝔞‖𝜑GP‖4

4 .

Combining this with (1.8), we then find

−
〈(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + 𝑎∗(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 )𝑎(𝜑𝑡 )

)
|𝑡=0

〉
𝜓𝑁

= 2Re
〈
𝑎∗(𝜑GP)𝑎(𝑉ext𝜑GP)

〉
𝜓𝑁

− 2〈𝜑GP, 𝑉ext𝜑GP〉
〈
𝑎∗(𝜑GP)𝑎∗(𝜑GP)

〉
𝜓𝑁

= 2𝑁Re〈𝜑GP, 𝛾
(1)
𝑁 𝑉ext𝜑GP〉 − 2𝑁 〈𝜑GP, 𝑉ext𝜑GP〉 + 〈𝜑GP, 𝑉ext𝜑GP〉𝑁𝑜2 (1),

where 〈𝜑GP, 𝑉ext𝜑GP〉 ≤ 𝑒GP = 𝑂 (1). Now, if we replace 𝑉ext by 𝑉 ′
ext = 𝑉ext + Λ for some sufficiently

large Λ > 0 so that 𝑉 ′
ext ≥ 0, by the assumption that 𝑉ext ∈ 𝐿∞

loc (R
3) with lim |𝑥 |→∞𝑉ext = ∞, and use

that 0 ≤ (𝛾 (1)
𝑁

)2 ≤ 𝛾 (1)
𝑁 ≤ 1, Cauchy-Schwarz implies

2Re 〈𝜑GP, 𝛾
(1)
𝑁 𝑉ext𝜑GP〉 ≤ 〈𝜑GP, 𝛾

(1)
𝑁 𝑉 ′

ext𝛾
(1)
𝑁 𝜑GP〉 + 〈𝜑GP, 𝑉

′
ext𝜑GP〉 − 2Λ〈𝜑GP, 𝛾

(1)
𝑁 𝜑GP〉

≤ 〈𝜑GP, 𝛾
(1)
𝑁 𝑉 ′

ext𝛾
(1)
𝑁 𝜑GP〉 − Λ + 〈𝜑GP, 𝑉ext𝜑GP〉 + 2Λ 𝑜2 (1)

≤ tr


𝑉 ′

ext


1/2 (

𝛾 (1)
𝑁

)2

𝑉 ′
ext


1/2 − Λ + 〈𝜑GP, 𝑉ext𝜑GP〉 + 2Λ 𝑜2 (1)

≤ tr 𝛾 (1)
𝑁 𝑉ext + 〈𝜑GP, 𝑉ext𝜑GP〉 + 2Λ 𝑜2 (1).
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This shows that
〈
(H𝑁 )|𝑡=0

〉
𝜓𝑁

≤
〈
𝐻

trap
𝑁

〉
𝜓𝑁

− 𝑁𝑒
trap
GP + 𝐶𝑁𝑜2 (1) ≤ 𝐶

(
𝑁𝑜1 (1) + 𝑁𝑜2 (1)

)
.

Collecting the previous bounds, we obtain (2.14) and thus (1.10). �

3. Renormalized Hamiltonian and proof of Proposition 2.1

The goal of this section is to prove Proposition 2.1. Our proof is based on several lemmas that collect
important properties of the operators H𝑁 ,Nren and Qren, defined in (2.9) and (2.10), respectively. We
start with the proof of the bound (2.13) and the derivation of the leading order contributions to 𝜕𝑡 Nren
and 𝜕𝑡Qren.

Lemma 3.1. Let Nren,Qren be as in (2.10) and choose 𝜒 ∈ 𝐶∞
𝑐 (𝐵2𝑟 (0)), 𝜒 |𝐵𝑟 (0) ≡ 1 in (2.12) so that

𝑟 > 0 is small enough. Then, for some 𝐶 > 0 and every 𝑡 ∈ R, we have

𝐶−1 (N⊥𝜑𝑡 + 1) ≤ (Nren + 1) ≤ 𝐶 (N⊥𝜑𝑡 + 1), ±Qren ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1) (3.1)

and

±
(
𝜕𝑡 Nren −

[
−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) − h.c.

)
+ 〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 ,Nren

] )
≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1),

±
(
𝜕𝑡Qren −

[
−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) − h.c.

)
+ 〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 ,Qren

] )
≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1).

(3.2)

Proof. We recall that

Nren = N⊥𝜑𝑡 +
∫

𝑑𝑥𝑑𝑦
(
𝑘𝑡 (𝑥, 𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
.

By Lemma C.1, we have that sup𝑡 ∈R ‖𝑘𝑡 ‖ ≤ 𝐶𝑟1/2. If we combine this with the trivial bound 0 ≤
𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 ) ≤ 𝑁 and the operator bounds of Lemma B.1, we obtain

N⊥𝜑𝑡 (1 − 𝐶𝑟1/2) − 𝐶𝑟1/2 ≤ Nren ≤ N⊥𝜑𝑡 (1 + 𝐶𝑟1/2) + 𝐶𝑟1/2

for some 𝐶 > 0 independent of 𝑟 > 0 and 𝑡 ∈ R. The bound for Qren follows similarly.
To prove (3.2), we first analyze 𝜕𝑡 Nren, based on the above decomposition of Nren. Using (3.1) and

the bounds in Lemmas B.1 and C.1, observe that all operators occurring in 𝜕𝑡 Nren that only contain the
fields 𝑎♯ (𝑄𝑡 ,𝑥) or normalized factors 𝑎♯ (𝜑𝑡 )/

√
𝑁 , 𝑎♯ (𝜕𝑡𝜑𝑡 )/

√
𝑁 can be bounded by 𝐶𝑒𝐶 |𝑡 | (Nren + 1).

The remaining contributions must contain at least one factor 𝑎♯ (𝜑𝑡 ) (without the 1/
√
𝑁 normalization).

Using that

𝜕𝑡𝑄𝑡 = −
(
|𝜑𝑡 〉〈𝑄𝑡𝜕𝑡𝜑𝑡 | + h.c.

)
− 2Re〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉|𝜑𝑡 〉〈𝜑𝑡 | = −

(
|𝜑𝑡 〉〈𝑄𝑡𝜕𝑡𝜑𝑡 | + h.c.

)
, (3.3)

we thus find

𝜕𝑡 Nren = −2
∫

𝑑𝑥𝑑𝑦
(
𝑄𝑡𝜕𝑡𝜑𝑡 (𝑥)𝑘𝑡 (𝑥, 𝑦)𝑎∗(𝜑𝑡 )𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)

−
(
𝑎∗(𝜑𝑡 )𝑎(𝜕𝑡𝜑𝑡 ) + h.c.

)
+ E1,

up to an error E1 bounded by ±E1 ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1). We proceed in the same way to extract the main
contributions to the commutator on the l.h.s. in (3.2), using that

[N⊥𝜑𝑡 , 𝑎
∗(𝑄𝑡 ,𝑥)𝑎(𝜑𝑡 )] = 𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝜑𝑡 ), [N⊥𝜑𝑡 , 𝑎

∗(𝜑𝑡 )𝑎(𝜑𝑡 )] = 0.
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Then, the same argument as above yields
[
−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) − h.c.

)
+ 〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 ,Nren

]
= −2

∫
𝑑𝑥𝑑𝑦

(
𝑄𝑡𝜕𝑡𝜑𝑡 (𝑦)𝑘𝑡 (𝑥, 𝑦)𝑎∗(𝜑𝑡 )𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)

−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) + h.c.

)
+ E2

up to an error ±E2 ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1). Comparing this with 𝜕𝑡 Nren and using that

𝑎∗(𝜑𝑡 )𝑎(𝜕𝑡𝜑𝑡 ) + 𝑎∗(𝜕𝑡𝜑𝑡 )𝑎(𝜑𝑡 ) = 𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) + 𝑎∗(𝑄𝑡𝜕𝑡𝜑𝑡 )𝑎(𝜑𝑡 ),

which follows from Re〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉 = 0 by mass conservation, this proves the first bound in (3.2). For the
analogous bound on Qren, we proceed in the same way and find

𝜕𝑡Qren= −
∫

𝑑𝑥𝑑𝑦
(
𝑄𝑡𝜕𝑡𝜑𝑡 (𝑥)𝑖𝜕𝑡 𝑘𝑡 (𝑥, 𝑦)𝑎∗(𝜑𝑡 )𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
+ E3

=
[
−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) − h.c.

)
+ 〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 ,Qren

]
+ E4,

up to errors E3, E4 bounded by ±E3 ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1), ±E4 ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1). �

The next lemma is the first of two key ingredients in the proof of Proposition 2.1. It compares
the operator H𝑁 , defined in (2.9), to a renormalized Hamiltonian Hren, which equals the sum of the
kinetic and potential energies of orthogonal excitations relative to renormalized annihilation and creation
operators, 𝑏𝑥 , 𝑐𝑥𝑦 and their adjoints 𝑏∗𝑥 , 𝑐∗𝑥𝑦 , which are defined by

𝑏𝑥 = 𝑎(𝑄𝑡 ,𝑥) +
∫

𝑑𝑧 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 ) (𝑥, 𝑧) 𝑎∗𝑧
𝑎(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

,

𝑐𝑥𝑦 = 𝑎(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡 ,𝑦) + (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 ) (𝑥, 𝑦)
𝑎(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

.

(3.4)

Note that this is analogous to [19, Eq. (11) & (12)]. In terms of these new fields, we set

Kren =
∫

𝑑𝑥 𝑏∗𝑥 (−Δ 𝑥)𝑏𝑥 , Vren =
1
2

∫
𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))𝑐∗𝑥𝑦𝑐𝑥𝑦 (3.5)

as well as Hren = Kren +Vren. Note that Hren ≥ 0 since both Kren ≥ 0 and Vren ≥ 0. Note, moreover, that
Nren equals

∫
𝑑𝑥 𝑏∗𝑥𝑏𝑥 , up to a correction which is quadratic in 𝑘𝑡 .

Lemma 3.2. The operator H𝑁 , defined in (2.9), satisfies

1
2
Hren − 𝐶𝑒𝐶 |𝑡 | (Nren + 1) ≤ H𝑁 ≤ 2Hren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1). (3.6)

Moreover, we have that

±
[
𝑖H𝑁 ,Nren

]
≤ 𝐶Hren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1). (3.7)

Proof. We begin with the operator bounds in (3.6). The proof consists essentially of two main steps.
First, we split H𝑁 into several parts according to condensate and orthogonal excitation contributions to
the energy. In terms of the 𝑎𝑥 , 𝑎∗𝑦 , the Hamiltonian 𝐻𝑁 reads

𝐻𝑁 =
∫

𝑑𝑥 𝑎∗𝑥 (−Δ 𝑥)𝑎𝑥 +
1
2

∫
𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))𝑎∗𝑥𝑎∗𝑦𝑎𝑥𝑎𝑦 .
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We split 𝑎𝑥 = 𝑎(𝑄𝑡 ,𝑥) + 𝜑𝑡 (𝑥)𝑎(𝜑𝑡 ), 𝑎∗𝑦 = 𝑎∗(𝑄𝑡 ,𝑦) + 𝜑𝑡 (𝑦)𝑎∗(𝜑𝑡 ), insert this into 𝐻𝑁 and then expand
H𝑁 into the sum H𝑁 =

∑4
𝑗=0 H

( 𝑗)
𝑁 , where

H(0)
𝑁 =

𝑁

2
〈
𝜑𝑡 , (𝑁3𝑉 (𝑁.) ∗ |𝜑𝑡 |2)𝜑𝑡

〉 𝑎∗(𝜑𝑡 )√
𝑁

𝑎∗(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

− 𝑁𝑒GP

+ 𝑁 〈𝜑𝑡 ,−Δ𝜑𝑡 〉
𝑎∗(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡

H(1)
𝑁 = 𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡 (𝑁3𝑉 (𝑁.) ∗ |𝜑𝑡 |2)𝜑𝑡 )

)
− 𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡 (8𝜋𝔞 |𝜑𝑡 |2𝜑𝑡 )

)
− 𝑎∗(𝜑𝑡 )√

𝑁
𝑎
(
𝑄𝑡 (𝑁3𝑉 (𝑁.) ∗ |𝜑𝑡 |2)𝜑𝑡 )

)N⊥𝜑𝑡√
𝑁

+ h.c.,

H(2)
𝑁 =

∫
𝑑𝑥 𝑎∗(𝑄𝑡 ,𝑥) (−Δ 𝑥)𝑎(𝑄𝑡 ,𝑥)

+
∫

𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦)) |𝜑𝑡 (𝑦) |2𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡 ,𝑥)
𝑎∗(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

+
∫

𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡 ,𝑦)
𝑎∗(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

+ 1
2

∫
𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))

(
𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+h.c.
)
,

H(3)
𝑁 =

∫
𝑑𝑥𝑑𝑦 𝑁5/2𝑉 (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡 ,𝑥)

𝑎(𝜑𝑡 )√
𝑁

+ h.c.,

H(4)
𝑁 =

1
2

∫
𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡 ,𝑥).

(3.8)

Here, we normalized the 𝑎♯ (𝜑𝑡 ) by a factor
√
𝑁 , anticipating that 〈𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 )〉𝜓𝑁,𝑡 ≈ 𝑁 .

In the second step, we extract Kren and Vren from H𝑁 , up to errors controlled by Hren and Nren.
The error estimates are mostly straightforward applications of Cauchy-Schwarz in combination with the
results of Appendices B and C. Below, we outline the key steps since most of the bounds have already
been explained at length in, for example, [3, 8, 15].

Now, as shown below, the main contributions to H(0)
𝑁 and H(1)

𝑁 are cancelled, so let us switch directly
to H(2)

𝑁 which contains Kren. Abbreviating in the following

𝑗𝑥 (·) = 𝑗 (𝑥, ·) = 𝑗 (·, 𝑥)

for symmetric kernels 𝑗 ∈ 𝐿2 (R3 × R3), we rewrite

∫
𝑑𝑥 𝑎∗(𝑄𝑡 ,𝑥) (−Δ 𝑥)𝑎(𝑄𝑡 ,𝑥)

=
∫

𝑑𝑥
(
𝑏∗𝑥 −

𝑎∗(𝜑𝑡 )√
𝑁

𝑎∗(𝜑𝑡 )√
𝑁

𝑎
(
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥)

) )

× (−Δ 𝑥)
(
𝑏𝑥 − 𝑎∗

(
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥)

) 𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

)

= Kren +
∫

𝑑𝑥𝑑𝑦
(
(Δ 𝑥 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥) (𝑦) 𝑏∗𝑥𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)

+
∫

𝑑𝑥
〈
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥 ,−Δ 𝑥 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥)

〉 𝑎∗(𝜑𝑡 )√
𝑁

𝑎∗(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ E1
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for an error E1 ≥ 0 which is bounded by

E1 =
∫

𝑑𝑥
𝑎∗(𝜑𝑡 )√

𝑁

𝑎∗(𝜑𝑡 )√
𝑁

𝑎∗(∇𝑥 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥)𝑎(∇𝑥 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥)
𝑎(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

≤
∫

𝑑𝑥 𝑎∗(∇𝑥 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥)𝑎(∇𝑥 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥) =
∫

𝑑𝑥𝑑𝑦 𝑔𝑡 (𝑥, 𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡 ,𝑦)

≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1).

Here, we used Lemma 3.1, Lemma B.1 and Lemma C.1, implying ‖𝑔𝑡 ‖ ≤ 𝐶𝑒𝐶 |𝑡 | for

𝑔𝑡 (𝑥, 𝑦) =
∫

𝑑𝑧 (∇2𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 ) (𝑥, 𝑧) (∇2𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 ) (𝑦, 𝑧).

By Lemma C.1, we also find

∫
𝑑𝑥𝑑𝑦




(Δ1𝑘𝑡 ) (𝑥, 𝑦) +
1
2
𝑁3(𝑉 𝑓 ) (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑥)𝜑(𝑦)

+ 2𝑁2 (∇(1 − 𝑓 )
)
(𝑁 (𝑥 − 𝑦)) · ∇𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝜒(𝑥 − 𝑦)




2 ≤ 𝐶,

and this can be used to show that
∫

𝑑𝑥
(
(Δ 𝑥 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥) (𝑦) 𝑏∗𝑥𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)

= −1
2

∫
𝑑𝑥

(
𝑁3 (𝑉 𝑓 ) (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑥)𝜑(𝑦)𝑏∗𝑥𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
+ E2

= −1
2

∫
𝑑𝑥

(
𝑁3 (𝑉 𝑓 ) (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑥)𝜑(𝑦)𝑐∗𝑥𝑦

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
+ E ′

2

for two errors E2, E ′
𝑁 ,𝑡 which, for every 𝛿 > 0 and some 𝐶 > 0, are controlled by

±E2 ≤ 𝛿Kren + 𝐶𝛿−1𝑒𝐶 |𝑡 | (Nren + 1), ±E ′
2 ≤ 𝛿Kren + 𝐶𝛿−1𝑒𝐶 |𝑡 | (Nren + 1).

Here, we used that

±
( ∫

𝑑𝑥𝑑𝑦 𝑁2 (∇(1 − 𝑓 )
)
(𝑁 (𝑥 − 𝑦)) · ∇𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝜒(𝑥 − 𝑦) 𝑏∗𝑥𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+
∫

𝑑𝑥𝑑𝑦 𝑁 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦))∇𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝜒(𝑥 − 𝑦) · ∇𝑥𝑏
∗
𝑥𝑎

∗(𝑄𝑡 ,𝑦)
𝑎(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

)

≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1)

by integration by parts, Cauchy-Schwarz and Lemma C.1, and that





∫

𝑑𝑥𝑑𝑦 𝑁 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦))∇𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝜒(𝑥 − 𝑦) · 〈𝜙𝑁 ,∇𝑥𝑏
∗
𝑥𝑎

∗(𝑄𝑡 ,𝑦)
𝑎(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

𝜙𝑁 〉





≤ 𝐶〈Kren〉1/2
𝜙𝑁

〈Nren + 1〉1/2
𝜙𝑁
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for every 𝜙𝑁 ∈ 𝐿2
𝑠 (R3𝑁 ). Finally, Lemma C.1 and 𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 ) = 𝑁 −N⊥𝜑𝑡 imply that∫
𝑑𝑥

〈
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥 ,−Δ 𝑥 (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥)

〉 𝑎∗(𝜑𝑡 )√
𝑁

𝑎∗(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

=
𝑁

2

∫
𝑑𝑥𝑑𝑦 𝑁3 (𝑉 𝑓 (1 − 𝑓 )

)
(𝑁 (𝑥 − 𝑦)) |𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2 + E3,

where ±E3 ≤ 𝐶𝑒𝐶 |𝑡 | . Combining all this with the simple estimates

±
∫

𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦)) |𝜑𝑡 (𝑦) |2𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡 ,𝑥)
𝑎∗(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1),

±
∫

𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡 ,𝑦)
𝑎∗(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1),

which follow from Cauchy-Schwarz and Lemma 3.1, and the fact that

1
2

∫
𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))

(
𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+h.c.
)

=
1
2

∫
𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))

(
𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑐∗𝑥𝑦

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+h.c.
)

− 𝑁

∫
𝑑𝑥𝑑𝑦 𝑁3𝑉 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦)) |𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2 + E4

for an error ±E4 ≤ 𝐶𝑒𝐶 |𝑡 | , which can be proved as above, we arrive at

H(2)
𝑁 −Kren

=
1
2

∫
𝑑𝑥

(
𝑁3𝑉 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑥)𝜑(𝑦)𝑐∗𝑥𝑦

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+h.c.
)

+ 𝑁

2

∫
𝑑𝑥𝑑𝑦 𝑁3 (𝑉 𝑓 (1 − 𝑓 ) − 2𝑉 (1 − 𝑓 )

)
(𝑁 (𝑥 − 𝑦)) |𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2 + EH(2)

𝑁
,

(3.9)

where ±EH(2)
𝑁

≤ 𝛿Kren + 𝛿−1𝐶𝑒𝐶 |𝑡 | (Nren + 1).

In the next step, we extract Vren from H(4)
𝑁 . Here, we simply rewrite

𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦) = 𝑐∗𝑥𝑦 −
𝑎∗(𝜑𝑡 )√

𝑁

𝑎∗(𝜑𝑡 )√
𝑁

𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 (𝑥, 𝑦), (3.10)

and inserting this into H(4)
𝑁 yields with similar arguments as above the decomposition

H(4)
𝑁 − Vren

= −1
2

∫
𝑑𝑥𝑑𝑦 𝑁3𝑉 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦))

(
𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑐∗𝑥𝑦

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)

+ 𝑁

2

∫
𝑑𝑥𝑑𝑦 𝑁3𝑉 (1 − 𝑓 )2(𝑁 (𝑥 − 𝑦)) |𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2 + EH(4)

𝑁

(3.11)

for an error EH(4)
𝑁

which is controlled by ±EH(4)
𝑁

≤ 𝛿Vren + 𝛿−1𝐶𝑒𝐶 |𝑡 | (Nren + 1) for every 𝛿 > 0 and

some constant 𝐶 > 0. Finally, inserting (3.10) into H(3)
𝑁 , we obtain analogously

H(3)
𝑁 = −

(
𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡 (𝑁3𝑉 (1 − 𝑓 ) (𝑁.) ∗ |𝜑𝑡 |2𝜑𝑡 )

)
+ h.c.

)
+EH(3)

𝑁
(3.12)

for an error EH(3)
𝑁

controlled by ±EH(3)
𝑁

≤ 𝛿Vren + 𝛿−1𝐶𝑒𝐶 |𝑡 | (Nren + 1).
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To conclude the proof, it now remains to combine the decompositions in (3.9), (3.11), (3.12) with
H(0)

𝑁 and H(1)
𝑁 , defined in (3.8). Before doing so, let us observe that

H(1)
𝑁 =

(
𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡 (𝑁3𝑉 (1 − 𝑓 ) (𝑁.) ∗ |𝜑𝑡 |2𝜑𝑡 )

)
+ h.c.

)
+ EH(1)

𝑁

for an error EH(1)
𝑁

controlled by ±EH(1)
𝑁

≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1). This readily follows from the regularity
of 𝜑𝑡 (see Proposition A.1) and the identity ‖𝑉 𝑓 ‖1 = 8𝜋𝔞. Combining this observation with the the
identity 𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 ) = 𝑁 −N⊥𝜑𝑡 , the fact that

〈𝜑𝑡 ,−Δ𝜑𝑡 〉 = 𝑒GP − 4𝜋𝔞‖𝜑𝑡 ‖4
4 = 𝑒GP − 1

2
〈
𝜑𝑡 , (𝑁3𝑉 𝑓 (𝑁.) ∗ |𝜑𝑡 |2)𝜑𝑡

〉
+𝑂 (1)

and the decompositions (3.9), (3.11) and (3.12), we conclude that

H𝑁 = Hren + EH𝑁 , (3.13)

for an error ±EH𝑁 ≤ 𝛿Hren + 𝐶𝛿−1𝑒𝐶 |𝑡 | (Nren + 1). Choosing 𝛿 = 1
2 concludes (3.6).

Let us now switch to the commutator estimate (3.7). Based on the decomposition of H𝑁 in (3.13),
it is useful to split this into two steps and to show separately that

±
[
𝑖Hren,Nren

]
≤ 𝐶Hren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1), (3.14)

and
±
[
𝑖EH𝑁 ,Nren

]
≤ 𝐶Hren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1). (3.15)

Proving these bounds requires only a slight variation of the arguments used to derive (3.6). We therefore
focus on the key ideas for (3.14) and omit the details for (3.15).

Let us start with [𝑖Kren,Nren]. The key identity that we need is
[
𝑏𝑥 ,Nren

]
=
[
𝑎(𝑄𝑡 ,𝑥) + 𝑁−1𝑎∗

(
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥

)
𝑎(𝜑𝑡 )𝑎(𝜑𝑡 ),N⊥𝜑𝑡

]
+ 𝑁−1

∫
𝑑𝑧

[
𝑎(𝑄𝑡 ,𝑥), 𝑎∗

(
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑧

)
𝑎∗𝑧𝑎(𝜑𝑡 )𝑎(𝜑𝑡 ) + h.c.

]
,

+ 𝑁−2
∫

𝑑𝑧
[
𝑎∗

(
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥

)
𝑎(𝜑𝑡 )𝑎(𝜑𝑡 ), 𝑎∗(𝜑𝑡 )𝑎∗(𝜑𝑡 )𝑎

(
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑧

)
𝑎𝑧

]
,

= 𝑏𝑥 − 2𝑁−2
∫

𝑑𝑧
〈
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥 , (𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑧

〉
𝑎𝑧𝑎

∗(𝜑𝑡 )𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 )𝑎(𝜑𝑡 )

+ 2𝑁−2𝑎∗
(
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑥

) ∫
𝑑𝑧 𝑎

(
(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 )𝑧

)
𝑎𝑧 (2𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 ) + 1).

Since
[
𝑏∗𝑥 ,Nren

]
= −

[
𝑏𝑥 ,Nren

]∗, this implies that
[
𝑖Kren,Nren

]
vanishes up to corrections that are

quadratic in the kernel 𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 . As shown already in the previous step, such correction terms only
produce regular terms so that a similar analysis as for (3.6) implies that ±[𝑖Kren,Nren] ≤ 𝐶Kren +
𝐶𝑒𝐶 |𝑡 | (Nren + 1); we omit the details. Similar remarks apply to [𝑖Vren,Nren]. Here, we use additionally
the identity

[
𝑐𝑥𝑦 ,Nren

]
= 2𝑐𝑥𝑦 + 2

∫
𝑑𝑧 𝑘𝑡 (𝑥, 𝑧)𝑎∗(𝑄𝑡 ,𝑧)𝑎(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ 2
∫

𝑑𝑧 𝑘𝑡 (𝑦, 𝑧)𝑎∗(𝑄𝑡 ,𝑧)𝑎(𝑄𝑡 ,𝑥)
𝑎(𝜑𝑡 )√

𝑁

𝑎(𝜑𝑡 )√
𝑁

+ 𝑁−2(𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 ) (𝑥, 𝑦)
(
4𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 ) + 2

) ∫
𝑑𝑧𝑑𝑤 𝑘𝑡 (𝑧, 𝑤)𝑎(𝑄𝑡 ,𝑧)𝑎(𝑄𝑡 ,𝑤 ).

Arguing as above, we then find that ±[𝑖Vren,Nren] ≤ 𝐶 Vren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1). �
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The next lemma is our last ingredient needed for the proof of Proposition 2.1. It is similar to the
previous Lemma 3.2 and collects important properties related to Qren.

Lemma 3.3. Let H𝑁 be as in (2.9) and let Qren be as in (2.10). Then, for some constant 𝐶 > 0 and for
every 𝑡 ∈ R, we have that

±
( [
𝑖𝐻𝑁 ,−

(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 +Qren

]

+ 𝜕𝑡
(
−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 +Qren

) )

≤ 𝐶Hren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1).

Proof. The proof is based on the same ideas and operator bounds as Lemma 3.1 and Lemma 3.2. For
this reason, we only outline the key steps. Based on the second bound in (3.2) of Lemma 3.1, we first
observe that it suffices to prove that

±
( [
𝑖H𝑁 ,−

(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 +Qren

]

+ 𝜕𝑡
(
−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡

) )

≤ 𝐶Hren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1).

(3.16)

Now, we have to compute the contributions on the r.h.s. explicitly and, in view of (3.16), it is enough to
do this up to errors that are controlled by Hren and Nren. We first set

X = −
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 ,

and find with (3.3) that

𝜕𝑡X =
(
〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) − 𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕

2
𝑡 𝜑𝑡 ) + h.c.

)
+ E𝜕𝑡X , (3.17)

where, trivially, ±𝜕𝑡E𝜕𝑡X = ±
(
𝜕𝑡 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉

)
N⊥𝜑𝑡 ≤ 𝐶𝑒𝐶 |𝑡 |Nren, by Lemma 3.1. In the next step, a

tedious but straightforward computation shows that

[𝑖H(0)
𝑁 ,X ] =

(
−
(
‖𝑉 ‖1 − 8𝜋𝔞

)
‖𝜑𝑡 ‖4

4 𝑎
∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) + h.c.

)
+ E0,

[𝑖H(1)
𝑁 ,X ] = 𝑁

(
‖𝑉 ‖1 − 8𝜋𝔞

) (〈
|𝜑𝑡 |2𝜑𝑡 , 𝑄𝑡𝜕𝑡𝜑𝑡

〉
+ h.c.

)

+ 〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉
(
‖𝑉 ‖1 − 8𝜋𝔞

) (
𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡 |𝜑𝑡 |2𝜑𝑡

)
+ h.c.

)
+ E1,

[𝑖H(2)
𝑁 ,X ] =

(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 (−Δ) (𝑄𝑡𝜕𝑡𝜑𝑡 )) + 2‖𝑉 ‖1𝑎

∗(𝜑𝑡 )𝑎
(
𝑄𝑡 |𝜑𝑡 |2 (𝑄𝑡𝜕𝑡𝜑𝑡 )

)
+ ‖𝑉 ‖1𝑎

∗(𝜑𝑡 )𝑎
(
𝑄𝑡𝜑

2
𝑡𝑄𝑡𝜕𝑡𝜑𝑡

)
+ h.c.

)

−
∫

𝑑𝑥𝑑𝑦 𝑁5/2𝑉 (𝑁 (𝑥 − 𝑦))

×
(
𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 )

𝑎(𝜑𝑡 )√
𝑁

+h.c.
)

− 〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉
∫

𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))

×
(
𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
+ E2,
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[𝑖H(3)
𝑁 ,X ] =

∫
𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))

×
(
(𝑄𝑡𝜕𝑡𝜑𝑡 ) (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)

−
∫

𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))

×
(
𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) + h.c.

)

− 〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉
∫

𝑑𝑥𝑑𝑦 𝑁5/2𝑉 (𝑁 (𝑥 − 𝑦))

×
(
𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡 ,𝑥)

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
+ E3,

[𝑖H(4)
𝑁 ,X ] =

∫
𝑑𝑥𝑑𝑦 𝑁5/2𝑉 (𝑁 (𝑥 − 𝑦))

×
(
(𝑄𝑡𝜕𝑡𝜑𝑡 ) (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡 ,𝑥)

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
,

where, for all 𝑗 ∈ {0, 1, 2, 3}, the errors E 𝑗 are bounded by

±E 𝑗 ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1).

This decomposition and the related error bounds are a direct consequence of (3.8) and basic estimates
as in the proof of the previous lemmas. If we expand 𝑄𝑡 = 1 − |𝜑𝑡 〉〈𝜑𝑡 | and use that Re 〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉 = 0,
the sum of the different contributions equals

[𝑖H𝑁 ,X ]

= 𝑁
(
‖𝑉 ‖1 − 8𝜋𝔞

) (〈
|𝜑𝑡 |2𝜑𝑡 , 𝑄𝑡𝜕𝑡𝜑𝑡

〉
+ h.c.

)

−
(
〈𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) +

(
‖𝑉 ‖1 − 8𝜋𝔞

)
‖𝜑𝑡 ‖4

4

(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) + h.c.

)

+
(
𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡𝜕𝑡 (−Δ𝜑𝑡 + ‖𝑉 ‖1 |𝜑𝑡 |2𝜑𝑡 )

)
+ h.c.

)

+
∫

𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))
(
𝜕𝑡𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝜑𝑡 )𝑎(𝜑𝑡 ) + h.c.

)

−
∫

𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))
(
𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 )𝑎(𝜑𝑡 )+h.c.

)

−
∫

𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))
(
𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡𝜕𝑡𝜑𝑡 ) + h.c.

)

+
∫

𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))
(
𝜕𝑡𝜑𝑡 (𝑦)𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎(𝑄𝑡 ,𝑥)𝑎(𝜑𝑡 ) + h.c.

)
+ E[𝑖H𝑁 ,X ] ,

(3.18)

up to an error E[𝑖H𝑁 ,X ] that is bounded by E[𝑖H𝑁 ,X ] ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1).
Now, observe that the last four terms on the right-hand side of (3.18) are structurally similar to the

last contribution to H(2)
𝑁 and, respectively, to H(3)

𝑁 , defined in (3.8). We can therefore proceed similarly
as in Lemma 3.2 and extract their main contributions by comparing them to Hren. To this end, we
substitute (3.10) into the r.h.s. of (3.18) and observe that normal ordering causes cancellations between
the terms on the first and fourth lines, the second and fifth lines, and between the terms on the third and
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last lines. Combined with (1.8) and (3.17), we then arrive at

[𝑖H𝑁 ,X ] + 𝜕𝑡X

=
(
‖𝑉 ‖1 − 8𝜋𝔞

) (
𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡𝜑𝑡𝜕𝑡𝜑

2
𝑡

)
+ h.c.

)

+
∫

𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))
(
𝜕𝑡𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑐∗𝑥𝑦𝑎(𝜑𝑡 )𝑎(𝜑𝑡 ) + h.c.

)
+ EX ,

(3.19)

up to an overall error which is bounded by ±EX ≤ 𝐶Vren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1).
It remains to compare the right-hand side in (3.19) with [𝑖H𝑁 ,Qren]. Based on (3.8), a similar

computation shows that ±[𝑖H(0)
𝑁 ,Qren] ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1) and that

[𝑖H(1)
𝑁 ,Qren] = −

(
‖𝑉 ‖1 − 8𝜋𝔞

) (
𝑎∗(𝜑𝑡 )𝑎

(
(𝑄𝑡 ⊗ 𝑄𝑡𝜕𝑡 𝑘𝑡 )𝑄𝑡 |𝜑𝑡 |2𝜑𝑡

)
+ h.c.

)
+ Δ1,

[𝑖H(2)
𝑁 ,Qren] = −1

2
(
‖𝑉 ‖1 − 8𝜋𝔞

) (〈
𝜑2
𝑡 , 𝜕𝑡 (𝜑2

𝑡 )
〉
+ h.c.

)

−
∫

𝑑𝑥
(
𝑎∗(𝑄𝑡 ,𝑥)𝑎∗((−Δ 𝑥) (𝑄𝑡 ⊗ 𝑄𝑡𝜕𝑡 𝑘𝑡 )𝑥)

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
+ Δ2,

[𝑖H(3)
𝑁 ,Qren] =

(
−
∫

𝑑𝑥𝑑𝑦 𝑁5/2𝑉 (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑦)

× 𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)𝑎∗
(
(𝑄𝑡 ⊗ 𝑄𝑡𝜕𝑡 𝑘𝑡 )𝑥

) 𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

−
∫

𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))𝜕𝑡 𝑘𝑡 (𝑥, 𝑦)𝜑𝑡 (𝑦)𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 ,𝑥) + h.c.
)
+ Δ3,

[𝑖H(4)
𝑁 ,Qren] = −1

2

( ∫
𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡 ,𝑦)

×
(
𝜕𝑡 𝑘𝑡 (𝑥, 𝑦) + 2𝑎∗

(
(𝑄𝑡 ⊗ 𝑄𝑡𝜕𝑡 𝑘𝑡 )𝑥

)
𝑎(𝑄𝑡 ,𝑦)

) 𝑎(𝜑𝑡 )√
𝑁

𝑎(𝜑𝑡 )√
𝑁

+ h.c.
)
+ Δ4,

up to further error terms Δ 𝑗 that are controlled by ±Δ 𝑗 ≤ 𝐶𝑒𝐶 |𝑡 | (Nren + 1).
To combine the different contributions to [𝑖H𝑁 ,Qren], we proceed as before. That is, we substitute

(3.10) and bring all terms into normal order. One then finds that

[𝑖H(1)
𝑁 + 𝑖H(3)

𝑁 ,Qren] = −
(
‖𝑉 ‖1 − 8𝜋𝔞

) (
𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡𝜑𝑡𝜕𝑡𝜑

2
𝑡

)
+ h.c.

)
+ E[𝑖H(1)

𝑁 +𝑖H(3)
𝑁 ,Qren ]

,

where E[𝑖H(1)
𝑁 +𝑖H(3)

𝑁 ,Qren ]
≤ 𝐶Hren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1). Similarly, based on the zero energy scattering

equation (2.5), the identities (3.10) and

𝜕𝑡 𝑘𝑡 (𝑥, 𝑦) = 𝑁 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦))𝜒(𝑥 − 𝑦)
(
(𝜕𝑡𝜑𝑡 ) (𝑥)𝜑𝑡 (𝑦) + 𝜑𝑡 (𝑥) (𝜕𝑡𝜑𝑡 ) (𝑦)

)

as well as the kernel properties of Lemma C.1, one readily finds that

[𝑖H(2)
𝑁 + 𝑖H(4)

𝑁 ,Qren]

= −
∫

𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))
(
𝜕𝑡𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑐∗𝑥𝑦𝑎(𝜑𝑡 )𝑎(𝜑𝑡 ) + h.c.

)

+ E[𝑖H(2)
𝑁 +𝑖H(4)

𝑁 ,Qren ]
,
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for an error E[𝑖H(2)
𝑁 +𝑖H(4)

𝑁 ,Qren ]
≤ 𝐶Hren + 𝐶𝑒𝐶 |𝑡 | (Nren + 1). This shows that

[𝑖H𝑁 ,Qren]

= −
(
‖𝑉 ‖1 − 8𝜋𝔞

) (
𝑎∗(𝜑𝑡 )𝑎

(
𝑄𝑡𝜑𝑡𝜕𝑡𝜑

2
𝑡

)
+ h.c.

)

−
∫

𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))
(
𝜕𝑡𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)𝑐∗𝑥𝑦𝑎(𝜑𝑡 )𝑎(𝜑𝑡 ) + h.c.

)
+ EQren

(3.20)

for ±EQren ≤ 𝐶Hren + 𝐶𝑒𝐶𝑡 (Nren + 1). By direct comparison of (3.19) and (3.20), we get

[𝑖H𝑁 ,X ] + 𝜕𝑡X + [𝑖H𝑁 ,Qren] = EX + EQren . �

We conclude this section with the proof of Proposition 2.1. This is now a simple corollary of
Lemma 3.2 and Lemma 3.3.

Proof of Proposition 2.1. The first bound in Proposition 2.1 follows directly from Lemma 3.1 and
Lemma 3.2, so let us focus on the Gronwall bound. Without loss of generality, consider 𝑡 ≥ 0. We then
compute

𝜕𝑡
〈
H𝑁 +Qren + 𝐶𝑒𝐶𝑡 (Nren + 1)

〉
𝜓𝑁,𝑡

= 𝐶2𝑒𝐶𝑡
〈
Nren + 1

〉
𝜓𝑁,𝑡

+ 𝐶𝑒𝐶𝑡
〈[
𝑖𝐻𝑁 ,Nren

]
+ 𝜕𝑡Nren

〉
𝜓𝑁,𝑡

+
〈 [
𝑖𝐻𝑁 ,−

(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 +Qren

]〉
𝜓𝑁,𝑡

+
〈
𝜕𝑡
(
−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 +Qren

)〉
𝜓𝑁,𝑡

.

(3.21)

By (2.9) and Lemma 3.2, the second term on the r.h.s. in (3.21) is controlled by


〈 [𝑖𝐻𝑁 ,Nren

]
+ 𝜕𝑡Nren

〉
𝜓𝑁,𝑡

−
〈 [
𝑖H𝑁 ,Nren

] 〉
𝜓𝑁,𝑡




≤ 𝑐𝑒𝑐𝑡

〈
Hren + 𝐶𝑒𝐶𝑡 (Nren + 1)

〉
𝜓𝑁,𝑡

≤ 𝑐𝑒𝑐𝑡
〈
H𝑁 +Qren + 𝐶𝑒𝐶𝑡 (Nren + 1)

〉
𝜓𝑁,𝑡

,

and based on the same lemma and (2.13), we also obtain that


〈 [𝑖H𝑁 ,Nren

] 〉
𝜓𝑁,𝑡



 ≤ 𝑐𝑒𝑐𝑡
〈
H𝑁 +Qren + 𝐶𝑒𝐶𝑡 (Nren + 1)

〉
𝜓𝑁,𝑡

.

Similarly, Lemma 3.3 implies directly that



〈 [𝑖𝐻𝑁 ,−

(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 +Qren

] 〉
𝜓𝑁,𝑡

+
〈
𝜕𝑡
(
−
(
𝑎∗(𝜑𝑡 )𝑎(𝑄𝑡 𝑖𝜕𝑡𝜑𝑡 ) + h.c.

)
+ 〈𝑖𝜕𝑡𝜑𝑡 , 𝜑𝑡 〉N⊥𝜑𝑡 +Qren

)〉
𝜓𝑁,𝑡





≤ 𝑐𝑒𝑐𝑡

〈
H𝑁 +Qren + 𝐶𝑒𝐶𝑡 (Nren + 1)

〉
𝜓𝑁,𝑡

. �

A. Properties of the Gross-Pitaevskii equation

The next proposition collects basic properties of the solution of the time-dependent Gross-Pitaevskii
equation (1.8). Its proof follows essentially from standard arguments; we refer to [3, Appendix A] and
[22, Chapters 3 to 6] for the details.
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Proposition A.1. Consider the time dependent Gross-Pitaevskii equation (1.8). Then,

1. Well-Posedness. For every 𝜑 ∈ 𝐻1(R3) with ‖𝜑‖2 = 1, there exists a unique global solution 𝑡 →
𝜑𝑡 ∈ 𝐶 (R, 𝐻1(R3)) of (1.8) with initial data 𝜑. We have that ‖𝜑𝑡 ‖2 = 1 and that EGP (𝜑𝑡 ) = EGP (𝜑)
for all 𝑡 ∈ R. In particular, we have that

sup
𝑡 ∈R

‖𝜑𝑡 ‖𝐻 1 ≤ 𝐶, sup
𝑡 ∈R

‖𝜑𝑡 ‖4 ≤ 𝐶.

2. Higher Regularity. If 𝜑 ∈ 𝐻𝑚(R3) for some 𝑚 ≥ 2, then 𝜑𝑡 ∈ 𝐻𝑚 (R3) for every 𝑡 ∈ R. Moreover,
there exists 𝐶 > 0, depending on m and on ‖𝜑‖𝐻𝑚 , and 𝑐 > 0, depending on m and ‖𝜑‖𝐻 1 , such
that for all 𝑡 ∈ R, we have

‖𝜑𝑡 ‖𝐻𝑚 ≤ 𝐶𝑒𝑐 |𝑡 | .

3. Regularity of Time Derivatives. If 𝜑 ∈ 𝐻4(R3), there exists 𝐶 > 0, depending on ‖𝜑‖𝐻 4 , and
𝑐 > 0, depending on ‖𝜑‖𝐻 1 , such that for all 𝑡 ∈ R, we have that

‖𝜕𝑡𝜑𝑡 ‖𝐻 2 ≤ 𝐶𝑒𝑐 |𝑡 | , ‖𝜕2
𝑡 𝜑𝑡 ‖𝐻 2 ≤ 𝐶𝑒𝑐 |𝑡 | .

B. Basic Fock space operators

In this section, we collect a few standard results on the creation and annihilation operators defined in
Section 1. The proof of the following lemma is straightforward and follows with the same arguments as
in, for example, [3, Section 2] or [15, Section 2].

Lemma B.1. Let 𝑓 , 𝑔 ∈ 𝐿2 (R3), ℎ ∈ 𝐿2 (R3 × R3) and let the 𝑎𝑥 , 𝑎∗𝑦 and 𝑎(𝑄𝑡 ,𝑥), 𝑎∗(𝑄𝑡 ,𝑦) be defined
as in (2.3) and (2.11), respectively. Then, in 𝐿2

𝑠 (R3𝑁 ) we have that

0 ≤ N⊥𝜑𝑡 = 𝑁 − 𝑎∗(𝜑𝑡 )𝑎(𝜑𝑡 ) =
∫

𝑑𝑥 𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡 ,𝑥) ≤
∫

𝑑𝑥 𝑎∗𝑥𝑎𝑥 = 𝑁.

Moreover, for every 𝜙𝑁 ∈ 𝐿2
𝑠 (R3𝑁 ), we have that

‖𝑎( 𝑓 )𝜙𝑁 ‖ ≤ ‖ 𝑓 ‖
√
𝑁 ‖𝜙𝑁 ‖, ‖𝑎∗( 𝑓 )𝜙𝑁 ‖ ≤ ‖ 𝑓 ‖

√
𝑁 + 1‖𝜙𝑁 ‖,

‖𝑎(𝑄𝑡 𝑓 )𝜙𝑁 ‖ ≤ ‖ 𝑓 ‖‖N 1/2
⊥𝜑𝑡

𝜙𝑁 ‖, ‖𝑎∗ (𝑄𝑡 𝑓 )𝜙𝑁 ‖ ≤ ‖ 𝑓 ‖‖(N⊥𝜑𝑡 + 1)1/2𝜙𝑁 ‖,

and that


〈𝑎∗( 𝑓 )𝑎(𝑔)〉𝜙𝑁



 ≤ 𝑁 ‖ 𝑓 ‖‖𝑔‖‖𝜙𝑁 ‖2,


〈𝑎∗(𝑄𝑡 𝑓 )𝑎(𝑄𝑡𝑔)〉𝜙𝑁



 ≤ 〈‖𝑄𝑡 𝑓 ‖‖𝑄𝑡𝑔‖N⊥𝜑𝑡 〉𝜙𝑁 .

Similarly, if we set ℎ𝑥 (𝑦) = ℎ(𝑥, 𝑦), then we have that
∫

𝑑𝑥


〈𝑎∗𝑥𝑎∗(ℎ𝑥)〉𝜙𝑁



 ≤ 𝑁 ‖ℎ‖‖𝜙𝑁 ‖2,

∫
𝑑𝑥



〈𝑎∗(𝑄𝑡 ,𝑥)𝑎∗(𝑄𝑡ℎ𝑥)
〉
𝜙𝑁



 ≤ ‖ℎ‖〈N⊥𝜑𝑡 〉𝜙𝑁∫
𝑑𝑥



〈𝑎∗𝑥𝑎(ℎ𝑥)〉𝜙𝑁



 ≤ 𝑁 ‖ℎ‖‖𝜙𝑁 ‖2,

∫
𝑑𝑥



〈𝑎∗(𝑄𝑡 ,𝑥)𝑎(𝑄𝑡ℎ𝑥)
〉
𝜙𝑁



 ≤ ‖ℎ‖〈N⊥𝜑𝑡 〉𝜙𝑁 .

C. Properties of the scattering kernel

The goal of this section is to collect basic properties of the solution f of the zero energy scattering
equation (2.5) and of the correlation kernel 𝑘𝑡 , defined in (2.12). It is well known (see [37, Appendix C])
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that under our assumptions on 𝑉 ∈ 𝐿1 (R3), we have that 0 ≤ 𝑓 ≤ 1, that f is radially symmetric and
radially increasing and that for every 𝑥 ∈ R3 outside of the support of V, it holds true that

𝑓 (𝑥) = 1 − 𝔞
|𝑥 | . (C.1)

In particular, we have that 0 ≤ (1 − 𝑓 ) (𝑥) ≤ 𝐶 |𝑥 |−1 and, if supp(𝑉) ⊂ 𝐵𝑅 (0), that
∫
R3
𝑑𝑥 𝑉 (𝑥) 𝑓 (𝑥) = 2

∫
𝐵𝑅 (0)

𝑑𝑥 (Δ 𝑓 ) (𝑥) = 2
∫
𝜕𝐵𝑅 (0)

𝑑𝑆(𝑥) (∇ 𝑓 ) (𝑥) · 𝑥

|𝑥 | = 8𝜋𝔞.

Lemma C.1. Let 𝑘𝑡 be defined as in (2.12), where 𝑡 ↦→ 𝜑𝑡 ∈ 𝐶1(R, 𝐻1 (R3)) denotes the unique solution
of the time-dependent Gross-Pitaevskii equation with 𝜑𝑡=0 ∈ 𝐻4 (R3) and where 𝜒 ∈ 𝐶∞

𝑐 (𝐵2𝑟 (0)) with
𝜒 |𝐵𝑟 (0) ≡ 1. Then, 𝑘𝑡 satisfies the following properties:
1. We have that 𝑘𝑡 ∈ 𝐿2 (R3 × R3) with

sup
𝑡 ∈R

‖𝑘𝑡 ‖ ≤ 𝐶𝑟1/2 and ‖𝑘𝑡 ,𝑥 ‖ ≤ 𝐶 |𝜑𝑡 (𝑥) | ≤ 𝐶𝑒𝐶 |𝑡 |

for some constant 𝐶 > 0 that is independent of 𝑟 > 0 and 𝑡 ∈ R. Similarly, we have

‖𝜕𝑡 𝑘𝑡 ‖ ≤ 𝐶𝑒𝐶 |𝑡 | and ‖𝜕𝑡 𝑘𝑡 ,𝑥 ‖ ≤ 𝐶
(
|𝜑𝑡 (𝑥) | + |𝜕𝑡𝜑𝑡 (𝑥) |

)
≤ 𝐶𝑒𝐶 |𝑡 | ,

‖𝜕2
𝑡 𝑘𝑡 ‖ ≤ 𝐶𝑒𝐶 |𝑡 | and ‖𝜕2

𝑡 𝑘𝑡 ,𝑥 ‖ ≤ 𝐶
(
|𝜑𝑡 (𝑥) | + |𝜕𝑡𝜑𝑡 (𝑥) | + |𝜕2

𝑡 𝜑𝑡 (𝑥) |
)
≤ 𝐶𝑒𝐶 |𝑡 | .

The same bounds hold true if we replace 𝑘𝑡 by 𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 for 𝑄𝑡 = 1 − |𝜑𝑡 〉〈𝜑𝑡 |.
2. Define 𝑓𝑡 (𝑥, 𝑦) by

𝑓𝑡 (𝑥, 𝑦) = (−Δ1𝑘𝑡 ) (𝑥, 𝑦) −
1
2
𝑁3(𝑉 𝑓 ) (𝑁 (𝑥 − 𝑦))𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)

− 2𝑁2 (∇ 𝑓 ) (𝑁 (𝑥 − 𝑦)) · ∇1
(
𝜒(𝑥 − 𝑦)𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)

)
.

Then 𝑓𝑡 , 𝜕𝑡 𝑓𝑡 ∈ 𝐿2 (R3 × R3) with

sup
𝑡 ∈R

‖ 𝑓𝑡 ‖ ≤ 𝐶, ‖𝜕𝑡 𝑓𝑡 ‖ ≤ 𝐶𝑒𝐶 |𝑡 | .

3. Define 𝑔𝑡 (𝑥, 𝑦) =
∫
𝑑𝑧 (∇2𝑘𝑡 ) (𝑥, 𝑧) (∇2𝑘 𝑡 ) (𝑦, 𝑧). Then 𝑔𝑡 , 𝜕𝑡𝑔𝑡 ∈ 𝐿2 (R3 × R3) with

‖𝑔𝑡 ‖ ≤ 𝐶𝑒𝐶 |𝑡 | , ‖𝜕𝑡𝑔𝑡 ‖ ≤ 𝐶𝑒𝐶 |𝑡 | .

The same bounds hold true if in the definition of 𝑔𝑡 we replace 𝑘𝑡 by 𝑄𝑡 ⊗ 𝑄𝑡 𝑘𝑡 .
Proof. We sketch the main steps of the proof for the bounds involving 𝑘𝑡 ; similar properties have previ-
ously been used in [3, 15]. Below, we use without further notice that ‖𝜑𝑡 ‖∞, ‖𝜕𝑡𝜑𝑡 ‖∞, ‖𝜕2

𝑡 𝜑𝑡 ‖∞ ≤ 𝐶𝑒𝐶 |𝑡 |

and that ‖𝜑𝑡 ‖ = ‖𝜑𝑡=0‖, sup𝑡 ∈R ‖∇𝜑𝑡 ‖ ≤ 𝐶, sup𝑡 ∈R ‖𝜑𝑡 ‖4 ≤ 𝐶 by Proposition A.1 and 𝐻2(R3) ↩→
𝐿∞(R3).

Part 𝑎) follows from

‖𝑘𝑡 ‖2 ≤
∫

𝑑𝑥𝑑𝑦
|𝜒(𝑥 − 𝑦) |2

|𝑥 − 𝑦 |2
|𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2 ≤ 𝐶‖𝜑𝑡 ‖4

4

∫
|𝑥 | ≤2𝑟

1
|𝑥 |2

≤ 𝐶𝑟

uniformly in 𝑡 ∈ R and, using Hardy’s inequality, from

‖𝑘𝑡 ,𝑥 ‖2 ≤ |𝜑𝑡 (𝑥) |2
∫

𝑑𝑦
|𝜒(𝑥 − 𝑦) |2

|𝑥 − 𝑦 |2
|𝜑𝑡 (𝑦) |2 ≤ 𝐶 |𝜑𝑡 (𝑥) |2‖∇𝜑𝑡 (· + 𝑥)‖ ≤ 𝐶 |𝜑𝑡 (𝑥) |2.
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The bounds on the time derivatives of 𝑘𝑡 are proved in the same way. This remark applies also to part
𝑏) which follows after noting that

𝑓𝑡 (𝑥, 𝑦) = 𝑁 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑦)) (−Δ1)
(
𝜒(𝑥 − 𝑦)𝜑𝑡 (𝑥)𝜑𝑡 (𝑦)

)
.

This uses the zero energy scattering equation and that N is w.l.o.g. large enough so that 𝑉 (𝑁.)𝜒(.) ≡
𝑉 (𝑁.). Finally, to prove part 𝑐), we compute

(∇2𝑘𝑡 ) (𝑥, 𝑧) = 𝑁2∇ 𝑓 (𝑁 (𝑥 − 𝑧))𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜑𝑡 (𝑧)
+ 𝑁 (1 − 𝑓 ) (𝑁 (𝑥 − 𝑧))∇2

(
𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜑𝑡 (𝑧)

)
.

Setting ℎ(𝑥, 𝑧) = ∇2
(
𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜑𝑡 (𝑧)

)
, we then note by Hardy’s inequality that

∫
𝑑𝑥𝑑𝑦






∫

𝑑𝑧 𝑁 𝑓 (𝑁 (𝑥 − 𝑧))𝑁 𝑓 (𝑁 (𝑦 − 𝑧))ℎ(𝑥, 𝑧)ℎ(𝑦, 𝑧)





2

≤𝐶
∫

𝑑𝑥𝑑𝑦𝑑𝑧1𝑑𝑧2

∏2
𝑗=1 | |𝜑𝑡 (𝑧 𝑗 ) |2 + |∇𝜑𝑡 (𝑧 𝑗 ) |2 |

|𝑥 − 𝑧1 | |𝑦 − 𝑧1 | |𝑥 − 𝑧2 | |𝑦 − 𝑧2 |
|𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2 ≤ 𝐶𝑒𝐶 |𝑡 | ,

and, similarly, that

∫
𝑑𝑥𝑑𝑦






∫

𝑑𝑧 𝑁2∇ 𝑓 (𝑁 (𝑥 − 𝑧))𝑁 𝑓 (𝑁 (𝑦 − 𝑧))𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜑𝑡 (𝑧)ℎ(𝑦, 𝑧)





2

≤ 𝐶

∫
𝑑𝑥𝑑𝑦𝑑𝑢1𝑑𝑢2𝑑𝑧1𝑑𝑧2 𝑁

3𝑉 (𝑁𝑢1)𝑁3𝑉 (𝑁𝑢2)

× |𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2𝜑𝑡 (𝑧1) |2 | |𝜑𝑡 (𝑧2) |2 + |∇𝜑𝑡 (𝑧2) |2 | |
|𝑥 − 𝑧1 − 𝑢1 |2 |𝑦 − 𝑧1 | |𝑥 − 𝑧2 − 𝑢2 |2 |𝑦 − 𝑧2 |

≤ 𝐶𝑒𝐶 |𝑡 | .

Here, we used that 𝑁2∇ 𝑓 (𝑁𝑥) = − 1
8𝜋

∫
𝑑𝑦 𝑥−𝑦

|𝑥−𝑦 |3 𝑁
3𝑉 (𝑁𝑦) for 𝑎.𝑒. 𝑥 ∈ R3, which follows from

(−2Δ + 𝑁2𝑉 (𝑁.)) 𝑓 (𝑁.) = 0. Finally, by integration by parts, we use that

∫
𝑑𝑧 𝑁2∇ 𝑓 (𝑁 (𝑥 − 𝑧))𝑁2∇ 𝑓 (𝑁 (𝑦 − 𝑧))𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜒(𝑦 − 𝑧)𝜑𝑡 (𝑦) |𝜑𝑡 (𝑧) |2

=
1
2

∫
𝑑𝑧 𝑁 𝑓 (𝑁 (𝑥 − 𝑧))𝑁3(𝑉 𝑓 ) (𝑁 (𝑦 − 𝑧))𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜒(𝑦 − 𝑧)𝜑𝑡 (𝑦) |𝜑𝑡 (𝑧) |2

+
∫

𝑑𝑧 𝑁 𝑓 (𝑁 (𝑥 − 𝑧))𝑁2∇ 𝑓 (𝑁 (𝑦 − 𝑧))∇𝑧
(
𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜒(𝑦 − 𝑧)𝜑𝑡 (𝑦) |𝜑𝑡 (𝑧) |2

)
.

Then, proceeding as before, we find that

∫
𝑑𝑥𝑑𝑦





∫

𝑑𝑧 𝑁 𝑓 (𝑁 (𝑥 − 𝑧))𝑁3(𝑉 𝑓 ) (𝑁 (𝑦 − 𝑧))𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜒(𝑦 − 𝑧)𝜑𝑡 (𝑦) |𝜑𝑡 (𝑧) |2



2

≤ 𝐶

∫
𝑑𝑥𝑑𝑦𝑑𝑧1𝑑𝑧2 𝑁

3𝑉 (𝑁 (𝑦 − 𝑧1))𝑁3𝑉 (𝑁 (𝑦 − 𝑧2))
|𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2 |𝜑𝑡 (𝑧1) |2 |𝜑𝑡 (𝑧2) |2

|𝑥 − 𝑧1 | |𝑥 − 𝑧2 |

≤ 𝐶𝑒𝐶 |𝑡 |
∫

𝑑𝑥𝑑𝑦𝑑𝑧1𝑑𝑧2 𝑁
3𝑉 (𝑁 (𝑦 − 𝑧1))𝑁3𝑉 (𝑁 (𝑦 − 𝑧2))

|𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2

|𝑥 − 𝑧1 |2
≤ 𝐶𝑒𝐶 |𝑡 |
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and that∫
𝑑𝑥𝑑𝑦





∫

𝑑𝑧 𝑁3 𝑓 (𝑁 (𝑥 − 𝑧))∇ 𝑓 (𝑁 (𝑦 − 𝑧))∇𝑧
(
𝜒(𝑥 − 𝑧)𝜑𝑡 (𝑥)𝜒(𝑦 − 𝑧)𝜑𝑡 (𝑦) |𝜑𝑡 (𝑧) |2

) 


2

≤ 𝐶

∫
𝑑𝑥𝑑𝑦𝑑𝑧1𝑑𝑧2𝑑𝑢1𝑑𝑢2 𝑁

3𝑉 (𝑁𝑢1)𝑁3𝑉 (𝑁𝑢2)
|𝜑𝑡 (𝑥) |2 |𝜑𝑡 (𝑦) |2
|𝑥 − 𝑧1 | |𝑥 − 𝑧2 |

×
(
|𝜑𝑡 (𝑧1) |2 + |∇𝜑𝑡 (𝑧1) |2

) (
|𝜑𝑡 (𝑧2) |2 + |∇𝜑𝑡 (𝑧2) |2

)
|𝑦 − 𝑢1 − 𝑧1 |2 |𝑦 − 𝑢2 − 𝑧2 |2

≤ 𝐶𝑒𝐶 |𝑡 | .

Combining the above, this implies the bounds on 𝑔𝑡 and 𝜕𝑡𝑔𝑡 is bounded similarly. �

D. Complete BEC for small interaction potentials

The purpose of this appendix is to illustrate that the methods developed in this paper are also useful in
the spectral setting. The following result generalizes the main result of [4] to the trapped setting in R3;
compared to [4], its proof is substantially simpler.

Proposition D.1. Let 𝑉 ∈ 𝐿1 (R3) be nonnegative, radial, compactly supported and such that ‖𝑉 ‖1 is
small enough. Let 𝑉ext ∈ 𝐿∞

loc(R
3) be such that lim |𝑥 |→∞𝑉ext(𝑥) = ∞ with at most exponential growth

in |𝑥 | as |𝑥 | → ∞. Then, there exists a constant 𝐶 > 0, that only depends on V, such that for every 𝜓𝑁 ,
‖𝜓𝑁 ‖ = 1, that satisfies

〈𝜓𝑁 , 𝐻
trap
𝑁 𝜓𝑁 〉 ≤ 𝑁𝑒

trap
GP + Λ,

we have that the one particle density 𝛾 (1)
𝑁 associated to 𝜓𝑁 satisfies

1 − 〈𝜑GP, 𝛾
(1)
𝑁 𝜑GP〉 ≤ 𝐶𝑁−1 (1 + Λ).

Remarks.

D1) It is well known [38] that inf spec(𝐻trap
𝑁 ) = 𝑁𝑒

trap
GP + 𝑜(𝑁) as 𝑁 → ∞. In particular, Proposition

D.1 applies to the ground state 𝜓𝑁 of 𝐻trap
𝑁 .

D2) Based on [38], it is well known that under our assumptions, we have that 𝜑GP decays exponentially
fast to zero as |𝑥 | → ∞, with arbitrary rate. In particular, we have that 𝑉ext𝜑GP ∈ 𝐿 𝑝 (R3) for every
𝑝 ≥ 1.

Proof of Proposition D.1. Using the Euler-Lagrange equation for 𝜑GP, that is,

−Δ +𝑉ext + 8𝜋𝔞 |𝜑GP |2𝜑GP = 𝜇GP𝜑GP, 𝜇GP = 𝑒GP + 4𝜋𝔞‖𝜑GP‖4
4 ,

the proof follows from a slight variation of the arguments presented in Section 3. Indeed, proceeding as
in (3.8), it is straightforward to verify that 𝐻trap

𝑁 =
∑4

𝑗=0 𝐻
trap
𝑁 , 𝑗 , where

𝐻
trap
𝑁 ,0 =

𝑁

2
〈
𝜑GP, (𝑁3𝑉 (𝑁.) ∗ |𝜑GP |2)𝜑GP

〉 𝑎∗(𝜑GP)√
𝑁

𝑎∗(𝜑GP)√
𝑁

𝑎(𝜑GP)√
𝑁

𝑎(𝜑GP)√
𝑁

+ 𝑁
〈
𝜑GP, (−Δ +𝑉ext)𝜑GP

〉 𝑎∗(𝜑GP)√
𝑁

𝑎(𝜑GP)√
𝑁

𝐻
trap
𝑁 ,1 = 𝑎∗(𝜑GP)𝑎

(
𝑄𝑡 (𝑁3𝑉 (𝑁.) ∗ |𝜑GP |2)𝜑GP)

)
− 𝑎∗(𝜑GP)𝑎

(
𝑄𝑡 (8𝜋𝔞 |𝜑GP |2𝜑GP)

)

− 𝑎∗(𝜑GP)√
𝑁

𝑎
(
𝑄𝑡 (𝑁3𝑉 (𝑁.) ∗ |𝜑GP |2)𝜑GP)

)N⊥𝜑GP√
𝑁

+ h.c.,
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𝐻
trap
𝑁 ,2 =

∫
𝑑𝑥 𝑎∗(𝑄𝑥) (−Δ 𝑥 +𝑉ext(𝑥))𝑎(𝑄𝑥)

+
∫

𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦)) |𝜑GP (𝑦) |2𝑎∗(𝑄𝑥)𝑎(𝑄𝑥)
𝑎∗(𝜑GP)√

𝑁

𝑎(𝜑GP)√
𝑁

+
∫

𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))𝜑GP(𝑥)𝜑𝑡 (𝑦)𝑎∗(𝑄𝑥)𝑎(𝑄𝑦)
𝑎∗(𝜑GP)√

𝑁

𝑎(𝜑GP)√
𝑁

+ 1
2

∫
𝑑𝑥𝑑𝑦 𝑁3𝑉 (𝑁 (𝑥 − 𝑦))

(
𝜑GP (𝑥)𝜑GP (𝑦)𝑎∗(𝑄𝑥)𝑎∗(𝑄𝑦)

𝑎(𝜑GP)√
𝑁

𝑎(𝜑GP)√
𝑁

+h.c.
)
,

𝐻
trap
𝑁 ,3 =

∫
𝑑𝑥𝑑𝑦 𝑁5/2𝑉 (𝑁 (𝑥 − 𝑦))𝜑GP(𝑦)𝑎∗(𝑄𝑥)𝑎∗(𝑄𝑦)𝑎(𝑄𝑥)

𝑎(𝜑GP)√
𝑁

+ h.c.,

𝐻
trap
𝑁 ,4 =

1
2

∫
𝑑𝑥𝑑𝑦 𝑁2𝑉 (𝑁 (𝑥 − 𝑦))𝑎∗(𝑄𝑥)𝑎∗(𝑄𝑦)𝑎(𝑄𝑦)𝑎(𝑄𝑥).

Here, we set 𝑄𝑥 = (𝑄𝑡 ,𝑥)|𝑡=0 compared to our previous notation. Similarly, we continue to use the
notation 𝑏𝑥 , 𝑏∗𝑦 ,Nren,Hren, 𝑘 ≡ (𝑘𝑡 )|𝑡=0, etc., understanding implicitly that this refers to 𝑡 = 0 so that all
operators are related to 𝜑GP. Now, to control 𝐻trap

𝑁 relative to Hren and Nren, a simple generalization of
the arguments in Section 3 shows that

𝐻
trap
𝑁 ≥ 𝑁

2
〈
𝜑GP, 𝑁

3 (𝑉 𝑓 ) (𝑁.) ∗ |𝜑GP |2𝜑GP
〉 𝑎∗(𝜑GP)√

𝑁

𝑎∗(𝜑GP)√
𝑁

𝑎(𝜑GP)√
𝑁

𝑎(𝜑GP)√
𝑁

+ 𝑁
〈
𝜑GP, (−Δ +𝑉ext)𝜑GP

〉 𝑎∗(𝜑GP)√
𝑁

𝑎(𝜑GP)√
𝑁

+ 1
2

∫
𝑑𝑥 𝑏∗𝑥

(
− Δ 𝑥 +𝑉ext(𝑥) + 𝑁3𝑉 (𝑁.) ∗ |𝜑GP |2

)
𝑏𝑥 − 𝐶‖𝑉 ‖1 (N⊥𝜑GP + 1)

for some universal 𝐶 > 0. Notice that this uses Vren ≥ 0. Using the regularity of 𝜑GP ∈ 𝐻1(R3),
the property 0 ≤ 𝑓 ≤ 1, the identity 𝑎∗(𝜑GP)𝑎(𝜑GP) = 𝑁 − N⊥𝜑GP and that N⊥𝜑GP and Nren are of
comparable size by Lemma 3.1, we get

𝐻
trap
𝑁 − 𝑁𝑒

trap
GP

≥ 1
2

∫
𝑑𝑥 𝑏∗𝑥

(
− Δ 𝑥 +𝑉ext(𝑥) + 8𝜋𝔞 |𝜑GP |2 − 𝜇GP

)
𝑏𝑥 − 𝐶‖𝑉 ‖1 (N⊥𝜑GP+ 1).

Here, we chose the radius 𝑟 > 0 in the definition of (2.12) w.l.o.g. comparable to ‖𝑉 ‖1. Finally, standard
results imply that ℎGP = −Δ + 𝑉ext(𝑥) + 8𝜋𝔞 |𝜑GP |2 − 𝜇GP is gapped above its ground state energy, for
some gap 2𝜆GP > 0. By the Euler-Lagrange equation, 𝜑GP is its unique positive ground state (with zero
ground state energy) so that

𝐻
trap
𝑁 ≥ 𝑁𝑒

trap
GP + 𝜆GP Nren − 𝐶‖𝑉 ‖1 (N⊥𝜑GP + 1) ≥ 𝑁𝑒

trap
GP + 𝛿N⊥𝜑GP − 𝐶‖𝑉 ‖1 − 𝐶,

for 𝛿 = 𝜆GP − 𝐶‖𝑉 ‖1 > 0, if ‖𝑉 ‖1 is small enough. By (2.1), this implies the claim. �
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