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Abstract

We construct pathological examples of MMP singularities in every positive characteristic using quotients by
ap-actions. In particular, we obtain non-S3 terminal singularities, as well as locally stable (respectively stable)
families whose general fibers are smooth (respectively klt, Cohen—Macaulay, and F-injective) and whose special
fibers are non-S,. The dimensions of these examples are bounded below by a linear function of the characteristic.
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1. Introduction

Singularities of the Minimal Model Program (MMP) have poor cohomological properties in positive
characteristic, unlike in characteristic 0. Striking examples are canonical and terminal singularities that
are not Cohen—Macaulay [22, 7, 34, 32, 33]. In this article, we construct several new examples of non-S3
singularities of the MMP in every positive characteristic p > 0.

The examples constructed in the aforementioned works are of two types: they stem either from a
cone construction on a variety failing Kodaira vanishing or from a wild Z/pZ-quotient. Our examples
are ap-quotients: to understand their singularities we use the perspective of 1-foliations and the tools
developed in [27].
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Our first series of examples gives the following:

Theorem 1.1 (Theorem 3.2). Let k be an algebraically closed field of characteristic p > 0. Then there
exists an isolated Q-factorial singularity (0 € Y) over k that is canonical (resp. terminal) of dimension
max{p, 3} (resp. p + 1) and non-Ss.

In particular, we obtain a three-dimensional terminal singularity in characteristic p = 2 that is
not S3: the other known examples of this dimension were all constructed by Totaro in positive and
mixed characteristics 2, 3, and 5 [32, 33]. For an arbitrary characteristic p > 2, Totaro also constructed
terminal non-S3 cone singularities of dimension 2p + 2 [32]. In this regard, we achieve an improvement
on the asymptotic dimensional lower bound.

Note that Yasuda exhibits in [34] a series of terminal and canonical singularities, starting in dimen-
sion 4, which have depth > 3 but are not Cohen—Macaulay: their optimal asymptotic dimension, as a
function of p, is roughly given by \/Z

We establish several other properties of the singularities (0 € Y) in Proposition 3.4, Proposition 3.5,
Corollary 3.6, and Proposition 3.7. Notably, they are not F-injective, and they are rational up to Frobenius
nilpotence.

We use the same method to produce another series of pathological examples. In characteristic 0, fibers
of locally stable one-parameter families (in the sense of Definition 2.1) are S, [16, §7.3]. This is true for
one-parameter families of surfaces with residue characteristics different from 2, 3, and 5 [3], but recent
examples of Kollar [17] show that this property can fail dramatically for families of threefolds in every
positive characteristic. Using @ ,-quotients, we construct new examples of this kind. First we obtain:

Theorem 1.2 (Theorem 4.3). Let k be an algebraically closed field of characteristic p > 0. Then there
exists a locally stable family Y — Al over k of relative dimension max{p, 3} such that Y is smooth for
t # 0 and Yy is reduced but non-S,.

Then we compactify the families of Theorem 1.2 to obtain pathological stable families (in the sense
of Definition 2.1):

Theorem 1.3 (Theorem 4.7). Let k be an algebraically closed field of characteristic p > 0. Then there
exists a projective flat family of pairs (), B) — Al over k of relative dimension max{p, 3} such that:

1. YV is normal and (Y, B) — Al is stable,
2. YV has only up,-quotient singularities (or is regular if p = 2) for t # 0,
3. W is reduced but non-S».

Moreover, if C is a normal curve and if C — Al is a finite flat morphism, then V¢ is normal and
(Ye,Bc) — C is stable.

Our method produces boundary divisors B # 0 whose coefficients are quite small, but the number
of irreducible components of 53 and the volume of Ky, + 53; are up to our liking: see Remark 4.10 and
the proof of Theorem A.12.

The examples given by Theorem 1.3 differ from Kollar’s ones [17] in two important ways: their
dimension is constrained by the characteristic (while Kolldr constructs pathological families of threefold
pairs in every characteristic, and indicates how to generalize the construction to any higher dimension),
but their general fibers are klt, Cohen—Macaulay, and F-injective by [27, Theorems 1 and 2] (while
the general fibers in Kollar’s examples are not kIt nor Cohen—Macaulay: see Remark A.11). Boundary
divisors appear in both situations. We discuss the implications of these examples for moduli theory in
Section 1.1 below.

Let me sketch the construction of these examples. We start with a 1-foliation F of rank 1 on an affine
space A", and we wish to understand the singularities of A" /F. There is a simple criterion guaranteeing
that A"/ F is only S, (see [27, Lemma 2.5.4]), so we only need to study its singularities in the sense of
the MMP. If F is a divisor over A" /F, then by [27, §4.2] we can compute the discrepancy a(F; A"/ F)
interms of a(E; A™) and a(E; F) where E is the closure of F in the function field of A" (this is recalled
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in Theorem 2.10). The problem is that we cannot estimate a(E; F) easily. So we blow-up A" until the
singularities of F become log canonical. This leads to a commutative diagram

X — Z=X/b*F

b b

A" —— A"/F

where the horizontal arrows are the quotient morphisms, and both morphisms b and b are birational.
Writing

KZ - ZaiF,- = b*KAn/]:

i

where the F;’s are the b-exceptional divisors, we reduce to computing the discrepancies over the sub-pair
(Z,-3; a; F;). The advantage is now that b*F is log canonical, so the tools given by Theorem 2.10 are
much more efficient. The appearance of the characteristic in the computations is due to the adjunction
formula of Proposition 2.9.

For Theorem 1.2 and Theorem 1.3 we use a relative version of this construction. Proving that the
central fiber of the quotient is not S, is more involved (as the criterion used before does not apply): we
use the tools developed in [27, §5] (see Theorem 2.12). To ensure that the fibers of the quotient family
are regular in codimension one, we need to work in relative dimension d at least 3. When d = 2 = p the
output (Example 4.6) is quite different: we obtain a locally stable family of surfaces S — A! where S
is Cohen—Macaulay and Sy has an inseparable node in the sense of [28].

In our examples, the 1-foliation F is generated by (some variation of) the quadratic derivation
8 = X1, x20y,. The latter satisfies 87! = 0 in every characteristic p > 0, and thus defines an a,-action
on A" such that A" /a,, = A"/ [27, Proposition 2.3.7]. If n = 2 = p then A%/ is the RDP DY. The
quadratic derivation has the nice property that a single blow-up simplifies its singularities into lc ones,
making the necessary computations straightforward.

In principle, other choices of 1-foliations F can lead to similar examples, possibly with better
dimensional bounds. The difficult part is the computation of the blow-up sequence b: X — A" needed
to simplify the singularities of F. The results of [29] suggest that such a sequence usually exists, but
the number of necessary blow-ups might be quite large. To illustrate this, in Section 4.2 we consider the
derivation y3d, +x0y +10; on Ai’y’ . X Al this choice was motivated by the fact that the quotient of A2
by y30, + xdy gives the RDP Eg in characteristic 3. The quotient gives a pathological family of affine
threefolds in characteristic 3 (Theorem 4.14). This family is more difficult to compactify, as explained
in Remark 4.15: we shall not pursue this task here.

Remark 1.4. The underlying families Y — A' (or ) — A') appearing in Theorem 1.2, Theorem 1.3,
and Theorem 4.14 share the following properties: the central fibers Y do not have liftable cohomology
(in the sense of [20]), the pair (Y, Yy) is not F-pure along Yy, and Y is not F-injective at the non-S;-points
of Yy. All the other fibers Y; (¢ # 0) have liftable cohomology, and (Y \ Yy, Y;) is F-pure (').

1.1. Consequences for KSBA moduli theory of stable pairs

The existence of the pathological stable families of Theorem 1.3 has the following consequence, which
extends the main result of [17]:

'Here is a sketch of proof. The fiber Yy does not have liftable cohomology, as otherwise it would be S, (even CM) by [20,
Theorem 8.5]. If (Y, Yy) was F-pure, then depth Oy y > min{3,dim Oy  } for every y € Yj by [26, Lemma 3.4], and so Y,
would be S,. The fact that Y is not F-injective is proved exactly as in Corollary 3.6. On the other hand, if # # O then Y; has only
M p-quotient singularities and thus it is F-pure [27, Theorem 1]; this implies that Y; has liftable cohomology [20, Corollary 7.3]
and that (Y, Y;) is F-pure in a neighborhood of Y; [26, Theorem Al].
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Theorem 1.5 (Theorem A.12). Fix an integer n > 3. Then in characteristics p < n the stable families
of n-dimensional Cohen—Macaulay pairs (resp. of pairs with F-injective underlying varieties) usually
do not compactify to a proper KSBA moduli stack.

The formulation of that theorem requires an explanation. In positive characteristic, no precise defi-
nition of the KSBA moduli stack (?) of stable pairs has been proposed so far in the literature: defining
families of pairs over general bases is the delicate part. It is easier to define boundary-free families:
to wit, the moduli stacks of stable surfaces are defined in [25, §1.3] and studied in [25, 3, 28]. That
definition can be extended to any dimension d, but then only few properties of the resulting stacks are
known: for example, when d > 3 we do not know if they are algebraic. In any case, the boundary-free
case is not our setting.

There is however no ambiguity about what the values of the KSBA moduli stacks should be over
regular curves: stable families of pairs with demi-normal underlying fibers (see Definition A.2). If the
moduli stacks would satisfy the valuative criterion of properness, then a stable family with demi-normal
fibers over a punctured curve could be extended with a demi-normal fiber, possibly after replacing the
base with a finite base-change. The examples of Theorem 1.3 show that this is usually not possible when
the characteristic is small compared to the dimension, even if the generic fiber has only klt, F-injective
and Cohen—-Macaulay singularities.

This discussion and the content of Theorem 1.5 are made precise in Appendix A.

Let us close this introduction with a few open questions related to KSBA moduli theory in positive
characteristic:

Question 1.6. Let k be an algebraically closed field of characteristic p > 0.

1. Are the poor properties of stable families of Cohen—Macaulay/F-injective pairs related to the ratio
between the dimension and the characteristic? More precisely, are there families of n-dimensional
pairs such as those of Theorem 1.3 if p > n?

2. Do such pathologies also appear for stable families of n-dimensional varieties? More precisely,
are there stable families of n-dimensional varieties (without boundaries) over regular curves with
pathologies such as those of [17] and Theorem 1.3? What if we assume that p > n, or that the
generic fiber is Cohen—Macaulay or F-injective?

3. Are there pathological families of stable surface pairs in characteristics < 5?

2. Preliminaries
2.1. Conventions and notations
We work over an algebraically closed field & of positive characteristic p > 0.

1. A variety (over k) is an integral quasi-projective k-scheme of finite type. A curve (resp. surface,
threefold) is k-variety of dimension one (resp. two, three).

2. The conditions S; are the Serre’s conditions, see [1, 0341].

3. Given a variety X, a divisor E over X is a prime divisor appearing on a (proper) birational model
u:Y — X.Its center cx (E) C X is the closure of u(E).

4. Let us recall some standard MMP terminology from [21, 16]. Let X be a normal variety and A be a
Q-divisor such that Kx + A is Q-Cartier. For a proper birational morphism g: ¥ — X with ¥ normal
we write

Ky = 1" (Kx +A) +Za(E;X,A) ‘E.
E

2The distinction between moduli stacks and moduli functors is irrelevant for our discussion. While I use the language of stacks
on a superficial level in this note, the reference for moduli theory of stable pairs in characteristic 0 [18] takes the viewpoint of
moduli functors.

https://doi.org/10.1017/fms.2025.10129 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10129

Forum of Mathematics, Sigma 5

We define
discrep(X, A) = inf{a(E; X,A) | E exceptional over X}.

We say that (X,A) is sub-lc (resp. sub-kit) if for every u and E we have a(E;X,A) > -1
(resp. a(E; X,A) > —1). If A > 0 and (X, A) is sub-lc (resp. sub-klt), we say that (X,A) is Ic
(resp. kit). We say that (X, A) is canonical (resp. terminal) if A is effective, and for every u and
p-exceptional E we have a(E; X, A) > 0 (resp. a(E; X, A) > 0). Incase (X, Supp(A)) is log smooth,
sufficient and necessary conditions on the coefficients of A for these conditions to hold are given in
[16, Corollary 2.11]. In particular, a regular variety is terminal.

5. We will several times use tacitly the following fact [16, Lemma 2.5]: if Kx + A is Q-Cartier, if
p: Y — X is birational with ¥ normal, and if

Ky +u;'A+F =p*(Kx +A) where F is u-exceptional,

then a(E; X;A) = a(E;Y, u;'A + F) for every divisor E over X.
We also use the following terminology (see Appendix A for more details):

Definition 2.1 [18, (2.3, 2.44)]. Let C be a normal k-variety of dimension < 1, let f: (X,A) — Cbe a
family of pairs [18, Definition 2.2]—in particular, the fibers X, are geometrically reduced—, and assume
that X is normal. Then we say that f is locally stable if (X, A + X4) is Ic for every a € C(k). We say
that f is stable if it is proper, locally stable and Kx + A is f-ample.

We record the following well-known result.

Lemma 2.2. Let X be a regular k-variety and G be a divisor over X with nonempty center¢ = cx (G) C X.
Then a(G; X) > codimy (¢) — 1.

Proof. By aresult of Zariski [21, Lemma 2.45], there is a finite sequence of birational proper morphisms

Xo 2 X 25 D xy=x

such that each f; is the blow-up of X;_; along the center ¢;-; of G on X;_;, and G appears on X,
as an f,-exceptional divisor dominating c¢,_;. To prove the statement we may localize each X; in a
neighbourhood of the generic point of ¢;, and so we can assume that each ¢; is a regular subvariety and
that each X; is regular. Let E; C X; be the unique f;-exceptional divisor: since E; = fl.‘1 (¢;—1) it holds
that ¢; C E; for each i, with equality if and only if i = n. By abuse of notation, the strict transform of E;
on each Xj,1,..., X, will also be denoted by E;.

Let f: X,, — X be the composition of all blow-ups. We write

n
f*Kx = Kx, — ZdiEi.
i=1
We claim that a;y; > a; for all i: since a; = codim(¢) — 1 and E,, = G, the result will follow. These
inequalities are easily proved by induction: we have

i-1 i-1
fi* KX,;l - ZajEj = KXi - ZajEj - codimXH (C,‘_l) -1 +multcH ZajEj - E;.
=

Jj=1 J

Since ¢;_; € E;j_1 we have

v

a; = codimy, | (¢;—1) — 1+ mult,, | Z ajE; >1+a;.

J

This proves the lemma. O
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2.2. 1-Foliations

For basics on derivations and 1-foliations, we refer to [27]. We recall below the most important facts for
us. For derivations we need:

Lemma 2.3. Let 0 be a p-closed derivation on an integral scheme Spec(A). If there exists a € A such
that 8(a) # 0 and 8'P1(a) = hd(a) for some h € A, then 817! = hd.

For 1-foliations, let us recall:

Definition 2.4. Let F be a 1-foliation on a normal variety X. Assume that the divisorial sheaf Ox (Kr) =
( /\rk}-]:)[_l] is Q-Cartier. Then F is log canonical (Ic) if for every proper birational morphism
u:Y — X we can write

Kyr=u'Kr+ Z a(E;F) - E
E: p-exc.
with

0 if E is u* F-invariant,
—1 otherwise.

a(E; F) 2{

Definition 2.5. Let F be a 1-foliation of rank 1 on a normal variety X. Then F has only multiplicative
singularities (°) if for every x € Sing(F), the restriction F ® Ox , is generated up-to-saturation by a

continuous derivation 0 € Deri"m(@\x, x) satisfying 8!P1 = ud where u € (5;( .

Proposition 2.6 [27, Corollary 1]. Let X be a regular variety. If F is a 1-foliation of rank 1, then F has
only multiplicative singularities if and only if F is Ic.

Pullbacks of 1-foliations along smooth blow-ups can be computed as follows:

Example 2.7. Let7: X — A% be the blow-up of the ideal (xy, .. .,x,) for r < n. The x;-chart U,
of the blow-up 7*: k[x1,...,x,] = k[y1,...,yn] is given by

X1y, xiPyyi(1<i<r), xj—=y;(>r).

The pullbacks of derivations on A" by x|y, can be computed using the following equalities:
r y 1
* _ i * _ . € _ .
0y, lu, = 0y, —iZ; ;By[, oy lu, = y—lﬁy[ (I<i<r), 7m0y, =0dy (j>r).

Let us recall some properties of quotients by 1-foliations.

Definition 2.8 [27, Definition 4.2.1]. Let X be a normal variety, F a 1-foliationon X andg: X — X/F
the quotient morphism. If A = }}; a;A; is a Q-divisor on X, where A; are prime divisors, then we let

Ax/F= Z a;igiq(A;)
7

where

L otherwise.

{1 if A; is F-invariant,
& =
P

3The definition [27, Definition 2.4.7] is more general, but for 1-foliations of rank 1 the two definitions agree.
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Proposition 2.9 [27, Proposition 4.2.3]. Let X be a normal variety, A a Q-divisor on X, F a 1-foliation
onXand q: X — X|F the quotient morphism. Then we have an equality of Q-divisors
4" (Kx/r+Ax/7) =Kx +A+(p - DKr.
The following theorem is our main tool to compute the discrepancies over quotient singularities.

Theorem 2.10. Let (X, A) be a normal sub-pair, F be a 1-foliation on X, and q: (X,A) — (Y = X/
F,Ay) be the associated quotient morphism.

1. If Fislc and (X, A) is sub-Ic (respectively sub-kit), then (Y, Ay) is sub-Ic (respectively sub-kit).
Let u: Y’ — Y be a birational proper morphism. Then:

2. If X’ is the normalization of Y’ in K(X), then we have a commutative diagram

X/ qH/ Yl
bl
X 1>y
where u’ is a proper birational morphism, and q’ is the quotient by (u’)*F.
3. If E C X’ is a prime divisor with image the prime divisor ¢'(E) = F C Y’, then
a(E; X, A)+(p-1)-a(E;F) if E is (u’)* F-invariant,

a(F;Y,Ay) = {%[a(E;X,A) +(p-1)-a(E;F)] otherwise.

Proof. This is proved in [27, Theorem 4.2.5], under the additional assumption that A is effective.
However, that assumption is not needed in the proof. O

Let us also recall the notion of family of 1-foliations.

Definition 2.11 [27, §5.1]. Let X — B be a flat morphism between normal varieties with geometrically
normal fibers. A relative 1-foliation is a 1-foliation on X that is contained in the sub-module Tx,p of
Txr. If X — B is smooth, we say that a relative 1-foliation 7 C Tx,p is a family of 1-foliations if
Tx/p/F is flat over B and for every b € B the sub-module F ® Ox, — Tx, jk(p) is a 1-foliation.

Theorem 2.12 [27, Proposition 5.2.4, Corollary 5.2.5]. Let X — B be a smooth morphism over a
normal curve B, and F C Tx g be a family of 1-foliations. Then:

1. for every b € B there is a natural morphism ¢p: Xp/Fl|x, — (X/F)p,
2. @p is an isomorphism if and only if (X |F)p is Sa, and
3. if F has only multiplicative singularities in a neighborhood of Xy, then ¢y, is an isomorphism.

Finally, the following lemma will be useful for computations related to base-changes:

Lemma 2.13. Let f: X — B be a smooth morphism, with B a normal variety. Let g: B" — B be a flat
morphism from a normal variety, inducing the cartesian diagram

x 25 x

b
B —5 B.
Let F C Tx,p be a relative 1-foliation, and F' = (g')*F — (8')'Tx/p = Tx//p. Then F' is a

relative 1-foliation, and the natural morphism X’ — (X |JF) xp B’ is isomorphic over B’ to the quotient
X — X'|F.
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Proof. This can be checked Zariski-locally on X, B, and B’, so we may assume that X = Spec(R),
B = Spec(A), B’ = Spec(A’) and that F = F is generated by 9, ...,d, € Ders(R).Let R = R®, A’.
We have a natural map

g': Derg(A) - Dera(R'), ¢'(¥):r@ad' »y(r)ead,

and the A’-sub-module F’ of Der4- (R’) generated by g’ (F') sheafifies into F'. We check below that F’
is closed under Lie brackets and p-powers. As the 8/ = g’(9;) generate F’ we see that

(R =ker((],...,8,): R" — (R)®").
Similarly we have
R =ker((d1,...,0,): R — R®").

Since A’ is flat over A we therefore obtain that R ®4 A’ = (R’)¥’, and the lemma follows.

It remains to check that F’ is closed under brackets and p-powers. Let £, € ¢’(F) and r,s € R’.
As g’ commutes with Lie brackets we have [r&,sy] = rs - [£,¢] € F’. By Hochschild’s formula
[27, (2.3.0.a)] we see that (r¢&) Pl ¢ F’. Finally, a formula of Jacobson [13, p. 209] shows that
(r& + sy) Pl and (r&)1P) + (sy) P! differ by an R’-linear combination of multifold Lie brackets of r&
and sy. Thus (ré + s¢)[P1 € F’, and we are done. O

3. Non-S3 isolated MMP singularities

Consider the affine space A" over the field k with coordinates x, . . ., x, where n > 2. We introduce the
derivation

n
0= inzaxi on A",
i=1

First we observe that:
Claim 3.1. 971 = 0.
Proof. Since the summands xl.z(')x,. commute with each other, we have

n

alpl = Z(x?ﬁxi)[p]~

i=1

Since 9y, is p-closed, by Hochschild’s formula [27, (2.3.0.a)] the scaling x%@xi is also p-closed. It is easily
seen that (x?dy,)!P1(x;) = 0, and by Lemma 2.3 it follows that (x?dy,)[?) = 0. Therefore 8!P1 = 0. o

In particular F = Opn - 0 is a 1-foliation on A",
Theorem 3.2. With the notations as above, letY = A" | F (with n > 2). Then:

1. Yis a normal Q-factorial variety, with a unique singular closed point 0;
2. OygisnotSzifn>3;
3. It holds that:
o Ifn < p-2 Yisnotlc.
Ifn>p—-1,Yislc
Ifn = p, Yis canonical;
Ifn > p+1, Yis terminal.

O O O
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Proof. By construction Y is normal and Q-factorial: in particular Ky is Q-Cartier. Since Sing(F) is
the origin 0 € A", we see that Y is regular away from the image 0 of the origin [27, Lemma 2.5.10].
As the ideal generated by the image of 9 in the local ring Ogn ¢ is man o-primary, by Claim 3.1 and

[27, Lemma 2.5.4] we obtain that Oy o = Ogn o is not S3.

It remains to analyze the singularity of (0 € Y) through the glasses of the MMP. To begin with, we
blow-up the origin of A" to simplify the singularities of F:
b: X =BlgA" — A",
Consider the xj-patch U; of this blow-up:

b*: k[x1,...,xn] = klut,...,unl, x1 0 up, x; > uju; (i >1).

Using the blow-up computations of Example 2.7, we see that on this chart we have

n n
1
b* 0y, = ux - (ulaul - Z”iaui) +Zu%”12 : u_lam

i=2 i=2
n
=uy - U0y, + Z(—u,- + u%)éui
i=2
[

Since b*d is p-closed, its scaling ¢ is also p-closed. As ¥ (u;) = u; we obtain by Lemma 2.3 that
Pl = . Therefore by Proposition 2.6 we obtain that

Ou, - ¥ = (b*"F)|y, isan lc 1-foliation.

The situation is similar on the other charts, and therefore we find that 4*F is an Ic 1-foliation. As
Y(uy) € (uy) we also see that the exceptional divisor E C X of b is b* F-invariant. Finally, as
b*0ly, = u1 - ¥ we see that a(E; F) = —1.

Now let Z = X/b*F and consider the induced commutative diagram

x 257

lb lb 3.

ar Ly
where the horizontal arrows are the quotient morphisms and where b: Z — Y is birational. Let F ¢ Z
be the unique prime b-exceptional divisor. By Theorem 2.10 we have
a(F;Y)=a(E;A") +(p-1)-a(E;F)=(n-D+(p-D(-1)=n-p.
Ifn < p—2thena(F;Y) < -2 and Y is not Ic. From now on assume that n > p — 1. We have:
Kz+(p—-n)F =b"Ky.

This crepant relation shows that Y is Ic if and only if discrep(Z, (p — n)F) > —1. Since b*F is Ic,
Theorem 2.10 shows that discrep(Z, (p —n)F) > —1 as soon as discrep(X, (p —n)E) = —1. As (X, E)
is log smooth, this holds when p —n < 1 by [16, Corollary 2.11]. This settles the Ic case of the theorem.

It remains to study when Y is canonical (resp. terminal): for this we assume that n > p. Consider an
exceptional divisor F’ over Y, appearing on a birational model Z’ — Y. Replacing Z’ by some blow-up,
we may assume that Z’ — Y factors through a birational morphism §: Z" — Z. Let f: X’ — X be
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the normalization of f in K(X), and E’ C X’ be the prime divisor dominating F’ c Z’. If f(E') ¢ E
then cp/(Y) # 0, and therefore a(F’;Y) > 1 as Y is regular away from 0. Thus we may assume that
f(E’) c E. By Theorem 2.10 we have

a(F;Y)=a(F';Z,(p —n)F)
=6p - [a(E"; X, (p—n)E)+(p—1)-a(E";b"F)]

where 6z € {1, p~'}. We must find conditions that guarantee that a(F’;Y) > 0 (resp. > 0), hence the
factor § - will not play any role. As (X, E) is log smoothand p—n < 0, wehave a(E’; X, (p—n)E) > 1.
Since regular 1-foliations are canonical [27, Lemma 3.0.3], it follows that a(F’;Y) > 0 unless the center
of E’ is contained in the singular locus of b* F: so from now on we assume that cx (E’) is contained
in Sing(b* F). It is easily seen, using the computations above, that the singular locus of b* F is a finite
collection of isolated points. Therefore, by Lemma 2.2 we see that a(E’; X) > n— 1. Moreover, as b*F
is Ic we have a(E’; b*F) > —1. Putting everything together, we get

Sa(FY) =a(E'sX) + (1= p) - multer(f'E) + (p = 1) - a(E'sb'F)
2n-D+@n-p)+(p-1-(-1
=2(n-p).
Soifn > p (resp.ifn > p)itholds thata(F’;Y) > 0 (resp. a(F’;Y) > 0). This completes the proof. O
Remarks 3.3.

1. The case n = 3 > p gives a canonical non-Cohen—Macaulay isolated threefold singularity. It was
shown in [2] that kit threefold singularities (with perfect residue fields) are Cohen—Macaulay in
characteristic p > 5. This is optimal, as there also exist non-Cohen—Macaulay terminal threefold
singularities in characteristic 5 [33].

2. In characteristic 0, strictly Ic singularities may not be S3, but this can only happen if they are log
canonical centers [16, Corollary 7.21]. If n = p — 1 in Theorem 3.2 then 0 is an Ic center of Y, as the
proof shows.

We end this section with some further remarks on the singularities (0 € Y) constructed in
Theorem 3.2. Unless we specify otherwise, there will be no constraint on the characteristic p nor on
n=dimY.

Proposition 3.4. If p > 2, then the singularity (0 € Y) is never 1-Gorenstein (i.e., Ky is never Cartier).
This is false if p = 2: for example, in dimension two we obtain the RDP DY, which is Gorenstein.
Proof. Let us use the notation of the proof of Theorem 3.2. We perform a weighted blow-up of the
closed point defined by (uy, . ..,u,) in U C X with weights (1, p —1,...,p — 1) (see [29, Example

2.4.3]). A (schematic) affine chart of the weighted blow-up is given by
klut,...,un] = k[vi,...,val, up vy, u; > vf_lvi (i =2).
The (unique) exceptional divisor E’ is given by (v = 0). We have

duy A+ Ndu,, = vﬁ"fl)(pfl)dvl A Advy,

and thus a(E’; X) = (n—1)(p — 1). Since

100y =10y, = D (P = DVidy, Dy = vidy, (i 2 2),
i=2
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we find

v=vy-

n
p-2.2
b+ 3 al
=2

Therefore a(E’; b*F) = —1 and E’ is not invariant with respect to the pullback of b*F. So if F’ is the
divisor over Y induced by E’, we find:

a(F;Y)=a(F';Z,(p —n)F)

1 ’ ’ *
=I—7'[a(E X, (p—n)E)+(p—1)-a(E"; 0" F)]
1
= [(n-D(p-1D-(p-n)+(p-D(-D]
2
=n—-3+—.
p
Thus when p > 2 we see that a(F’;Y) ¢ Z. This shows that Y is not 1-Gorenstein. O

For the definition of W(O-rationality and Cohen—Macaulayness up to (Frobenius) nilpotence used in
the following proposition, and the notions that appear in its proof, we refer to [6].

Proposition 3.5. The singularities (0 € Y) are WO-rational and Cohen—Macaulay up to nilpotence.

Proof. The property of WO-rationality descends along finite universal homeomorphisms by [9, Propo-
sition 4.4.9]. It evidently holds for A", and so it holds for Y.

Let us show that Y is CM up to nilpotence. By [0, Lemma 2.3] the natural morphism Oy — Rgq.Oan
is an isomorphism in Db(Crysg ). Let w}, be a dualizing complex on Y: by [5, Theorem 4.3.5], by
applying RHom(—, w3},) to the previous isomorphism we obtain

RHom(Rq.Oan, wy) = RHom(Oy, wy) in Db(Crysg).
Now we have
RHom(Rg.Opn, wy) = Rg. RHom(Opr, wan)

= Rq.wan

= q+WAn
in D?(Crys$), where the first isomorphism holds by [5, Corollary 5.1.7] and the third one holds as ¢
is finite. This shows that RHom(Oy, wy,) is supported in a single degree as an element of the category
Crys}g. By [6, Lemma 3.2] it follows that Oy is CM up to nilpotence as an element of Crys§ . o
Corollary 3.6. The singularities (0 € Y) are never F-injective.

Proof. This follows from [27, Lemma 2.5.4], but here is another proof that utilizes the notions introduced
above. Since Y is CM up to nilpotence, the action of Frobenius on the local cohomology groups
Hi (Oy o), where m is the maximal ideal and 0 < i < dim Oy j, is nilpotent (see [6, Lemma 3.2]).
Since Oy is Sy but not S3, we have H2,(Oy 9) # 0. Thus the Frobenius action on Hz (Oy ) is not
injective. This shows that Oy ¢ is not F-injective. m}

Proposition 3.7. There exist proper birational morphisms n: V — Y where V is a regular variety.
Moreover, for any such:
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1. the Frobenius action on ROy is nilpotent fori > 0 (*), and
2. the Frobenius trace action on R'm.wy is nilpotent fori > 0.

Proof. We begin by constructing a specific resolution of singularities and checking the nilpotence
statements along it. Consider the diagram (3.1) in the proof of Theorem 3.2. The 1-foliation b*F is
locally generated by multiplicative derivations with isolated singularities. Thus the quotient Z = X /b* F
has only isolated p,-singularities [27, Proposition 4.1.1]. These toroidal singularities can be resolved
using [ 15, Theorem 11* p.94]:let 1: V' — Z be the induced resolution of singularities. The composition
n’ =bou: V' — Y isalso aresolution of singularities.

We claim that the sheaves Ry, Oy and R u.wy- vanish for i > 0. This can be checked formally
on Z, and thus we reduce to the toric situation. Then vanishing holds for i > 0 by [15, Theorem 14
p. 52]. From the Leray spectral sequence it follows that

R'7!Oy: = R',0, and R'mlwy: = R'bw, fori>0.

By naturality of the Frobenius, these equalities reduce the nilpotence statements along 7’ to the
nilpotence statements along the morphism b: Z — Y. By construction the absolute Frobenius mor-
phism Fz: Oy — F,Oz factors through ¢q.Ox. Therefore R'b,(F) factors through R'b.(q.Ox) =
g+R'b,Ox. Since b is the blow-up of a point of A" we have R'b,Ox = 0 for i > 0, which shows
that R'b,(Fy) is the zero map for i > 0. By applying (derived) Hom into wz to the map Fz, one
finds dually that the Frobenius trace Trz: F.wz — wz factors through g.wx. As before we have
R'b.(q'wx) = q.R'b,wx = 0 for i > 0, which shows that R'D, (Try) is the zero map for i > 0. This
proves the nilpotence statements along b and 7’.

Finally, let 7: V — Y be another proper birational morphism with V regular. By [8, Theorem 1] we
have Rin,Oy = Rin!Oy/ and Rin.wy = Rinlwy for every i > 0. So the nilpotence statements along
7’ imply the corresponding nilpotence statements along 7, which concludes the proof. O

4. Locally stable families with non-S, special fibers

4.1. First example: dim > max{p, 3}.

n+l

Consider the affine space AT, | X Al and the derivation

Om =y x70y, +1"u(y)d, on A" x Al 4.1

n
i=1

where m > 0 and u(y) € k[y] satisfies (,u@y)[l’ ' = 0 and becomes a unit in a neighborhood of the
origin, that is, u(0) # 0.

We let A = A" x D(u(y)) ¢ A™! be the affine open subset where u(y) is invertible. We let
Fm C Taxal)/k be the sub-module generated by 9y,.

(We can of course take m = 1, u = 1 and A = A" but this extra generality will be useful for
Theorem 4.7 below.)

Claim 4.1. F,,, is a family of 1-foliations over A} (Definition 2.11) if and only if n > 2.

Proof. Clearly 0p € T(pxa1)/a1, and we see that 0,[,” I'= 0 as in Claim 3.1 (and this survives along any

specialization of ). Thus J,, is a relative 1-foliation over A!, for any n > 1. It is easily seen that the
cokernel of Fy, <= Taya1/a1 is torsion-free, hence flat, over Al

4This is equivalent to saying that ¥ has IF, -rational singularities, see [6, Remark 3.5]. Combining this statement, Proposition 3.5
and [6, Proposition 3.8], we obtain that Y satisfies the Frobenius stable Grauert—Riemenschneider vanishing [6, Definition 3.6].
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The restriction of JF,, to the generic fiber of the projection A x Al — Al is the restriction to
A x Spec(k(t)) of the module generated by

n

foaxi +1"u(y)0y € Dergp) k(2)[x1,...,%n, ],
i=1

which is clearly a 1-foliation for every n > 1. A similar computation shows that 7, |(;=) is a 1-foliation
forevery 0 # @ € k and n > 1. The only condition is given by the restriction to the central fiber (r = 0):
indeed, Fn|(s=0) is generated by

n

Zx%ﬁxi € Dery k[x1,...,%n, ],
i=1

SO Fml(s=0) is a 1-foliation if and only n > 2. (For n = 1, observe that x%@xl does not generate a saturated
sub-module of Dery k[xi,...,x,,y].) The statement follows. O

The following lemma explains how to simplify the singularities of F,,.

Lemma 4.2. We have Sing(F,;) = V(x1,...,xn,1) for m > 1, and Fy is regular. If m > 1 and
b: X = Blgjng(F,) = AX Al is the blow-up of that singular locus with exceptional divisor E, then:

a(E; Fm) =-1;

E is b* F,,-invariant;

b* Fo, is lc on the x;-patches, and isomorphic over A,l to Fiu—1 on the t-patch;

if m > 2, the locus of non-lc singularities S of b* F,, is closed in X and contained on the t-patch;
. mults E = 1, codimx S = n + 1 and S is disjoint from the strict transform of (t = 0) ¢ A x AL

e

Proof. The statement about the singular locus is clear. On the x;-patch U; the blow-up b is given by

b*:klxp, .o xn y. ()T — klun, .o v, ST () 7',
xiuy, xiuwu (1<i<n), yby, e urs.

Therefore we have
n

n
1
uy - (ulﬁul - Z u;Oy, — s0s | + Z u%ulz . u—laul. +ul's"u(y) - oy

i=2 i=2

b*am|U1

n
uj - [ulﬁul + Z(—ui + u%)ﬁui + u’ln_lsm,u(y)@y — 50,
i=2

W

Since b*d,,|y, is p-closed, so is . As ¥ (u;) = uj, by Lemma 2.3 we obtain that /[P1 = . Thus
b* Fmlu, = Oy, - ¥ is lc by Proposition 2.6. Moreover, the above computations show that E is b* F,-
invariant and that a(E; F,,) = —1. The situation on the other x;-patches U; is similar.

On the #-patch V the blow-up b is given by

b*: k[xl,-~~’xnvy’t][ﬂ(y)_1] — k[Vln--,Vn,y’s][,u(Y)_l],
xisv; (1<i<n), y—y, ts.
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Therefore we have:

n

b Oly = ) visd + 5" u(y)dy
i=1

n
=s- Z v?ﬁvi + sm_l,u(y)c')y
i=1

£

Under the description V. = D ,n.
Vi

b*Fmly = Fmu—1. To finish the proof, it remains to observe that Sing(¢) = V(vy,...,v,,s) C Visin
fact a closed subset of X, and that the strict transform of (¢ = 0) is disjoint from the patch V. O

Theorem 4.3. With the notations as above, let Y = (A x A')/F,, withn > 2 and m > 1. Then:

1. The projection A x Al — Al factors through a flat morphism Y — Al of relative dimension n + 1;
2. Y; is smooth for t # 0, while Yy is reduced and non-S»;
3. Ifn+1 > max{p, 3}, the family Y — A is locally stable.

The hypothesis n > 2 ensures that the 1-foliation F,,, is a family of 1-foliations over A}, see Claim 4.1.
The case (p = 2,n = 1) is considered in Example 4.6 below.

Proof. Since 0,,(t) = 0we have k[t] C k[xy,...,x,,y, ]9 this proves the first point. On the principal
openset D(t) ¢ AxA! the 1-foliation F|p (s is regular. Thus for 0 # @ € k, by Theorem 2.12 we have

i=1

Yo=A/Fpno for Fpo=04- (Zx%axi +0/”/J(a')8y).

As F.q is regular for @ # 0 we obtain that Y, is smooth [27, Lemma 2.5.10].
Let us prove that Y} is not S5. For this we reduce to m = 1. Indeed, consider the cartesian diagram

v

AxXAl —— AxAl

| l

Al ——— A},

where the vertical arrows are the projections and u: Al — At], is given by u*(¢’) = t"*. By Lemma 2.13
we have v* F| = F,,, (where F is defined as in (4.1) using ¢’ instead of ¢) and an Atl -isomorphism

(AXALY/Fix,u Al =Y.
t A,

Hence it suffices to show that Yy is non-S; in the case m = 1. As JF] is a family of 1-foliations over A},
by Theorem 2.12 it is sufficient to prove that

OF 41 o @i K[11/() & (Oao/ ()7 with 5= x20,,,
i=1

where 0 = V(x1, ...,x,,,1). Clearly d(y) = 0, so it suffices to show that there is no f € Opxat g Such
that 91 (y + ¢ f) = 0. If there was such an f, we would have

0= (y+1f) = tu+ ) 05305 (f) +pdy(f).
i=1
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Taking into account that ¢ is not a zero-divisor in Oyy41 ¢, we would obtain

= )50 (f) + 1udy (f).
i=1

However, the right-hand side belongs to the prime ideal (x1, ..., x,, ), so this equality cannot hold in
the local ring Oy 41 ¢ by our choice of u. We have reached a contradiction, and hence Y} is not S, at
the image of 0.

On the other hand, I claim that ¥j is (geometrically) reduced. Since Y is S5, the Cartier divisor Y is S
and it is sufficient to show that Yj is generically reduced. Observe that Y is irreducible. The 1-foliation
Fm is regular on the open set U = D(x;), which intersects Yy nontrivially. By Theorem 2.12 it follows
that the open subset (U/F,,|v)o of Yo is the quotient of Uy by (the restriction of) F,, o. In particular it
is normal, so Yj is generically reduced.

It remains to show that (Y,Yp) is Ic (in the general case m > 1). For this, as in the proof of
Theorem 3.2, we blow-up A x A! until the pullback of F,,, has only lc singularities. By Lemma 4.2, this
produces a sequence of m smooth blow-ups

Xm — X1 — - — Xy — W=AxA!
such that, if b, : X,,, — W is the composition of the blow-ups, the 1-foliation b}, F,, islc. Let E; C X,,,
be the strict transform of the exceptional divisor of X; — X;_; (for 1 < j < m), and denote (t =0) C W

by Wy. We have a(E; W, Wy) = n — 1, and using Lemma 4.2 we compute

a(Ex; W, Wo) =a(Ea; X1, (X1 — W) 'Wo + (1 —n)Ey)
=2n-1.

Continuing by induction, we find
a(E;; W, Wo)=jn-1, j=1,...,m.
Now let Z = X,,,/ b, F,, and consider the induced commutative diagram

Xp —> Z

L

AxAl —s v

(=2}

where the horizontal arrows are the quotient morphisms and where b: Z — Y is birational. Let F; C Z
be the prime divisor which is the image of E;. Using Lemma 4.2 we get

a(Ej; Fp)=—j, j=1...,m.
Now we use Theorem 2.10: since Wy is F,,,-invariant we find

a(F;;Y,Yo) =a(E;; W, Wo) + (p = 1) - a(Ej; Fin)

=jn-p+1)-1.
Therefore we have the crepant equation
Kz +0,'Yo = Y (j(n=p+1) = DF; =b*(Ky +Xp).
j=1

https://doi.org/10.1017/fms.2025.10129 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10129

16 Q. Posva

To show that (Y, Yp) is Ic it suffices to show that

m

discrep| Z, b, 'Y, — Z(j(n -p+1)-1F;|>-1.

Jj=1
Since b}, Fy, is Ic, by Theorem 2.10 it suffices to show that

m
discrep| X, (b)) Wo — Z(j(n -p+1)-DE;|> -1

j=1
As (X, (b)) Wy + Z;.":l E;) is log smooth, this holds by [16, Corollary 2.11] as soon as
1—j(n—p+1) <1forevery j > 1. This is the case when n + 1 > p. The proof is complete. |

Remark 4.4. The normalization Y} of the n+1-dimensional central fiber ¥, in Theorem 4.3 is isomorphic
to the product of A! with the n-dimensional quotient singularity of Theorem 3.2. In particular, it is
Q-factorial, S3 but non-S4, non-F-injective, with a singular locus of dimension one. Since n + 1 >
max{p,3} wehaven > p—1andso Y} islc.If n > p (resp.n > p), itis even canonical (resp. terminal).

Corollary 4.5. LetY = A% /(X1 x70y, +10y) withn = 2. IfdimY = n+2 2 p+1, then Y has

X1 5eees
non-S3 canonical singularities along the image of V(xy, ..., Xxn,1).

Proof. The computations in the proof of Theorem 4.3 show that the central fiber Yy of ¥ — A/ is not
S, along the image of V(x1, ..., x,,t). Thus Y is non-S3 along that curve. To show that Y is canonical,
as the open set Y \ Yy is regular and thus terminal, it suffices to show that a(E;Y) > 0 for every divisor
E over Y with cy (E) C Yp. As Yy is an effective Cartier divisor and (Y, Yp) is Ic we have

a(E;Y)=a(E;Y,Yy))+multg Yy > -1+1=0

and we are done. O

Example 4.6. Suppose that k has characteristic p = 2, and consider the derivation 8 = x20, + tdy on
A3 - Then 91?1 = 0 and that X = A3/0 is a flat A]-scheme given by the spectrum of k[x2, y, ¢, tx +
x2y]: indeed, the latter ring is clearly d-invariant, is normal and has degree 4 over k[x2, y2, 1?].

It is easily seen that X is isomorphic to an hypersurface in A*, and thus X is Cohen-Macaulay. Its
central fiber Xy = Spec k[x%, y%, x?y] = V(W? - X?Y) C A;Y’W is demi-normal but not normal: it
has a nodal singularity along the curve (x = 0). In fact, this is an inseparable node [28, §3.1], and thus
Xp is semi-normal but not weakly normal [30, Lemma 2.3.7]. Simple computations in the spirit of the
proof of Theorem 4.3 show that the pair (X, X) is Ic but not plt, as the image of the line (x = 0 =¢) in
X is the singular locus of Xj and an Ic center of (X, Xj). Compare also with the general semi-normality

results of [4].

Theorem 4.3 gives a series of local examples. We can compactify them as explained in the next
theorem to obtain global ones.

Theorem 4.7. Foreach p > 0, there exists a projective family (Y, B = 11)?—[) — Al of relative dimension
N > max{p, 3} such that:

1. (Y, %H) — Al is a stable family,
2. YV has only up,-quotient singularities for t # 0, and
3. Yy is not S».

Moreover:
o There exists a finite purely inseparable morphism PN~! x E x Al — Y of degree p over A', where E

is a supersingular elliptic curve, and H is the image of a Q-divisor Hy x A' c PN x E x Al;
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o If p = 2 then we can modify the construction so that ) is regular for every t # 0;
o If Cis a normal curve and C — Alisa finite flat morphism, then Yc = Y X1 C is normal and
Ve, %’Hc) — C is stable.

The following lemma will be useful for the proof.

Lemma4.8. Consider E a supersingular elliptic curve, w € H°(E, Tg) a global generator, Af:’l_l c
PN -1 a standard chart (with N > 3), A an integral Noetherian k-algebra and a € A. Then the derivation
N-1
Oy = Z x20y; +aw on ANT!x E x Spec(A)
i=1
induces a 1-foliation G of rank 1 on PN~! x E x Spec(A) such that:

1. Kg = Opn-1(1) ® Opxspec(a)s
2. G has only multiplicative singularities away from {[1:0:---: 0]} X E X V(a),
3. IfA=k[t] anda =1t" withm > 1, then G C Tipn-1xpxaryar is a family of 1-foliations.

Proof. Since E is supersingular we have w!Pl = 0 [14, 12.4.1.3]. An argument similar to Claim 3.1
shows that d(g) is p-closed. Therefore it induces a 1-foliation G of rank 1 on PV ~1'x E x Spec(A). We

compute the expression of d(gy on the other charts. Let Xo, ..., Xy_1 be homogeneous coordinates of
PN-1: we may assume that x; = X;/Xo for 1 <i < N—1.Ifu; = X;/Xn_1 for 0 <i < N — 1, then
we have
; 1
xizﬂ(l <i<N-1), xy-1=—,
uo uo
; 1
u; = Al (1<i<N-1), uy= .
XN-1 XN-1
Therefore
N-2
Oy = oDy (1 ST<N=1), ey, = Uy~ > Uotidl,
i=1
and so
1 N-2
- 2
do) = M_o - w00y, + ; (u; — u;)0u; — augw | . 4.2)

IN-1)

This shows that G|p, (xy_,)xExSpec(a) is generated by d(y-1) and that Kél =G = Opnva(-) &
OExspec(4)- This proves the first assertion.

On D, (Xn-1) X E x Al, notice that 8y _1) is p-closed and that 8y _1) (uo) = uo. Therefore olPl =

(N-1) —
O(n-1) by Lemma 2.3, which shows that G has only multiplicative singularities on D, (Xy_1) X E X Al
The computations on the patches D, (X;) X E x Al for 1 <i < N — 1 are similar. On D, (Xo) X E X Al,
we see that the singular locus of G is {[1:0: ---: 0]} X E X V(a). This proves the second assertion.
In case A = k[t] and a = ™, we proceed as in Claim 4.1 over each chart to see that G is a family of
1-foliations if and only if N > 3, which holds by assumption. m

Remark 4.9. The multiplicative singularities of G cannot be resolved by smooth blow-ups (unless
p = 2). Indeed, the singular locus of d(x_1) is the union of the closed subsets

Ze,=[eo=0:e1:...eny-2: 1] X E X Spec(A)
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where €1, ...,en-2 € {0, 1}. It follows from [27, Proposition 4.1.1] that along Z, , and formal-locally
on its first factor, the 1-foliation G is generated by

Z I/_tiagi— Z ﬁjéb—,j—aﬁow

i: =0 Jigj=1

where i, are formal parameters of Opn-1 | ,.1) With iZg = ug. To resolve the singularity of G along Z,,
we need to take the weighted blow-up given by the Rees algebra

Z (i1, 1) + Z (iij.p—1).

ii =0 Jigj=1

As soon as some weight p — 1 # 1 appears, this blow-up produces a nonschematic tame regular
Deligne—-Mumford stack whose coarse moduli space has quotient singularities: see [29] for details. So
the singularities of G along Z,, cannot be resolved by usual blow-ups, unless £, = (0,...,0) or p = 2.
The situation on the other patches D, (X;) X E X Spec(A), for 1 <i < N — 1, is similar.

Proof of Theorem 4.7. For clarity, we divide the proof into several steps. If p = 2 we can use a slightly
different construction, which we describe in Step 5.

SteP 1: CoNsTRUCTION OF ) — Al Let E be a supersingular elliptic curve and w € H(E,Tg) be a
global generator. If X, ..., Xy_; are the homogeneous coordinates on PV ~!, consider on D, (X) X
E x Al the derivation

N-1

8(0) = Z xizaxi +tw, x; = Xi/Xo.
i=1

By Lemma 4.8 it induces a 1-foliation G on W = PV I x Ex Al. We let Y = (PN~! x E x Al)/G,
with quotient morphism ¢: W — ). By construction the projection W — A! factors through a flat
projective morphism ) — Al

StEP 2: CONSTRUCTION OF THE DIVISOR H. The divisor H is chosen as follows. Take a Q-divisor H on
W such that:

H = Hy x A for some Q-divisor Hy on PN~ x E;

Kw + (p — 1)Kg + H is ample over A!,

(W, W, + H) is Ic for every a € A \ {0},

the support of H lies in general position with respect to the curve {[1:0: ---: 0]} x E x {0}, and
H is not G-invariant.

O O O O O

The last three properties are satisfied for a general choice of divisor of the form Hy x A!, thus by
choosing Hy general in a sufficiently ample linear system on PN ~!, we see there exists an H with all
these properties. Notice that Ky + (p —1)Kg = Opn-1 (=N +p —1) R Oy 1 by Lemma 4.8, so because
of the second property and on the assumption N > max{p, 3} we cannot take H = 0.

We let H c ) be the prime divisor with support g(H).

STeP 3: BEHAVIOUR UNDER BASE-CHANGE. Let us immediately observe what happens when we base-
change Y — A,l along aflat finite morphismg: C — Atl .ByLemma2.13 we have a natural isomorphism

Vxu C = (PN‘lexC)/f*g

where f: PN~ x Ex C — PN~ x E x A is the base-change of g. This shows that )¢ is normal.
Observe that Hc = f*H still satisfies the five properties listed in Step 2. The pullback of Ky + %H
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along Yc — ) is equal to Ky, + %”HC: therefore the latter is ample over C as soon as Ky + %’H, is

ample over A'. By Proposition 2.9 and the non-G-invariance of H we have
1
q*(Ky + —H) =Kw+(p-1)Kg+H (4.3)
p

which, by choice of H, is ample over Al

To complete the proof, it remains to check properties (2) and (3), and that ()¢, I%’HC) — Cis
locally stable. Properties (2) and (3) can be checked after an arbitrary surjective base-change. For local
stability, by [18, 2.15.5] and [12] it is enough to check it in case g = F, Ik is an iterate of the k-linear
Frobenius morphism of A! (5).

STEP 4: LOCAL STABILITY AND SINGULARITIES OF FIBERS. To summarize, we have reduced the proof to
the following: let ¢’: W = PN~! x E x Al — ) be the quotient by the 1-foliation G’ induced by the
derivation

N-1
0 = Z X20y, +1” w, on D,(Xo) x E x Al
i=1
It is endowed with a flat proper morphism )’ — A/l. Let H” be a Q-divisor on W satisfying the
properties listed in Step 2: we let H’ = g(H’). We must show that (), %H’) — Al is locally stable,
that )/ has only u,-quotient singularities for 7 # 0, and that }/] is not S>. As we will see, everything is
a consequence of Theorem 4.3 and Lemma 4.8.

STEP 4.1: SINGULARITY OF THE CENTRAL FIBER. First, let us prove that )J is not S, along the image
through ¢’ of the proper curve {[1:0: ---: 0]} X Ex{0}.Indeed,letz = {[1:0:---: 0]} x{e}x{0}
where e is an arbitrary closed point of E. As y5 is a Cartier divisor in )/, it is equivalent to showing that
Oy /(2 18 not S3. I claim that this is étale-local over z. For if h: Spec(O"}V’Z) — Spec(Ow ;) is the
henselization, by [29, Lemma 3.2.1] we have a cartesian diagram

Spec(Oé’V’z) —r Spec(Ow ;)

! I

Spec(Op, )/h*G" —— Spec(Oyr /(=)

where g is an étale morphism. Therefore it suffices to prove that Spec(O"}, /h*G isnot §3.1f y € O’é .
is an étale coordinate at e € E, then an étale-local generator for G’ at z is given by

P
o = le?ax,. + z‘pr,u(y)(')y
i=1

where u(y) € Oge is a unit such that v ® (921,6 = u(y)0dy. Then we apply Theorem 4.3 (or rather its
formal-local version at the origin, which is proved similarly) to see that the d”-invariant sub-ring of
Ocv,z is not S3.

Since )’ is S5, the irreducible Cartier divisor y(; is nonetheless S;. As it is generically reduced by
Theorem 4.3, we obtain that :))6 is (geometrically) reduced.

SInstead of appealing to [18, 12], one could proceed as follows. The local stability is Zariski-local over C’, so we reduce to

base-changes of the form Spec(O) — Atl where O is a DVR. If s is a uniformizer of O, write = v(s)s"™ where v(s) € O*.
Then one can prove the analogue of Theorem 4.3 for derivations of the form X1 | xl?ax,. + 5™y (s)u(y)dy: the argument is the
same, but the bookkeeping is even more cumbersome. The rest of the proof of Theorem 4.7 will then be similar.
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StEP 4.2: LocAL sTaBILITY. Now we prove that (), %7—[') — Alis locally stable. First, let 0 # @ € k.

As G’'|p() islcand (W, W, + H’) is Ic, by Theorem 2.10 we have that (), ), + %7—[’) is Ic along Y,.
Moreover, as G'|p(;) has only multiplicative singularities by Lemma 4.8, by Theorem 2.12 we obtain
that

YV, =P 'xE)/G,

where G/, is the 1-foliation induced by Zf\:’?l x20y; + a” w. By Lemma 4.8 we see that G/, has only
multiplicative singularities. Therefore ), has only uj,-quotient singularities by [27, Proposition 4.1.1].
It remains to prove that (), ) + %’H,') is Ic. To this end, we blow-up W to simplify the singularities

of G’. By Lemma 4.8 the non-lc singularities of G’ are contained on the chart D, (Xo) x E x A!, where
(étale-locally on the factor E) the 1-foliation G’ is generated by a derivation of the form (4.1) with
m = p". Therefore, the proofs of Lemma 4.2 and Theorem 4.3 show that if we blow-up repeatedly the
locus of non-Ic singularities of G’, we obtain a birational proper morphism

b: X=X, — W
with p” exceptional divisors E1, ..., E,r C X, such that b*G’ is Ic, (X, b;IWo + Zj E;) is log smooth,
each E; is b*G'-invariant, a(E;;G’) = =1 and a(E;; W, W) = j(N — 1) — 1. By our choice of H’, we
also have that (X, b;' (W + H') + 2.j Ej) is log smooth and
a(E;;W.Wo+H') =a(Ej; W, Wy) Vj=1,...,p".

The arguments are now the same as the ones at the end of the proof of Theorem 4.3. Consider the
commutative diagram

X — Z=X/b*G’

bl

w—2 ).
If Fy,...,F,r C Z denote the b-exceptional divisors, then by Theorem 2.10 we have

1
a(F,;y',y(; + ;H') =a(E;;W,Wo+H')+(p-1)-a(E;;G")

=a(Ej; W, Wo) + (p — 1)(=))

=j(N-p)-1
Hence we have the crepant equation
pr
-1 ’ 1 ’ . * ’ 1 ’
Kz +1; (y0+—H ) + > (1= j(N=p))F; = (Ky/+y0+—’H )
P = p

Notice that 1 — j(N — p) < 1 for every j > 1 is equivalent to N > p, which holds as N = max{p, 3}.
Therefore we have that

pr
discrep| X, b7' (Wy + H) +Z(1 —j(N=p)E,|>-1.
j=1
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Hence by Theorem 2.10 we obtain that
1, &
. —1 .
discrep| Z,b, (Vo + —H) +Z(l —-j(N=p)F;j|> -1,
P -
J=1
and therefore (), V] + %7—[') is lc.

STEP 5: THE CASE p = 2. It follows from Remark 4.9 that there exists a smooth blow-up Z — PN~ whose

(reducible) center does not contain [1: 0 : --- : 0], and such that if b: Z x E x A! — W is the induced
morphism, the birational pullback 5*G is regular away from the preimage of {[1:0: --- : 0]} X E x {0}.
We take

Z=(ZxExAY/b*'G— Al

as the example. By [27, Proposition 5.2.4, Lemma 2.5.10] we have that Z, is regular for @ # 0. The
rest of the properties are proved exactly as above. This completes the proof. O

Let us make some observations about the preceding proof.

Remark 4.10. The coefficients of H are < 1, so the coefficients of %’H are < 1/p. The extra factor 1/p
appears because H is chosen to be non-G-invariant. I do not know whether there exists a G-invariant
divisor H that satisfies the other properties. On the other hand, the number of irreducible components
of H can be any (in particular, H can be irreducible).

Remark 4.11. If ¢ € E an arbitrary point then the line bundle £ = Opn-1 (N + p) ® Of (e) is ample on
PN-1 x E, and £L®" is very ample for every n > 3. Moreover, for any integer m > 1, if Hy is a general
element of the Q-linear system % |£®"| then Hy x A! satisfies the conditions listed in Step 2.

4.2. Second example: dim = 3,p = 3.

3

1 . .
,y,z X A; and the derivation

Consider the affine space A
Om =y 0x +x0y +1M0;, m > 1.

Using an argument as in Claim 3.1 together with [24, Corollary 6], one checks that 6,[,,” I = 0 as soon as
p > 2. In that case d,, generates a 1-foliation JF,,, on A3 x Al. As in Claim 4.1, one sees that F,,, is a
family of 1-foliations over A!.

Let us show how to simplify the singularities of F,,. As in Lemma 4.2, we are able to reduce J,, to
Fm-1, but we need two blow-ups to achieve this.

Claim 4.12. For p > 2, we have ((1 — 2x2)d,)[P1 = 26r=3/2(1 —2x2)p,.

Proof. After the change of variable u = 1 + V2x, we reduce to consider the p-th power of the derivation
d = V2u(2 — u)d, on k[u]. By a formula of Jacobson [13, p. 209], we have

olpl = 2p/2((_u23x)lpl + (2ud,)P) + S)

where S is a k-linear combination of (p — 1)-fold commutators of —u?d, and 2ud,. Now we make
several observations. First, by Hochschild’s formula 8 is p-closed and so 8171 is a k [u]-scaling of 8. As
(—u28,)P1 = 0 and (2ud,) P! = 2Pud,, it follows that S # 0. As

(U8, 2ud,] = —2u*d,
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we see that S # 0 can only be of the form —au?d,, for some a € k*. Hence 0 [P) = 2P/2(2Pyd, — au?d,)
is a k[u]-scaling of = 2'/2(2ud, — u?d,), which forces @ = 20P=3)/2, O

Lemma 4.13. Suppose that p > 2. We have Sing(F,,) = V(x,y,t) for m > 1, and Fy is regular. If
m > 1 and

b1:Y =Bl (A x Al) — A3 x A!

with exceptional divisor E, then:

1. a(E; Fn) =0,

2. Eis b} Fy-invariant,

3. the locus S of (non-lc) singularities of b]Fy, is closed, mults E = 1, codimy S = 2 and § is not
contained in (b)) (t = 0).

Consider by : BlgY — Y with exceptional divisor F and b = by o by. Then:

1. a(F; Fn) =-1,

2. Fis b* F,,-invariant,

3. ifm > 2, the non-Ic locus of b*F,, is closed, contained in a blow-up chart V of by, not contained in
the support of b7'(t = 0) + (by)'E, and

4. we have an Atl -isomorphism V = A3 x A,l under which b* F,,|v is isomorphic to Fp,—1, and the
by-exceptional divisor corresponds to (t = 0).

Proof. Let us first consider the blow-up b;. We have three blow-up charts, which we denote by U, Up,
and Uc:

o CHART Uy, givenby x — u, y — uv, 7+ z, t — us. Then
biOmlu, = 3o, + (1 - utvhHd, — uv3sds + u™s™o,

which shows that b} F,,|u, is aregular 1-foliation. Notice that b} 0, (1) € (u), so Eis b} F,-invariant.
Since b}0m|u, generates b* F |y, , without having to saturate, we have a(E; F,) = 0.
o CHART Up, givenby x — uv, y — v, 7+ z, t — vs. Then

biOmlu, = (V2 = u?)0y, + uvd, — usdy +v"s™0,

which is singular along the plane u = v = 0. These singularities are non-Ic.
o CHART Uc, given by x — us, y — vs, z+ z, t — s. Then

biOmlue = V3520, + ud, + s,
which is singular along the plane u = s = 0. These singularities are non-Ic.

We see that the locus S € Y of singularities of b’{}'m is smooth, closed, and irreducible of codimension
2. As can be checked on chart Ug, that singular locus is not contained in the strict transform b, (¢t = 0).

Next let us blow-up S. We have two blow-up charts above Ug (resp. above Uc), which we denote by
Upa and Ugp (resp. by Uca and Ucp):

o CHART Upgy, givenby u — it, v +— uv, 7+ z, s — s. Then

b Oy, =i+ [@(V? = 1) +9(2 = 795 — s5 +a™ 5" 5™, | .

YBA

As ypa(s) = —s, by Lemma 2.3 we see that zﬁg;] = —yga. Thus b* F,, is Ic on the chart Ug4. As
Wpa(it) € (i) we see that F is b* F,-invariant. As b*0,, = it - Y pa we find that a(F; F,,) = —1.
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o CHARrT Upp, givenby u +— uv, v— v, 2+ z, s — s. Then

b Oy, =V - [(1 = 20%) 05 + dvds — iisds +v™ 520, .

YBB

By Claim 4.12 we see that ¢z (1) = 25P=3/2y gz (). Thus by Proposition 2.6 we see that b* F, is
Ic on the chart Ugp.
o CHART Ucy, givenby u — i1, v — v, z+— z, s — is. Then

b Omluc, =i - [@v’520; + 8y + @™ '5™0, — v 55;] .

Yca

As Yca generates a regular 1-foliation, we see that b* F,, is regular on the chart Uc 4.
o CHART Ucp, given by u — is, v — v, 2+ z, s — 5. Then

b Omlucy =5 - [v20a +ady +5"7'0;] .

YcB

Under the A!-isomorphism Ucp = Ai’y,z x Al given by (i1,7,7,5) = (x,y,2,1), we see that Ycp

corresponds to J,,—1, and thus b* F, |y, corresponds to F,_i.

The above computations show that the non-Ic locus of b*F,, is contained in Ucp. It is elementary (but
tedious) to check that this locus does not intersect the other patches Uc 4, Upa, and Upp. It remains to
observe that the strict transforms of £ C ¥ and of (t = 0) c A3 ><Atl are disjoint from the chart Ucp. O

Theorem 4.14. With the notations as above, assume that p = 3 and letY = (A> x A')/F\. Then:

1. The projection A3 x Atl - Atl factors through a flat morphism Y — Atl of relative dimension 3;
2. Yy is smooth for t # 0, while Yy is reduced and non-S;;
3. Y — Alislocally stable, and Y has canonical non-Ss singularities along Y.

Moreover, if C is a normal curve and C — Atl is a finite flat morphism, then Y X Al C is normal and
Yc — Cis locally stable.

Proof. The first item is clear. For the remaining ones, as in the proof of Corollary 4.5 and Theorem 4.7,
we reduce the proof to the following: if Y’ = (A3 x Al)/F, then Y” — Al is locally stable, has smooth
fibers above 7 # 0 and a non-S; reduced central fiber ¥;]. The statements about the singularities of the
fibers are proved as in Theorem 4.3 (and are true whenever p > 2). It remains to check that Y* — Al is
locally stable above ¢ = 0.

As usual by now, we blow-up W = A3 x Al.By Lemma 4.13, there is a sequence of smooth blow-ups

b: X =Xppr — W=AxA]

with exceptional divisors E;, F; € X fori = 1,..., p" such that: (X, 3}; E; + F;) is log smooth, b* F
has only Ic singularities, the E;’s and the F;’s are b* F,--invariant, and

a(Ej; Fpr)=—i+1, a(Fi;Fpr)=—i Vi=1,...,p".
Using Lemma 4.13 and proceeding by induction, one computes

a(E;; W, W) =3i =2, a(Fi; W, Wy) =3i — 1.
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Now let Z = X/b* F,» and denote by E] C Z (resp. by F/ C Z) the image of E; (resp. of F;). Then by
Lemma 4.13 and Theorem 2.10 we have

a(E Y, YY) = a(Ei; W, Wo) + (p = 1) - a(Ej; Fpr) = i(4 = p) +p =3
and
a(F{;Y",Y5) = a(Fi; W, Wo) + (p = 1) - a(Fi; Fpr) =i(4 = p) - L.

As b* Fpr is Ic, by Theorem 2.10 it suffices to ensure that

discrep|Z, = > a(E[;Y', Y))E[ = 3" a(F/;Y', Y))F]| = -1

i i

to obtain that (Y’,Y)) is Ic. This holds as soon as i(4 — p) > O forevery i = 1,..., p", which happens
if (and only if) p = 3, so the proof is complete. O

Remark 4.15. One can try to compactify the examples of Theorem 4.14 using the method of
Theorem 4.7. This is quite delicate, as the 1-foliation ¢ = y3d, +x0, acquires complicated singularities
when we compactify. For example, if we regard A3 | as a standard chart of P2, then on the chart with
coordinates u = 1/x,v = y/x the 1-foliation induced by  is generated by uv>a, + (v* —u?)d, . Similarly,
if we regard Ai’y has a standard chart of the Hirzebruch surface F,,, then on the chart with coordinates
u=1/y,v=1/(xy") the 1-foliation induced by ¢ is generated by u>"*>9, + (v? + nu>"**1)4,.

A. Appendix: KSBA moduli stacks in positive characteristics

In this appendix we explore the consequences of Theorem 1.3 for KSBA moduli theory. The point is to
show that the most straightforward adaptations of the characteristic 0 definitions do not yield satisfactory
theories.

As we will see, the point is the unavoidable appearance of non-S, fibers as limits of stable families
over punctured curves. To formulate this in a precise way we need to define which moduli stacks we are
working with (or, equivalently, which families we allow in our theory), and we face two difficulties:

1. Our examples involve boundary divisors with small coefficients, and defining stable families of pairs
with such coeflicients over general bases is already extremely delicate in characteristic 0;

2. The algebraicity of the stacks we could write down is an open question (°¢), except in the surface case
where it should follow from [11].

We go around the first difficulty by using a minimalistic, underdetermined, working definition of the
KSBA moduli stacks. We will ignore the second difficulty by imposing algebraicity in our definition: it
is natural to expect from the point of view of moduli theory (since we expect boundedness to hold), and
on a technical level it allows us to state generic conditions for the objects parametrized by the stacks. In
any case, (non-)algebraicity is irrelevant for the phenomenon that we will exhibit.

We work over an algebraically closed field k of characteristic p > 0. First, we define one-parameter
stable pairs and stable families of pairs, generalizing slightly Definition 2.1.

Definition A.1. A proper pair (X, A) over k is stable if it is semi-log canonical (slc) (7) and if Kx + A
is ample.

%On the other hand, any reasonable KSBA moduli stack will have a finite diagonal by [25], first paragraph of the proof of
Theorem 9.7, and will be separated by Lemma A.3 below.
7We refer to [16] and to [28] for the definition of semi-log canonical singularities.
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Definition A.2. Let T be regular k-curve. Let f: X — T be a flat proper pure-dimensional morphism
with geometrically reduced fibers. Let A be a Q-divisor on X such that f: (X,A) — T is a family of
pairs [18, Definition 2.2]. We say that f: (X,A) — T is a stable family if:

1. (X, X; +A) is slc for every closed point ¢ € T, and
2. Kx + A is f-ample.

Lemma A.3 (cf. [25, Lemma 9.4]). Let T be an affine regular k-curve. Let (X;,A;) — T(i = 1,2) be
two stable families over T whose total spaces X; are normal. Assume that for a fixed closed point 0 € T,
with complement T* =T \ {0}, there is a T*-isomorphism of pairs

¢" (X1, A1) X T = (Xo, Ao) g T™.

Then ¢* extends to a T-isomorphism ¢ (X1,A1) = (X2, A).

Proof. If Z is the normalization of the closure of the graph of ¢*, with projections a;: Z — Xj, let us
write for each i

a:.‘(KXi +Ai) =Kz + Fi,— + 1—‘,"4_
<0 >0

where I'; _ and I'; , have no components in common. We have

X; = Proj; @ HO(X;, Im(Kx, + A;]) = Proj, EB HY(Z, \m(Kz +Ti,]).

m=0 m>0

Now since (X;,A; + X;0) is Ic and X;o is Cartier, if E is an exceptional divisor over X; with
a(E; X;,A;) <0 then E dominates 7. In particular, every component of I'; , dominates 7. By as-
sumption on ¢™ it follows that I'; 4 = I'; 4 and therefore the above Proj description of the X; yields the
extension ¢: (X1,A) = (X3,A5). O

Now we want to give our working definition of KSBA moduli stacks. We will only specify their
values on points and regular curves, using the two definitions above. But at least for psychological
comfort, it is better to specify what kind of values our stacks take in general. We follow the first step
of the approach of [18] (see in particular Chapter 7 there): the objects of interest lie amongst relative
effective Mumford divisors.

We refer to [18, 4.29, 4.78] for the definition of a relative effective Mumford divisor D supported on
a morphism X — 7. To simplify the terminology, from now on a relative effective Mumford divisor
will refer to the 2-tuple (X — T, D). As explained in [18, 4.29], given any h: T’ — T we can form the
pullback h)[(* ID which is again a relative effective Mumford divisor supported on X7» — T’, and this
pullback operation is functorial. Thus we can make the following definition:

Definition A .4 (Fibered category of relative Mumford divisors). Fix a (possibly empty) vector of positive
rational numbers ¢ = (cy,...,c¢,) € (Qx=0)®". We define the category Mum, as follows:

o its objects are 2-tuples D = (f: X — T, 3\, ¢;D;) where f is a morphism of k-schemes, and each
(f: X > T, D;) is arelative effective Mumford divisor supported on f;
o the class of arrows is generated by the following ones:
LifD=(X—>T,¥_ ¢ciD;)and D" = (X' — T, 37, ¢;D}) are two relative Mumford divisors
over a common base T, then every T-isomorphism ¢: X = X’ sending D; to D; for each i defines
an arrow ¢: D = D’;
2. if D is a relative Mumford divisor over T and h: T’ — T is a k-morphism, then there is a pullback
morphism 21D — D.
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We have a forgetful functor Mum, — Schy sending (X — T, }7_, ¢;D;) to T, the isomorphism ¢ to
idy, and h[*ID — D to h. By functoriality of pullbacks, this makes Mum, into a fibered category over
SChk.

With these definitions in place, we can at last introduce our working definition of KSBA moduli
stacks.

Terminology A.5. A stack over k means a stack in groupoids over the big étale site of k in the sense of
[1, 02ZH]. Algebraic stacks are understood in the sense of [1, 026N].

Definition A.6 (Potential KSBA moduli stacks). Let M be an algebraic stack over k. We say that M is
a potential KSBA moduli stack if there exist n € N, v € Qsg, and ¢ = (c1,...,¢,) € (Qx0)®" with the
following properties:

1. There exists a fully faithful functor M < Mum, of fibered categories over Schy;

2. if K is an algebraically closed field extension of k, then M (K) is the groupoid of all stable pairs
(X — Spec(K),A = Y_, ciA;) € Mumc(K) withdim X = nand (Kx +A)" =v;

3. if T is a regular (germ of) k-curve then M(T) is the set of (X — T,A = X\7_, c;A;) € Mum(T)
such that (X, A) — T is a stable family.

We refer to the array (n, v, ¢) as the numerical constants of M.

Remark A.7. Let us stress that if M is a potential KSBA moduli stack and T a regular k-curve, then the
families in M (T) are stable families of pairs whose underlying fibers are demi-normal (in particular
reduced and S3). This is forced by the way we compute pullbacks in Mum, and by the prescription of
the values of M on points.

We introduce two variants of the above definition.

Variant A.8 (Potential KSBA-CM moduli stacks). Let M be a potential KSBA moduli stack over k.
We say that M is a potential KSBA-CM moduli stack if there exists a dense open algebraic sub-stack
MM c M such that, whenever (X, A) € MM(K) for an algebraically closed field K, the variety X is
Cohen—Macaulay.

Remark A.9. Because of [10, 12.2.1], we think of a potential KSBA-CM moduli stack as an open
sub-stack of a potential KSBA moduli stack. In characteristic 0 we have the following striking picture:
if M = smg’sfé’c is the KSBA moduli stack over C with numerical constants (7, v, ¢), defined as in
[18, §8.2], then we have a decomposition into open and closed sub-stacks

M= | M)
i=2
where 9i(i) parametrizes pairs whose underlying varieties are S; but not S;;;. This follows from [20]
(see also [19, Corollary 1.3]). In particular MM = M (n) is a connected component of M.

Variant A.10 (Potential KSBA-F-injective moduli stacks). Let M be a potential KSBA moduli stack
over k. We say that M is a potential KSBA-F-injective moduli stack if there exists a dense open algebraic
sub-stack MW c M such that, whenever (X,A) € M (K) for an algebraically closed field K,
the variety X is F-injective.

F-injectivity is often described as a positive characteristic analogue of the du Bois condition in
characteristic 0: see, for example, [31] and [23].

Remark A.11 (Generic singularities in [ 17]). We briefly comment on the singularities of a general fiber
Y of the examples of [17], using the notations of that paper. As noted in [17, Lemma 17], ¥} is not CM.
It is easily seen from the construction that ¥; is not klt: a resolution is given by 7y : Y1 — Y, and the
exceptional locus is the divisor Zyp which is a log canonical place. We check whether Y[ is F-injective
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along 7y (Zy). Recall that Zg — 1y (Z)) is the elliptic fibration 7: §; — P! [17, Proof of Lemma 17].
Arguing as in [3, Lemma 3.10, Proposition 3.12], we see that for any y € 1y (Zj) we have

H;(Y{,Oye) = H) (Y], R'1y .Oy,) = H)(P', R'7,05)).

The fibration 7 has one multiple fiber p D1, and the other fibers are smooth elliptic curves [ 17, §9]. The tor-
sion of R'r, Os, is concentrated at the image y of pD1, and we have dim Hg(Pl, Rl'z'*(’)sl ) = 1[17, Proof
of Lemma 17]. By cohomology and base-change, this torsion module embeds into H! (pD, O pD,),and
to check F-injectivity it remains to understand the action of Frobenius on this cohomology group. By
[17, Proof of Lemma 17] we have H! (pD1, Opp,) = HY(E, Fp_1 ® Og) where E is an elliptic curve
and F,_; is the unique unipotent indecomposable bundle of rank p — 1 on E. By induction on the rank
of such bundles, we see that the action of Frobenius on H' (E, Fp-1 ® OF) is bijective if and only if E
is ordinary. In particular, we may arrange Y| to be F-injective.

With all these preparations, we can finally formulate:

Theorem A.12. Let n > max{p,3}. Then there is a dense subset I of (0;+0co) such that for every
v € [ there exists ¢ = c(v) # O with the following property: there is no proper potential KSBA, nor
KSBA-CM/F-injective, moduli stack over k with numerical constants (n,v,c).

Proof. Let T = Al and consider some family f: (), B) — T constructed in Theorem 4.7 of relative
dimension n. There are many choices for B, and we exploit this later. For now let 7% = T \ {0} and
[ (Y*,B*) — T* denote the family restricted to the punctured curve. A geometric fiber of f* has
only y1,-quotient singularities: in particular it is Cohen-Macaulay and F-injective [27, Theorem 1]. So
if M is a potential KSBA (or KSBA-CM/F-injective) moduli stack whose numerical constants match
those of (Y*, B*) — T*, we must have [(V*, B*) — T*] € M(T*). Restricting over the generic point
of T*, we obtain [ f]: Spec(k(t)) — M. I claim that there is no finite extension of DVRs k[t](;) < R
such that we have a commutative diagram over k

[

Spec(R)

where ¢ is induced by the DVR extension. This implies nonproperness of M by [1, 0CLZ].

We proceed by contradiction. Assume that there exists such an extension of DVRs and morphism
[g]: Spec(R) — M. This implies that there exists a stable family g: (), B’) — Spec(R), belong-
ing to M(R), whose generic fiber is the base-change of the generic fiber of (),8) — T along ¢.
The scheme )’ is also normal, since its generic fiber is normal and its special fiber is reduced. More-
over, by Theorem 4.7 the base-change )Y is normal. Therefore by Lemma A.3 we actually have an
R-isomorphism (YVg, Br) = ()’, B’). So (Vr, Br) € M(R): but the central fiber of Yr — Spec(R) is
not S, by Theorem 4.7, and we obtain a contradiction with the definition of the elements of M(R) (see
Remark A.7).

It remains to prove that as we change the boundary 5, the set of volumes (Ky, + B;)", for ¢ an
arbitrary point in 7%, is dense in the interval (0; +c0). Recall that the support of B; is the image through
a degree p quotient map

Pl E — Y,

of adivisor Hy. By Remark 4.11 it suffices to consider the case where Hy belongs to the Q-linear systems

1
§|(Opn-l (n+p)&Op(e))® |
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where r > 3 and s > 1 are integers. From (4.3) and Lemma 4.8 it follows that
(Kyt + Bt)n =p-: (K]Pn—lXE + (p - I)th +H())n
n
=p- I:O]pn—l (p -n—1+ z(n+p)) X (’)E(Ze)]
s s
r r n
=np-—-(p—n—1+—(n+p)) .
s s

We consider this expression as a function v in r/s € R.g. Then v is continuous, increases to infinity
with /s, and is bounded below by

lim np -

r +
S—>0

v | N

.(p—n—1+£(n+p))n=0.

By continuity the image I = v(Qs) is dense in (0; +c0). By construction, for every v = v(r/s) € I there
is a family ()*, B*) — T* constructed by Theorem 4.7 which belongs to any potential KSBA or KSBA-
CM/F-injective moduli stacks with numerical constants (n, v, ¢ # 0) (8). This completes the proof. O
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