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Abstract
We construct pathological examples of MMP singularities in every positive characteristic using quotients by
𝛼𝑝-actions. In particular, we obtain non-𝑆3 terminal singularities, as well as locally stable (respectively stable)
families whose general fibers are smooth (respectively klt, Cohen–Macaulay, and F-injective) and whose special
fibers are non-𝑆2. The dimensions of these examples are bounded below by a linear function of the characteristic.

Contents

1 Introduction 1
1.1 Consequences for KSBA moduli theory of stable pairs . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4
2.1 Conventions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 1-Foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Non-𝑆3 isolated MMP singularities 8
4 Locally stable families with non-𝑆2 special fibers 12

4.1 First example: dim ≥ max{p, 3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Second example: dim = 3, p = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A Appendix: KSBA moduli stacks in positive characteristics 24
References 28

1. Introduction

Singularities of the Minimal Model Program (MMP) have poor cohomological properties in positive
characteristic, unlike in characteristic 0. Striking examples are canonical and terminal singularities that
are not Cohen–Macaulay [22, 7, 34, 32, 33]. In this article, we construct several new examples of non-𝑆3
singularities of the MMP in every positive characteristic 𝑝 > 0.

The examples constructed in the aforementioned works are of two types: they stem either from a
cone construction on a variety failing Kodaira vanishing or from a wild Z/𝑝Z-quotient. Our examples
are 𝛼𝑝-quotients: to understand their singularities we use the perspective of 1-foliations and the tools
developed in [27].
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2 Q. Posva

Our first series of examples gives the following:

Theorem 1.1 (Theorem 3.2). Let k be an algebraically closed field of characteristic 𝑝 > 0. Then there
exists an isolated Q-factorial singularity (0 ∈ 𝑌 ) over k that is canonical (resp. terminal) of dimension
max{𝑝, 3} (resp. 𝑝 + 1) and non-𝑆3.

In particular, we obtain a three-dimensional terminal singularity in characteristic 𝑝 = 2 that is
not 𝑆3: the other known examples of this dimension were all constructed by Totaro in positive and
mixed characteristics 2, 3, and 5 [32, 33]. For an arbitrary characteristic 𝑝 > 2, Totaro also constructed
terminal non-𝑆3 cone singularities of dimension 2𝑝 + 2 [32]. In this regard, we achieve an improvement
on the asymptotic dimensional lower bound.

Note that Yasuda exhibits in [34] a series of terminal and canonical singularities, starting in dimen-
sion 4, which have depth ≥ 3 but are not Cohen–Macaulay: their optimal asymptotic dimension, as a
function of p, is roughly given by

√
2𝑝.

We establish several other properties of the singularities (0 ∈ 𝑌 ) in Proposition 3.4, Proposition 3.5,
Corollary 3.6, and Proposition 3.7. Notably, they are not F-injective, and they are rational up to Frobenius
nilpotence.

We use the same method to produce another series of pathological examples. In characteristic 0, fibers
of locally stable one-parameter families (in the sense of Definition 2.1) are 𝑆2 [16, §7.3]. This is true for
one-parameter families of surfaces with residue characteristics different from 2, 3, and 5 [3], but recent
examples of Kollár [17] show that this property can fail dramatically for families of threefolds in every
positive characteristic. Using 𝛼𝑝-quotients, we construct new examples of this kind. First we obtain:

Theorem 1.2 (Theorem 4.3). Let k be an algebraically closed field of characteristic 𝑝 > 0. Then there
exists a locally stable family 𝑌 → A1 over k of relative dimension max{𝑝, 3} such that 𝑌𝑡 is smooth for
𝑡 ≠ 0 and 𝑌0 is reduced but non-𝑆2.

Then we compactify the families of Theorem 1.2 to obtain pathological stable families (in the sense
of Definition 2.1):

Theorem 1.3 (Theorem 4.7). Let k be an algebraically closed field of characteristic 𝑝 > 0. Then there
exists a projective flat family of pairs (Y ,B) → A1 over k of relative dimension max{𝑝, 3} such that:

1. Y is normal and (Y ,B) → A1 is stable,
2. Y𝑡 has only 𝜇𝑝-quotient singularities (or is regular if 𝑝 = 2) for 𝑡 ≠ 0,
3. Y0 is reduced but non-𝑆2.

Moreover, if C is a normal curve and if 𝐶 → A1 is a finite flat morphism, then Y𝐶 is normal and
(Y𝐶 ,B𝐶 ) → 𝐶 is stable.

Our method produces boundary divisors B ≠ 0 whose coefficients are quite small, but the number
of irreducible components of B and the volume of 𝐾Y𝑡 + B𝑡 are up to our liking: see Remark 4.10 and
the proof of Theorem A.12.

The examples given by Theorem 1.3 differ from Kollár’s ones [17] in two important ways: their
dimension is constrained by the characteristic (while Kollár constructs pathological families of threefold
pairs in every characteristic, and indicates how to generalize the construction to any higher dimension),
but their general fibers are klt, Cohen–Macaulay, and F-injective by [27, Theorems 1 and 2] (while
the general fibers in Kollár’s examples are not klt nor Cohen–Macaulay: see Remark A.11). Boundary
divisors appear in both situations. We discuss the implications of these examples for moduli theory in
Section 1.1 below.

Let me sketch the construction of these examples. We start with a 1-foliation F of rank 1 on an affine
spaceA𝑛, and we wish to understand the singularities ofA𝑛/F . There is a simple criterion guaranteeing
that A𝑛/F is only 𝑆2 (see [27, Lemma 2.5.4]), so we only need to study its singularities in the sense of
the MMP. If F is a divisor over A𝑛/F , then by [27, §4.2] we can compute the discrepancy 𝑎(𝐹;A𝑛/F)
in terms of 𝑎(𝐸 ;A𝑛) and 𝑎(𝐸 ;F) where E is the closure of F in the function field ofA𝑛 (this is recalled
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in Theorem 2.10). The problem is that we cannot estimate 𝑎(𝐸 ;F) easily. So we blow-up A𝑛 until the
singularities of F become log canonical. This leads to a commutative diagram

𝑋 𝑍 = 𝑋/𝑏∗F

A𝑛 A𝑛/F

𝑏 𝔟

where the horizontal arrows are the quotient morphisms, and both morphisms b and 𝔟 are birational.
Writing

𝐾𝑍 −
∑
𝑖

𝑎𝑖𝐹𝑖 = 𝔟∗𝐾A𝑛/F

where the 𝐹𝑖’s are the 𝔟-exceptional divisors, we reduce to computing the discrepancies over the sub-pair
(𝑍,−

∑
𝑖 𝑎𝑖𝐹𝑖). The advantage is now that 𝑏∗F is log canonical, so the tools given by Theorem 2.10 are

much more efficient. The appearance of the characteristic in the computations is due to the adjunction
formula of Proposition 2.9.

For Theorem 1.2 and Theorem 1.3 we use a relative version of this construction. Proving that the
central fiber of the quotient is not 𝑆2 is more involved (as the criterion used before does not apply): we
use the tools developed in [27, §5] (see Theorem 2.12). To ensure that the fibers of the quotient family
are regular in codimension one, we need to work in relative dimension d at least 3. When 𝑑 = 2 = 𝑝 the
output (Example 4.6) is quite different: we obtain a locally stable family of surfaces S → A1 where S
is Cohen–Macaulay and S0 has an inseparable node in the sense of [28].

In our examples, the 1-foliation F is generated by (some variation of) the quadratic derivation
𝜕 =

∑𝑛
𝑖=1 𝑥

2
𝑖 𝜕𝑥𝑖 . The latter satisfies 𝜕 [𝑝] = 0 in every characteristic 𝑝 > 0, and thus defines an 𝛼𝑝-action

on A𝑛 such that A𝑛/𝛼𝑝 = A𝑛/𝜕 [27, Proposition 2.3.7]. If 𝑛 = 2 = 𝑝 then A2/𝜕 is the RDP 𝐷0
4. The

quadratic derivation has the nice property that a single blow-up simplifies its singularities into lc ones,
making the necessary computations straightforward.

In principle, other choices of 1-foliations F can lead to similar examples, possibly with better
dimensional bounds. The difficult part is the computation of the blow-up sequence 𝑏 : 𝑋 → A𝑛 needed
to simplify the singularities of F . The results of [29] suggest that such a sequence usually exists, but
the number of necessary blow-ups might be quite large. To illustrate this, in Section 4.2 we consider the
derivation 𝑦3𝜕𝑥 + 𝑥𝜕𝑦 + 𝑡𝜕𝑧 on A3

𝑥,𝑦,𝑧 ×A1
𝑡 : this choice was motivated by the fact that the quotient of A2

by 𝑦3𝜕𝑥 + 𝑥𝜕𝑦 gives the RDP 𝐸0
6 in characteristic 3. The quotient gives a pathological family of affine

threefolds in characteristic 3 (Theorem 4.14). This family is more difficult to compactify, as explained
in Remark 4.15: we shall not pursue this task here.

Remark 1.4. The underlying families 𝑌 → A1 (or Y → A1) appearing in Theorem 1.2, Theorem 1.3,
and Theorem 4.14 share the following properties: the central fibers 𝑌0 do not have liftable cohomology
(in the sense of [20]), the pair (𝑌,𝑌0) is not F-pure along𝑌0, and Y is not F-injective at the non-𝑆2-points
of 𝑌0. All the other fibers 𝑌𝑡 (𝑡 ≠ 0) have liftable cohomology, and (𝑌 \ 𝑌0, 𝑌𝑡 ) is F-pure (1).

1.1. Consequences for KSBA moduli theory of stable pairs

The existence of the pathological stable families of Theorem 1.3 has the following consequence, which
extends the main result of [17]:

1Here is a sketch of proof. The fiber 𝑌0 does not have liftable cohomology, as otherwise it would be 𝑆2 (even CM) by [20,
Theorem 8.5]. If (𝑌 ,𝑌0) was F-pure, then depthO𝑌 ,𝑦 ≥ min{3, dimO𝑌 ,𝑦 } for every 𝑦 ∈ 𝑌0 by [26, Lemma 3.4], and so 𝑌0
would be 𝑆2. The fact that Y is not F-injective is proved exactly as in Corollary 3.6. On the other hand, if 𝑡 ≠ 0 then 𝑌𝑡 has only
𝜇𝑝-quotient singularities and thus it is F-pure [27, Theorem 1]; this implies that 𝑌𝑡 has liftable cohomology [20, Corollary 7.3]
and that (𝑌 ,𝑌𝑡 ) is F-pure in a neighborhood of 𝑌𝑡 [26, Theorem A].
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Theorem 1.5 (Theorem A.12). Fix an integer 𝑛 ≥ 3. Then in characteristics 𝑝 ≤ 𝑛 the stable families
of n-dimensional Cohen–Macaulay pairs (resp. of pairs with F-injective underlying varieties) usually
do not compactify to a proper KSBA moduli stack.

The formulation of that theorem requires an explanation. In positive characteristic, no precise defi-
nition of the KSBA moduli stack (2) of stable pairs has been proposed so far in the literature: defining
families of pairs over general bases is the delicate part. It is easier to define boundary-free families:
to wit, the moduli stacks of stable surfaces are defined in [25, §1.3] and studied in [25, 3, 28]. That
definition can be extended to any dimension d, but then only few properties of the resulting stacks are
known: for example, when 𝑑 ≥ 3 we do not know if they are algebraic. In any case, the boundary-free
case is not our setting.

There is however no ambiguity about what the values of the KSBA moduli stacks should be over
regular curves: stable families of pairs with demi-normal underlying fibers (see Definition A.2). If the
moduli stacks would satisfy the valuative criterion of properness, then a stable family with demi-normal
fibers over a punctured curve could be extended with a demi-normal fiber, possibly after replacing the
base with a finite base-change. The examples of Theorem 1.3 show that this is usually not possible when
the characteristic is small compared to the dimension, even if the generic fiber has only klt, F-injective
and Cohen–Macaulay singularities.

This discussion and the content of Theorem 1.5 are made precise in Appendix A.
Let us close this introduction with a few open questions related to KSBA moduli theory in positive

characteristic:

Question 1.6. Let k be an algebraically closed field of characteristic 𝑝 > 0.

1. Are the poor properties of stable families of Cohen–Macaulay/F-injective pairs related to the ratio
between the dimension and the characteristic? More precisely, are there families of n-dimensional
pairs such as those of Theorem 1.3 if 𝑝 � 𝑛?

2. Do such pathologies also appear for stable families of n-dimensional varieties? More precisely,
are there stable families of n-dimensional varieties (without boundaries) over regular curves with
pathologies such as those of [17] and Theorem 1.3? What if we assume that 𝑝 � 𝑛, or that the
generic fiber is Cohen–Macaulay or F-injective?

3. Are there pathological families of stable surface pairs in characteristics ≤ 5?

2. Preliminaries

2.1. Conventions and notations

We work over an algebraically closed field k of positive characteristic 𝑝 > 0.

1. A variety (over k) is an integral quasi-projective k-scheme of finite type. A curve (resp. surface,
threefold) is k-variety of dimension one (resp. two, three).

2. The conditions 𝑆𝑖 are the Serre’s conditions, see [1, 0341].
3. Given a variety X, a divisor E over X is a prime divisor appearing on a (proper) birational model
𝜇 : 𝑌 → 𝑋 . Its center 𝑐𝑋 (𝐸) ⊂ 𝑋 is the closure of 𝜇(𝐸).

4. Let us recall some standard MMP terminology from [21, 16]. Let X be a normal variety and Δ be a
Q-divisor such that 𝐾𝑋 +Δ isQ-Cartier. For a proper birational morphism 𝜇 : 𝑌 → 𝑋 with Y normal
we write

𝐾𝑌 = 𝜇∗(𝐾𝑋 + Δ) +
∑
𝐸

𝑎(𝐸 ; 𝑋,Δ) · 𝐸.

2The distinction between moduli stacks and moduli functors is irrelevant for our discussion. While I use the language of stacks
on a superficial level in this note, the reference for moduli theory of stable pairs in characteristic 0 [18] takes the viewpoint of
moduli functors.
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We define

discrep(𝑋,Δ) = inf{𝑎(𝐸 ; 𝑋,Δ) | 𝐸 exceptional over 𝑋}.

We say that (𝑋,Δ) is sub-lc (resp. sub-klt) if for every 𝜇 and E we have 𝑎(𝐸 ; 𝑋,Δ) ≥ −1
(resp. 𝑎(𝐸 ; 𝑋,Δ) > −1). If Δ ≥ 0 and (𝑋,Δ) is sub-lc (resp. sub-klt), we say that (𝑋,Δ) is lc
(resp. klt). We say that (𝑋,Δ) is canonical (resp. terminal) if Δ is effective, and for every 𝜇 and
𝜇-exceptional E we have 𝑎(𝐸 ; 𝑋,Δ) ≥ 0 (resp. 𝑎(𝐸 ; 𝑋,Δ) > 0). In case (𝑋, Supp(Δ)) is log smooth,
sufficient and necessary conditions on the coefficients of Δ for these conditions to hold are given in
[16, Corollary 2.11]. In particular, a regular variety is terminal.

5. We will several times use tacitly the following fact [16, Lemma 2.5]: if 𝐾𝑋 + Δ is Q-Cartier, if
𝜇 : 𝑌 → 𝑋 is birational with Y normal, and if

𝐾𝑌 + 𝜇−1
∗ Δ + 𝐹 = 𝜇∗(𝐾𝑋 + Δ) where 𝐹 is 𝜇-exceptional,

then 𝑎(𝐸 ; 𝑋;Δ) = 𝑎(𝐸 ;𝑌, 𝜇−1
∗ Δ + 𝐹) for every divisor E over X.

We also use the following terminology (see Appendix A for more details):
Definition 2.1 [18, (2.3, 2.44)]. Let C be a normal k-variety of dimension ≤ 1, let 𝑓 : (𝑋,Δ) → 𝐶 be a
family of pairs [18, Definition 2.2]–in particular, the fibers 𝑋𝑐 are geometrically reduced–, and assume
that X is normal. Then we say that f is locally stable if (𝑋,Δ + 𝑋𝛼) is lc for every 𝛼 ∈ 𝐶 (𝑘). We say
that f is stable if it is proper, locally stable and 𝐾𝑋 + Δ is f -ample.

We record the following well-known result.
Lemma 2.2. Let X be a regular k-variety and G be a divisor over X with nonempty center 𝔠 = 𝑐𝑋 (𝐺) ⊂ 𝑋 .
Then 𝑎(𝐺; 𝑋) ≥ codim𝑋 (𝔠) − 1.
Proof. By a result of Zariski [21, Lemma 2.45], there is a finite sequence of birational proper morphisms

𝑋𝑛
𝑓𝑛−→ 𝑋𝑛−1

𝑓𝑛−1−→ . . .
𝑓1−→ 𝑋0 = 𝑋

such that each 𝑓𝑖 is the blow-up of 𝑋𝑖−1 along the center 𝔠𝑖−1 of G on 𝑋𝑖−1, and G appears on 𝑋𝑛
as an 𝑓𝑛-exceptional divisor dominating 𝔠𝑛−1. To prove the statement we may localize each 𝑋𝑖 in a
neighbourhood of the generic point of 𝔠𝑖 , and so we can assume that each 𝔠𝑖 is a regular subvariety and
that each 𝑋𝑖 is regular. Let 𝐸𝑖 ⊂ 𝑋𝑖 be the unique 𝑓𝑖-exceptional divisor: since 𝐸𝑖 = 𝑓 −1

𝑖 (𝔠𝑖−1) it holds
that 𝔠𝑖 ⊆ 𝐸𝑖 for each i, with equality if and only if 𝑖 = 𝑛. By abuse of notation, the strict transform of 𝐸𝑖
on each 𝑋𝑖+1, . . . , 𝑋𝑛 will also be denoted by 𝐸𝑖 .

Let 𝑓 : 𝑋𝑛 → 𝑋 be the composition of all blow-ups. We write

𝑓 ∗𝐾𝑋 = 𝐾𝑋𝑛 −
𝑛∑
𝑖=1
𝑎𝑖𝐸𝑖 .

We claim that 𝑎𝑖+1 > 𝑎𝑖 for all i: since 𝑎1 = codim(𝔠) − 1 and 𝐸𝑛 = 𝐺, the result will follow. These
inequalities are easily proved by induction: we have

𝑓 ∗𝑖
���𝐾𝑋𝑖−1 −

𝑖−1∑
𝑗=1
𝑎 𝑗𝐸 𝑗

�	
 = 𝐾𝑋𝑖 −
𝑖−1∑
𝑗=1
𝑎 𝑗𝐸 𝑗 −

(
codim𝑋𝑖−1 (𝔠𝑖−1) − 1 + mult𝔠𝑖−1

∑
𝑗

𝑎 𝑗𝐸 𝑗

)
· 𝐸𝑖 .

Since 𝔠𝑖−1 � 𝐸𝑖−1 we have

𝑎𝑖 = codim𝑋𝑖−1 (𝔠𝑖−1) − 1 + mult𝔠𝑖−1

∑
𝑗

𝑎 𝑗𝐸 𝑗 ≥ 1 + 𝑎𝑖−1.

This proves the lemma. �
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2.2. 1-Foliations

For basics on derivations and 1-foliations, we refer to [27]. We recall below the most important facts for
us. For derivations we need:

Lemma 2.3. Let 𝜕 be a p-closed derivation on an integral scheme Spec(𝐴). If there exists 𝑎 ∈ 𝐴 such
that 𝜕 (𝑎) ≠ 0 and 𝜕 [𝑝] (𝑎) = ℎ𝜕 (𝑎) for some ℎ ∈ 𝐴, then 𝜕 [𝑝] = ℎ𝜕.

For 1-foliations, let us recall:

Definition 2.4. LetF be a 1-foliation on a normal variety X. Assume that the divisorial sheafO𝑋 (𝐾F ) =
(
∧rkF F) [−1] is Q-Cartier. Then F is log canonical (lc) if for every proper birational morphism
𝜇 : 𝑌 → 𝑋 we can write

𝐾𝜇∗F = 𝜇∗𝐾F +
∑

𝐸 : 𝜇-exc.
𝑎(𝐸 ;F) · 𝐸

with

𝑎(𝐸 ;F) ≥
{

0 if 𝐸 is 𝜇∗F-invariant,
−1 otherwise.

Definition 2.5. Let F be a 1-foliation of rank 1 on a normal variety X. Then F has only multiplicative
singularities (3) if for every 𝑥 ∈ Sing(F), the restriction F ⊗ Ô𝑋,𝑥 is generated up-to-saturation by a
continuous derivation 𝜕 ∈ Dercont

𝑘

(
Ô𝑋,𝑥

)
satisfying 𝜕 [𝑝] = 𝑢𝜕 where 𝑢 ∈ Ô×

𝑋,𝑥 .

Proposition 2.6 [27, Corollary 1]. Let X be a regular variety. If F is a 1-foliation of rank 1, then F has
only multiplicative singularities if and only if F is lc.

Pullbacks of 1-foliations along smooth blow-ups can be computed as follows:

Example 2.7. Let 𝜋 : 𝑋 → A𝑛𝑥1 ,...,𝑥𝑛 be the blow-up of the ideal (𝑥1, . . . , 𝑥𝑟 ) for 𝑟 ≤ 𝑛. The 𝑥1-chart𝑈1
of the blow-up 𝜋∗ : 𝑘 [𝑥1, . . . , 𝑥𝑛] → 𝑘 [𝑦1, . . . , 𝑦𝑛] is given by

𝑥1 ↦→ 𝑦1, 𝑥𝑖 ↦→ 𝑦1𝑦𝑖 (1 < 𝑖 ≤ 𝑟), 𝑥 𝑗 ↦→ 𝑦 𝑗 ( 𝑗 > 𝑟).

The pullbacks of derivations on A𝑛 by 𝜋 |𝑈1 can be computed using the following equalities:

𝜋∗𝜕𝑦1 |𝑈1 = 𝜕𝑦1 −
𝑟∑
𝑖=2

𝑦𝑖
𝑦1
𝜕𝑦𝑖 , 𝜋∗𝜕𝑥𝑖 |𝑈1 =

1
𝑦1
𝜕𝑦𝑖 (1 < 𝑖 ≤ 𝑟), 𝜋∗𝜕𝑥 𝑗 |𝑈1 = 𝜕𝑦 𝑗 ( 𝑗 > 𝑟).

Let us recall some properties of quotients by 1-foliations.

Definition 2.8 [27, Definition 4.2.1]. Let X be a normal variety, F a 1-foliation on X and 𝑞 : 𝑋 → 𝑋/F
the quotient morphism. If Δ =

∑
𝑖 𝑎𝑖Δ 𝑖 is a Q-divisor on X, where Δ 𝑖 are prime divisors, then we let

Δ𝑋/F =
∑
𝑖

𝑎𝑖𝜀𝑖𝑞(Δ 𝑖)

where

𝜀𝑖 =

{
1 if Δ 𝑖 is F-invariant,
1
𝑝 otherwise.

3The definition [27, Definition 2.4.7] is more general, but for 1-foliations of rank 1 the two definitions agree.
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Proposition 2.9 [27, Proposition 4.2.3]. Let X be a normal variety, Δ a Q-divisor on X, F a 1-foliation
on X and 𝑞 : 𝑋 → 𝑋/F the quotient morphism. Then we have an equality of Q-divisors

𝑞∗(𝐾𝑋/F + Δ𝑋/F ) = 𝐾𝑋 + Δ + (𝑝 − 1)𝐾F .

The following theorem is our main tool to compute the discrepancies over quotient singularities.

Theorem 2.10. Let (𝑋,Δ) be a normal sub-pair, F be a 1-foliation on X, and 𝑞 : (𝑋,Δ) → (𝑌 = 𝑋/
F ,Δ𝑌 ) be the associated quotient morphism.

1. If F is lc and (𝑋,Δ) is sub-lc (respectively sub-klt), then (𝑌,Δ𝑌 ) is sub-lc (respectively sub-klt).

Let 𝜇 : 𝑌 ′ → 𝑌 be a birational proper morphism. Then:

2. If 𝑋 ′ is the normalization of 𝑌 ′ in 𝐾 (𝑋), then we have a commutative diagram

𝑋 ′ 𝑌 ′

𝑋 𝑌

𝑞′

𝜇′ 𝜇

𝑞

where 𝜇′ is a proper birational morphism, and 𝑞′ is the quotient by (𝜇′)∗F .
3. If 𝐸 ⊂ 𝑋 ′ is a prime divisor with image the prime divisor 𝑞′(𝐸) = 𝐹 ⊂ 𝑌 ′, then

𝑎(𝐹;𝑌,Δ𝑌 ) =
{
𝑎(𝐸 ; 𝑋,Δ) + (𝑝 − 1) · 𝑎(𝐸 ;F) if 𝐸 is (𝜇′)∗F-invariant,
1
𝑝 [𝑎(𝐸 ; 𝑋,Δ) + (𝑝 − 1) · 𝑎(𝐸 ;F)] otherwise.

Proof. This is proved in [27, Theorem 4.2.5], under the additional assumption that Δ is effective.
However, that assumption is not needed in the proof. �

Let us also recall the notion of family of 1-foliations.

Definition 2.11 [27, §5.1]. Let 𝑋 → 𝐵 be a flat morphism between normal varieties with geometrically
normal fibers. A relative 1-foliation is a 1-foliation on X that is contained in the sub-module 𝑇𝑋/𝐵 of
𝑇𝑋/𝑘 . If 𝑋 → 𝐵 is smooth, we say that a relative 1-foliation F ⊂ 𝑇𝑋/𝐵 is a family of 1-foliations if
𝑇𝑋/𝐵/F is flat over B and for every 𝑏 ∈ 𝐵 the sub-module F ⊗ O𝑋𝑏 ↩→ 𝑇𝑋𝑏/𝑘 (𝑏) is a 1-foliation.

Theorem 2.12 [27, Proposition 5.2.4, Corollary 5.2.5]. Let 𝑋 → 𝐵 be a smooth morphism over a
normal curve B, and F ⊂ 𝑇𝑋/𝐵 be a family of 1-foliations. Then:

1. for every 𝑏 ∈ 𝐵 there is a natural morphism 𝜑𝑏 : 𝑋𝑏/F |𝑋𝑏 → (𝑋/F)𝑏 ,
2. 𝜑𝑏 is an isomorphism if and only if (𝑋/F)𝑏 is 𝑆2, and
3. if F has only multiplicative singularities in a neighborhood of 𝑋𝑏 then 𝜑𝑏 is an isomorphism.

Finally, the following lemma will be useful for computations related to base-changes:

Lemma 2.13. Let 𝑓 : 𝑋 → 𝐵 be a smooth morphism, with B a normal variety. Let 𝑔 : 𝐵′ → 𝐵 be a flat
morphism from a normal variety, inducing the cartesian diagram

𝑋 ′ 𝑋

𝐵′ 𝐵.

𝑓 ′

𝑔′

𝑓

𝑔

Let F ⊂ 𝑇𝑋/𝐵 be a relative 1-foliation, and F ′ = (𝑔′)∗F ↩→ (𝑔′)∗𝑇𝑋/𝐵 � 𝑇𝑋 ′/𝐵′ . Then F ′ is a
relative 1-foliation, and the natural morphism 𝑋 ′ → (𝑋/F) ×𝐵 𝐵′ is isomorphic over 𝐵′ to the quotient
𝑋 ′ → 𝑋 ′/F ′.
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Proof. This can be checked Zariski-locally on 𝑋, 𝐵, and 𝐵′, so we may assume that 𝑋 = Spec(𝑅),
𝐵 = Spec(𝐴), 𝐵′ = Spec(𝐴′) and that F = 𝐹̃ is generated by 𝜕1, . . . , 𝜕𝑛 ∈ Der𝐴(𝑅). Let 𝑅′ = 𝑅 ⊗𝐴 𝐴′.
We have a natural map

𝔤′ : Der𝑅 (𝐴) → Der𝐴′ (𝑅′), 𝔤′(𝜓) : 𝑟 ⊗ 𝑎′ ↦→ 𝜓(𝑟) ⊗ 𝑎′,

and the 𝐴′-sub-module 𝐹 ′ of Der𝐴′ (𝑅′) generated by 𝔤′(𝐹) sheafifies into F ′. We check below that 𝐹 ′

is closed under Lie brackets and p-powers. As the 𝜕 ′𝑖 = 𝔤′(𝜕𝑖) generate 𝐹 ′ we see that

(𝑅′)𝐹 ′
= ker

(
(𝜕 ′1, . . . , 𝜕

′
𝑛) : 𝑅′ → (𝑅′) ⊕𝑛

)
.

Similarly we have

𝑅𝐹 = ker
(
(𝜕1, . . . , 𝜕𝑛) : 𝑅 → 𝑅⊕𝑛)

.

Since 𝐴′ is flat over A we therefore obtain that 𝑅𝐹 ⊗𝐴 𝐴′ = (𝑅′)𝐹 ′ , and the lemma follows.
It remains to check that 𝐹 ′ is closed under brackets and p-powers. Let 𝜉, 𝜓 ∈ 𝔤′(𝐹) and 𝑟, 𝑠 ∈ 𝑅′.

As 𝔤′ commutes with Lie brackets we have [𝑟𝜉, 𝑠𝜓] = 𝑟𝑠 · [𝜉, 𝜓] ∈ 𝐹 ′. By Hochschild’s formula
[27, (2.3.0.a)] we see that (𝑟𝜉) [𝑝] ∈ 𝐹 ′. Finally, a formula of Jacobson [13, p. 209] shows that
(𝑟𝜉 + 𝑠𝜓) [𝑝] and (𝑟𝜉) [𝑝] + (𝑠𝜓) [𝑝] differ by an 𝑅′-linear combination of multifold Lie brackets of 𝑟𝜉
and 𝑠𝜓. Thus (𝑟𝜉 + 𝑠𝜓) [𝑝] ∈ 𝐹 ′, and we are done. �

3. Non-𝑆3 isolated MMP singularities

Consider the affine space A𝑛 over the field k with coordinates 𝑥1, . . . , 𝑥𝑛 where 𝑛 ≥ 2. We introduce the
derivation

𝜕 =
𝑛∑
𝑖=1
𝑥2
𝑖 𝜕𝑥𝑖 on A𝑛.

First we observe that:

Claim 3.1. 𝜕 [𝑝] = 0.

Proof. Since the summands 𝑥2
𝑖 𝜕𝑥𝑖 commute with each other, we have

𝜕 [𝑝] =
𝑛∑
𝑖=1

(
𝑥2
𝑖 𝜕𝑥𝑖

) [𝑝]
.

Since 𝜕𝑥𝑖 is p-closed, by Hochschild’s formula [27, (2.3.0.a)] the scaling 𝑥2
𝑖 𝜕𝑥𝑖 is also p-closed. It is easily

seen that (𝑥2
𝑖 𝜕𝑥𝑖 ) [𝑝] (𝑥𝑖) = 0, and by Lemma 2.3 it follows that (𝑥2

𝑖 𝜕𝑥𝑖 ) [𝑝] = 0. Therefore 𝜕 [𝑝] = 0. �

In particular F = OA𝑛 · 𝜕 is a 1-foliation on A𝑛.

Theorem 3.2. With the notations as above, let 𝑌 = A𝑛/F (with 𝑛 ≥ 2). Then:

1. Y is a normal Q-factorial variety, with a unique singular closed point 0;
2. O𝑌 ,0 is not 𝑆3 if 𝑛 ≥ 3;
3. It holds that:

◦ If 𝑛 ≤ 𝑝 − 2, Y is not lc.
◦ If 𝑛 ≥ 𝑝 − 1, Y is lc;
◦ If 𝑛 ≥ 𝑝, Y is canonical;
◦ If 𝑛 ≥ 𝑝 + 1, Y is terminal.
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Proof. By construction Y is normal and Q-factorial: in particular 𝐾𝑌 is Q-Cartier. Since Sing(F) is
the origin 0 ∈ A𝑛, we see that Y is regular away from the image 0 of the origin [27, Lemma 2.5.10].
As the ideal generated by the image of 𝜕 in the local ring OA𝑛 ,0 is 𝔪A𝑛 ,0-primary, by Claim 3.1 and
[27, Lemma 2.5.4] we obtain that O𝑌 ,0 = O𝜕

A𝑛 ,0 is not 𝑆3.
It remains to analyze the singularity of (0 ∈ 𝑌 ) through the glasses of the MMP. To begin with, we

blow-up the origin of A𝑛 to simplify the singularities of F :

𝑏 : 𝑋 = Bl0 A𝑛 −→ A𝑛.

Consider the 𝑥1-patch𝑈1 of this blow-up:

𝑏∗ : 𝑘 [𝑥1, . . . , 𝑥𝑛] → 𝑘 [𝑢1, . . . , 𝑢𝑛], 𝑥1 ↦→ 𝑢1, 𝑥𝑖 ↦→ 𝑢1𝑢𝑖 (𝑖 > 1).

Using the blow-up computations of Example 2.7, we see that on this chart we have

𝑏∗𝜕 |𝑈1 = 𝑢1 ·
(
𝑢1𝜕𝑢1 −

𝑛∑
𝑖=2
𝑢𝑖𝜕𝑢𝑖

)
+

𝑛∑
𝑖=2
𝑢2

1𝑢
2
𝑖 ·

1
𝑢1
𝜕𝑢𝑖

= 𝑢1 ·
[
𝑢1𝜕𝑢1 +

𝑛∑
𝑖=2

(−𝑢𝑖 + 𝑢2
𝑖 )𝜕𝑢𝑖

]
︸������������������������������︷︷������������������������������︸

𝜓

Since 𝑏∗𝜕 is p-closed, its scaling 𝜓 is also p-closed. As 𝜓(𝑢1) = 𝑢1 we obtain by Lemma 2.3 that
𝜓 [𝑝] = 𝜓. Therefore by Proposition 2.6 we obtain that

O𝑈1 · 𝜓 = (𝑏∗F) |𝑈1 is an lc 1-foliation.

The situation is similar on the other charts, and therefore we find that 𝑏∗F is an lc 1-foliation. As
𝜓(𝑢1) ∈ (𝑢1) we also see that the exceptional divisor 𝐸 ⊂ 𝑋 of b is 𝑏∗F-invariant. Finally, as
𝑏∗𝜕 |𝑈1 = 𝑢1 · 𝜓 we see that 𝑎(𝐸 ;F) = −1.

Now let 𝑍 = 𝑋/𝑏∗F and consider the induced commutative diagram

𝑋 𝑍

A𝑛 𝑌

𝑏

𝑞′

𝔟

𝑞

(3.1)

where the horizontal arrows are the quotient morphisms and where 𝔟 : 𝑍 → 𝑌 is birational. Let 𝐹 ⊂ 𝑍
be the unique prime 𝔟-exceptional divisor. By Theorem 2.10 we have

𝑎(𝐹;𝑌 ) = 𝑎(𝐸 ;A𝑛) + (𝑝 − 1) · 𝑎(𝐸 ;F) = (𝑛 − 1) + (𝑝 − 1) (−1) = 𝑛 − 𝑝.

If 𝑛 ≤ 𝑝 − 2 then 𝑎(𝐹;𝑌 ) ≤ −2 and Y is not lc. From now on assume that 𝑛 ≥ 𝑝 − 1. We have:

𝐾𝑍 + (𝑝 − 𝑛)𝐹 = 𝔟∗𝐾𝑌 .

This crepant relation shows that Y is lc if and only if discrep(𝑍, (𝑝 − 𝑛)𝐹) ≥ −1. Since 𝑏∗F is lc,
Theorem 2.10 shows that discrep(𝑍, (𝑝 − 𝑛)𝐹) ≥ −1 as soon as discrep(𝑋, (𝑝 − 𝑛)𝐸) ≥ −1. As (𝑋, 𝐸)
is log smooth, this holds when 𝑝 − 𝑛 ≤ 1 by [16, Corollary 2.11]. This settles the lc case of the theorem.

It remains to study when Y is canonical (resp. terminal): for this we assume that 𝑛 ≥ 𝑝. Consider an
exceptional divisor 𝐹 ′ over Y, appearing on a birational model 𝑍 ′ → 𝑌 . Replacing 𝑍 ′ by some blow-up,
we may assume that 𝑍 ′ → 𝑌 factors through a birational morphism 𝔣 : 𝑍 ′ → 𝑍 . Let 𝑓 : 𝑋 ′ → 𝑋 be
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the normalization of 𝔣 in 𝐾 (𝑋), and 𝐸 ′ ⊂ 𝑋 ′ be the prime divisor dominating 𝐹 ′ ⊂ 𝑍 ′. If 𝑓 (𝐸 ′) ⊄ 𝐸
then 𝑐𝐹 ′ (𝑌 ) ≠ 0, and therefore 𝑎(𝐹 ′;𝑌 ) ≥ 1 as Y is regular away from 0. Thus we may assume that
𝑓 (𝐸 ′) ⊂ 𝐸 . By Theorem 2.10 we have

𝑎(𝐹 ′;𝑌 ) = 𝑎(𝐹 ′; 𝑍, (𝑝 − 𝑛)𝐹)
= 𝛿𝐸′ · [𝑎(𝐸 ′; 𝑋, (𝑝 − 𝑛)𝐸) + (𝑝 − 1) · 𝑎(𝐸 ′; 𝑏∗F)]

where 𝛿𝐸′ ∈ {1, 𝑝−1}. We must find conditions that guarantee that 𝑎(𝐹 ′;𝑌 ) ≥ 0 (resp. > 0), hence the
factor 𝛿𝐸′ will not play any role. As (𝑋, 𝐸) is log smooth and 𝑝−𝑛 ≤ 0, we have 𝑎(𝐸 ′; 𝑋, (𝑝−𝑛)𝐸) ≥ 1.
Since regular 1-foliations are canonical [27, Lemma 3.0.3], it follows that 𝑎(𝐹 ′;𝑌 ) > 0 unless the center
of 𝐸 ′ is contained in the singular locus of 𝑏∗F : so from now on we assume that 𝑐𝑋 (𝐸 ′) is contained
in Sing(𝑏∗F). It is easily seen, using the computations above, that the singular locus of 𝑏∗F is a finite
collection of isolated points. Therefore, by Lemma 2.2 we see that 𝑎(𝐸 ′; 𝑋) ≥ 𝑛 − 1. Moreover, as 𝑏∗F
is lc we have 𝑎(𝐸 ′; 𝑏∗F) ≥ −1. Putting everything together, we get

1
𝛿𝐸′

𝑎(𝐹 ′;𝑌 ) = 𝑎(𝐸 ′; 𝑋) + (𝑛 − 𝑝) · mult𝐸′ ( 𝑓 ∗𝐸) + (𝑝 − 1) · 𝑎(𝐸 ′; 𝑏∗F)

≥ (𝑛 − 1) + (𝑛 − 𝑝) + (𝑝 − 1) · (−1)
= 2(𝑛 − 𝑝).

So if 𝑛 ≥ 𝑝 (resp. if 𝑛 > 𝑝) it holds that 𝑎(𝐹 ′;𝑌 ) ≥ 0 (resp. 𝑎(𝐹 ′;𝑌 ) > 0). This completes the proof. �

Remarks 3.3.

1. The case 𝑛 = 3 ≥ 𝑝 gives a canonical non-Cohen–Macaulay isolated threefold singularity. It was
shown in [2] that klt threefold singularities (with perfect residue fields) are Cohen–Macaulay in
characteristic 𝑝 > 5. This is optimal, as there also exist non-Cohen–Macaulay terminal threefold
singularities in characteristic 5 [33].

2. In characteristic 0, strictly lc singularities may not be 𝑆3, but this can only happen if they are log
canonical centers [16, Corollary 7.21]. If 𝑛 = 𝑝 − 1 in Theorem 3.2 then 0 is an lc center of Y, as the
proof shows.

We end this section with some further remarks on the singularities (0 ∈ 𝑌 ) constructed in
Theorem 3.2. Unless we specify otherwise, there will be no constraint on the characteristic p nor on
𝑛 = dim𝑌 .

Proposition 3.4. If 𝑝 > 2, then the singularity (0 ∈ 𝑌 ) is never 1-Gorenstein (i.e., 𝐾𝑌 is never Cartier).

This is false if 𝑝 = 2: for example, in dimension two we obtain the RDP 𝐷0
4, which is Gorenstein.

Proof. Let us use the notation of the proof of Theorem 3.2. We perform a weighted blow-up of the
closed point defined by (𝑢1, . . . , 𝑢𝑛) in 𝑈1 ⊂ 𝑋 with weights (1, 𝑝 − 1, . . . , 𝑝 − 1) (see [29, Example
2.4.3]). A (schematic) affine chart of the weighted blow-up is given by

𝑘 [𝑢1, . . . , 𝑢𝑛] → 𝑘 [𝑣1, . . . , 𝑣𝑛], 𝑢1 ↦→ 𝑣1, 𝑢𝑖 ↦→ 𝑣𝑝−1
1 𝑣𝑖 (𝑖 ≥ 2).

The (unique) exceptional divisor 𝐸 ′ is given by (𝑣1 = 0). We have

𝑑𝑢1 ∧ · · · ∧ 𝑑𝑢𝑛 = 𝑣 (𝑛−1) (𝑝−1)
1 𝑑𝑣1 ∧ · · · ∧ 𝑑𝑣𝑛

and thus 𝑎(𝐸 ′; 𝑋) = (𝑛 − 1) (𝑝 − 1). Since

𝑢1𝜕𝑢1 = 𝑣1𝜕𝑣1 −
𝑛∑
𝑖=2

(𝑝 − 1)𝑣𝑖𝜕𝑣𝑖 , 𝑢𝑖𝜕𝑢𝑖 = 𝑣𝑖𝜕𝑣𝑖 (𝑖 ≥ 2),
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we find

𝜓 = 𝑣1 ·
[
𝜕𝑣1 +

𝑛∑
𝑖=2
𝑣𝑝−2

1 𝑣2
𝑖 𝜕𝑣𝑖

]
.

Therefore 𝑎(𝐸 ′; 𝑏∗F) = −1 and 𝐸 ′ is not invariant with respect to the pullback of 𝑏∗F . So if 𝐹 ′ is the
divisor over Y induced by 𝐸 ′, we find:

𝑎(𝐹 ′;𝑌 ) = 𝑎(𝐹 ′; 𝑍, (𝑝 − 𝑛)𝐹)

=
1
𝑝
· [𝑎(𝐸 ′; 𝑋, (𝑝 − 𝑛)𝐸) + (𝑝 − 1) · 𝑎(𝐸 ′; 𝑏∗F)]

=
1
𝑝
· [(𝑛 − 1) (𝑝 − 1) − (𝑝 − 𝑛) + (𝑝 − 1) (−1)]

= 𝑛 − 3 + 2
𝑝
.

Thus when 𝑝 > 2 we see that 𝑎(𝐹 ′;𝑌 ) ∉ Z. This shows that Y is not 1-Gorenstein. �

For the definition of𝑊O-rationality and Cohen–Macaulayness up to (Frobenius) nilpotence used in
the following proposition, and the notions that appear in its proof, we refer to [6].

Proposition 3.5. The singularities (0 ∈ 𝑌 ) are𝑊O-rational and Cohen–Macaulay up to nilpotence.

Proof. The property of𝑊O-rationality descends along finite universal homeomorphisms by [9, Propo-
sition 4.4.9]. It evidently holds for A𝑛, and so it holds for Y.

Let us show that Y is CM up to nilpotence. By [6, Lemma 2.3] the natural morphism O𝑌 → 𝑅𝑞∗OA𝑛

is an isomorphism in 𝐷𝑏 (Crys𝐹𝑌 ). Let 𝜔•
𝑌 be a dualizing complex on Y: by [5, Theorem 4.3.5], by

applying RHom(−, 𝜔•
𝑌 ) to the previous isomorphism we obtain

RHom(𝑅𝑞∗OA𝑛 , 𝜔•
𝑌 ) � RHom(O𝑌 , 𝜔

•
𝑌 ) in 𝐷𝑏 (Crys𝐶𝑌 ).

Now we have

RHom(𝑅𝑞∗OA𝑛 , 𝜔•
𝑌 ) � 𝑅𝑞∗ RHom(OA𝑛 , 𝜔A𝑛 )
� 𝑅𝑞∗𝜔A𝑛

� 𝑞∗𝜔A𝑛

in 𝐷𝑏 (Crys𝐶𝑌 ), where the first isomorphism holds by [5, Corollary 5.1.7] and the third one holds as q
is finite. This shows that RHom(O𝑌 , 𝜔

•
𝑌 ) is supported in a single degree as an element of the category

Crys𝐶𝑌 . By [6, Lemma 3.2] it follows that O𝑌 is CM up to nilpotence as an element of Crys𝐹𝑌 . �

Corollary 3.6. The singularities (0 ∈ 𝑌 ) are never F-injective.

Proof. This follows from [27, Lemma 2.5.4], but here is another proof that utilizes the notions introduced
above. Since Y is CM up to nilpotence, the action of Frobenius on the local cohomology groups
𝐻𝑖𝔪 (O𝑌 ,0), where 𝔪 is the maximal ideal and 0 ≤ 𝑖 < dimO𝑌 ,0, is nilpotent (see [6, Lemma 3.2]).
Since O𝑌 ,0 is 𝑆2 but not 𝑆3, we have 𝐻2

𝔪 (O𝑌 ,0) ≠ 0. Thus the Frobenius action on 𝐻2
𝔪 (O𝑌 ,0) is not

injective. This shows that O𝑌 ,0 is not F-injective. �

Proposition 3.7. There exist proper birational morphisms 𝜋 : 𝑉 → 𝑌 where V is a regular variety.
Moreover, for any such:
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1. the Frobenius action on 𝑅𝑖𝜋∗O𝑉 is nilpotent for 𝑖 > 0 (4), and
2. the Frobenius trace action on 𝑅𝑖𝜋∗𝜔𝑉 is nilpotent for 𝑖 > 0.

Proof. We begin by constructing a specific resolution of singularities and checking the nilpotence
statements along it. Consider the diagram (3.1) in the proof of Theorem 3.2. The 1-foliation 𝑏∗F is
locally generated by multiplicative derivations with isolated singularities. Thus the quotient 𝑍 = 𝑋/𝑏∗F
has only isolated 𝜇𝑝-singularities [27, Proposition 4.1.1]. These toroidal singularities can be resolved
using [15, Theorem 11* p.94]: let 𝜇 : 𝑉 ′ → 𝑍 be the induced resolution of singularities. The composition
𝜋′ = 𝔟 ◦ 𝜇 : 𝑉 ′ → 𝑌 is also a resolution of singularities.

We claim that the sheaves 𝑅𝑖𝜇∗O𝑉 ′ and 𝑅𝑖𝜇∗𝜔𝑉 ′ vanish for 𝑖 > 0. This can be checked formally
on Z, and thus we reduce to the toric situation. Then vanishing holds for 𝑖 > 0 by [15, Theorem 14
p. 52]. From the Leray spectral sequence it follows that

𝑅𝑖𝜋′∗O𝑉 ′ = 𝑅𝑖𝔟∗O𝑍 and 𝑅𝑖𝜋′∗𝜔𝑉 ′ = 𝑅𝑖𝔟∗𝜔𝑍 for 𝑖 ≥ 0.

By naturality of the Frobenius, these equalities reduce the nilpotence statements along 𝜋′ to the
nilpotence statements along the morphism 𝔟 : 𝑍 → 𝑌 . By construction the absolute Frobenius mor-
phism 𝐹𝑍 : O𝑍 → 𝐹∗O𝑍 factors through 𝑞′∗O𝑋 . Therefore 𝑅𝑖𝔟∗(𝐹𝑍 ) factors through 𝑅𝑖𝔟∗(𝑞′∗O𝑋 ) =
𝑞∗𝑅

𝑖𝑏∗O𝑋 . Since b is the blow-up of a point of A𝑛 we have 𝑅𝑖𝑏∗O𝑋 = 0 for 𝑖 > 0, which shows
that 𝑅𝑖𝔟∗(𝐹𝑌 ) is the zero map for 𝑖 > 0. By applying (derived) Hom into 𝜔𝑍 to the map 𝐹𝑍 , one
finds dually that the Frobenius trace Tr𝑍 : 𝐹∗𝜔𝑍 → 𝜔𝑍 factors through 𝑞′∗𝜔𝑋 . As before we have
𝑅𝑖𝔟∗(𝑞′∗𝜔𝑋 ) = 𝑞∗𝑅𝑖𝑏∗𝜔𝑋 = 0 for 𝑖 > 0, which shows that 𝑅𝑖𝔟∗(Tr𝑍 ) is the zero map for 𝑖 > 0. This
proves the nilpotence statements along 𝔟 and 𝜋′.

Finally, let 𝜋 : 𝑉 → 𝑌 be another proper birational morphism with V regular. By [8, Theorem 1] we
have 𝑅𝑖𝜋∗O𝑉 � 𝑅𝑖𝜋′∗O𝑉 ′ and 𝑅𝑖𝜋∗𝜔𝑉 � 𝑅𝑖𝜋′∗𝜔𝑉 ′ for every 𝑖 ≥ 0. So the nilpotence statements along
𝜋′ imply the corresponding nilpotence statements along 𝜋, which concludes the proof. �

4. Locally stable families with non-𝑆2 special fibers

4.1. First example: dim ≥ max{p, 3}.

Consider the affine space A𝑛+1
𝑥1 ,...,𝑥𝑛 ,𝑦 × A

1
𝑡 and the derivation

𝜕𝑚 =
𝑛∑
𝑖=1
𝑥2
𝑖 𝜕𝑥𝑖 + 𝑡𝑚𝜇(𝑦)𝜕𝑦 on A𝑛+1 × A1, (4.1)

where 𝑚 ≥ 0 and 𝜇(𝑦) ∈ 𝑘 [𝑦] satisfies (𝜇𝜕𝑦) [𝑝] = 0 and becomes a unit in a neighborhood of the
origin, that is, 𝜇(0) ≠ 0.

We let A = A𝑛x × 𝐷 (𝜇(𝑦)) ⊂ A𝑛+1 be the affine open subset where 𝜇(𝑦) is invertible. We let
F𝑚 ⊂ 𝑇(A×A1)/𝑘 be the sub-module generated by 𝜕𝑚.

(We can of course take 𝑚 = 1, 𝜇 = 1 and A = A𝑛+1; but this extra generality will be useful for
Theorem 4.7 below.)

Claim 4.1. F𝑚 is a family of 1-foliations over A1
𝑡 (Definition 2.11) if and only if 𝑛 ≥ 2.

Proof. Clearly 𝜕𝑚 ∈ 𝑇(A×A1)/A1 , and we see that 𝜕 [𝑝]𝑚 = 0 as in Claim 3.1 (and this survives along any
specialization of t). Thus F𝑚 is a relative 1-foliation over A1

𝑡 , for any 𝑛 ≥ 1. It is easily seen that the
cokernel of F𝑚 ↩→ 𝑇A×A1/A1 is torsion-free, hence flat, over A1.

4This is equivalent to saying that Y has F𝑝-rational singularities, see [6, Remark 3.5]. Combining this statement, Proposition 3.5
and [6, Proposition 3.8], we obtain that Y satisfies the Frobenius stable Grauert–Riemenschneider vanishing [6, Definition 3.6].
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The restriction of F𝑚 to the generic fiber of the projection A × A1
𝑡 → A1

𝑡 is the restriction to
A × Spec(𝑘 (𝑡)) of the module generated by

𝑛∑
𝑖=1
𝑥2
𝑖 𝜕𝑥𝑖 + 𝑡𝑚𝜇(𝑦)𝜕𝑦 ∈ Der𝑘 (𝑡) 𝑘 (𝑡) [𝑥1, . . . , 𝑥𝑛, 𝑦],

which is clearly a 1-foliation for every 𝑛 ≥ 1. A similar computation shows that F𝑚 |(𝑡=𝛼) is a 1-foliation
for every 0 ≠ 𝛼 ∈ 𝑘 and 𝑛 ≥ 1. The only condition is given by the restriction to the central fiber (𝑡 = 0):
indeed, F𝑚 |(𝑡=0) is generated by

𝑛∑
𝑖=1
𝑥2
𝑖 𝜕𝑥𝑖 ∈ Der𝑘 𝑘 [𝑥1, . . . , 𝑥𝑛, 𝑦],

so F𝑚 |(𝑡=0) is a 1-foliation if and only 𝑛 ≥ 2. (For 𝑛 = 1, observe that 𝑥2
1𝜕𝑥1 does not generate a saturated

sub-module of Der𝑘 𝑘 [𝑥1, . . . , 𝑥𝑛, 𝑦].) The statement follows. �

The following lemma explains how to simplify the singularities of F𝑚.

Lemma 4.2. We have Sing(F𝑚) = 𝑉 (𝑥1, . . . , 𝑥𝑛, 𝑡) for 𝑚 ≥ 1, and F0 is regular. If 𝑚 ≥ 1 and
𝑏 : 𝑋 = BlSing(F𝑚) → A × A1 is the blow-up of that singular locus with exceptional divisor E, then:

1. 𝑎(𝐸 ;F𝑚) = −1;
2. E is 𝑏∗F𝑚-invariant;
3. 𝑏∗F𝑚 is lc on the 𝑥𝑖-patches, and isomorphic over A1

𝑡 to F𝑚−1 on the t-patch;
4. if 𝑚 ≥ 2, the locus of non-lc singularities S of 𝑏∗F𝑚 is closed in X and contained on the t-patch;
5. mult𝑆 𝐸 = 1, codim𝑋 𝑆 = 𝑛 + 1 and S is disjoint from the strict transform of (𝑡 = 0) ⊂ A × A1

𝑡 .

Proof. The statement about the singular locus is clear. On the 𝑥1-patch𝑈1 the blow-up b is given by

𝑏∗ : 𝑘 [𝑥1, . . . , 𝑥𝑛, 𝑦, 𝑡] [𝜇(𝑦)−1] −→ 𝑘 [𝑢1, . . . , 𝑢𝑛, 𝑦, 𝑠] [𝜇(𝑦)−1],
𝑥1 ↦→ 𝑢1, 𝑥𝑖 ↦→ 𝑢1𝑢𝑖 (1 < 𝑖 ≤ 𝑛), 𝑦 ↦→ 𝑦, 𝑡 ↦→ 𝑢1𝑠.

Therefore we have

𝑏∗𝜕𝑚 |𝑈1 = 𝑢1 ·
(
𝑢1𝜕𝑢1 −

𝑛∑
𝑖=2
𝑢𝑖𝜕𝑢𝑖 − 𝑠𝜕𝑠

)
+

𝑛∑
𝑖=2
𝑢2

1𝑢
2
𝑖 ·

1
𝑢1
𝜕𝑢𝑖 + 𝑢𝑚1 𝑠

𝑚𝜇(𝑦) · 𝜕𝑦

= 𝑢1 ·
[
𝑢1𝜕𝑢1 +

𝑛∑
𝑖=2

(−𝑢𝑖 + 𝑢2
𝑖 )𝜕𝑢𝑖 + 𝑢𝑚−1

1 𝑠𝑚𝜇(𝑦)𝜕𝑦 − 𝑠𝜕𝑠

]
︸��������������������������������������������������������������︷︷��������������������������������������������������������������︸

𝜓

Since 𝑏∗𝜕𝑚 |𝑈1 is p-closed, so is 𝜓. As 𝜓(𝑢1) = 𝑢1, by Lemma 2.3 we obtain that 𝜓 [𝑝] = 𝜓. Thus
𝑏∗F𝑚 |𝑈1 = O𝑈1 · 𝜓 is lc by Proposition 2.6. Moreover, the above computations show that E is 𝑏∗F𝑚-
invariant and that 𝑎(𝐸 ;F𝑚) = −1. The situation on the other 𝑥𝑖-patches 𝑈𝑖 is similar.

On the t-patch V the blow-up b is given by

𝑏∗ : 𝑘 [𝑥1, . . . , 𝑥𝑛, 𝑦, 𝑡] [𝜇(𝑦)−1] −→ 𝑘 [𝑣1, . . . , 𝑣𝑛, 𝑦, 𝑠] [𝜇(𝑦)−1],
𝑥𝑖 ↦→ 𝑠𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑛), 𝑦 ↦→ 𝑦, 𝑡 ↦→ 𝑠.
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Therefore we have:

𝑏∗𝜕𝑚 |𝑉 =
𝑛∑
𝑖=1
𝑣2
𝑖 𝑠𝜕𝑣𝑖 + 𝑠𝑚𝜇(𝑦)𝜕𝑦

= 𝑠 ·
[
𝑛∑
𝑖=1
𝑣2
𝑖 𝜕𝑣𝑖 + 𝑠𝑚−1𝜇(𝑦)𝜕𝑦

]
︸����������������������������︷︷����������������������������︸

𝜉

Under the description 𝑉 � 𝐷A𝑛+1
𝑣1 ,...,𝑣𝑛,𝑦

(𝜇(𝑦)) × A1
𝑠 , we see that 𝜉 corresponds to 𝜕𝑚−1 and thus

𝑏∗F𝑚 |𝑉 � F𝑚−1. To finish the proof, it remains to observe that Sing(𝜉) = 𝑉 (𝑣1, . . . , 𝑣𝑛, 𝑠) ⊂ 𝑉 is in
fact a closed subset of X, and that the strict transform of (𝑡 = 0) is disjoint from the patch V. �

Theorem 4.3. With the notations as above, let 𝑌 = (A × A1)/F𝑚 with 𝑛 ≥ 2 and 𝑚 ≥ 1. Then:
1. The projection A × A1

𝑡 → A1
𝑡 factors through a flat morphism 𝑌 → A1

𝑡 of relative dimension 𝑛 + 1;
2. 𝑌𝑡 is smooth for 𝑡 ≠ 0, while 𝑌0 is reduced and non-𝑆2;
3. If 𝑛 + 1 ≥ max{𝑝, 3}, the family 𝑌 → A1 is locally stable.

The hypothesis 𝑛 ≥ 2 ensures that the 1-foliationF𝑚 is a family of 1-foliations overA1
𝑡 , see Claim 4.1.

The case (𝑝 = 2, 𝑛 = 1) is considered in Example 4.6 below.

Proof. Since 𝜕𝑚(𝑡) = 0 we have 𝑘 [𝑡] ⊂ 𝑘 [𝑥1, . . . , 𝑥𝑛, 𝑦, 𝑡]𝜕𝑚 : this proves the first point. On the principal
open set 𝐷 (𝑡) ⊂ A×A1 the 1-foliation F𝑚 |𝐷 (𝑡) is regular. Thus for 0 ≠ 𝛼 ∈ 𝑘 , by Theorem 2.12 we have

𝑌𝛼 = A/F𝑚,𝛼 for F𝑚,𝛼 = OA ·
(
𝑛∑
𝑖=1
𝑥2
𝑖 𝜕𝑥𝑖 + 𝛼𝑚𝜇(𝛼)𝜕𝑦

)
.

As F𝑚,𝛼 is regular for 𝛼 ≠ 0 we obtain that 𝑌𝛼 is smooth [27, Lemma 2.5.10].
Let us prove that 𝑌0 is not 𝑆2. For this we reduce to 𝑚 = 1. Indeed, consider the cartesian diagram

A × A1
𝑡 A × A1

𝑡′

A1
𝑡 A1

𝑡′

𝑣

𝑢

where the vertical arrows are the projections and 𝑢 : A1
𝑡 → A1

𝑡′ is given by 𝑢∗(𝑡 ′) = 𝑡𝑚. By Lemma 2.13
we have 𝑣∗F1 = F𝑚 (where F1 is defined as in (4.1) using 𝑡 ′ instead of t) and an A1

𝑡 -isomorphism

(A × A1
𝑡′ )/F1 ×A1

𝑡′
A1
𝑡 � 𝑌 .

Hence it suffices to show that 𝑌0 is non-𝑆2 in the case 𝑚 = 1. As F1 is a family of 1-foliations over A1
𝑡 ,

by Theorem 2.12 it is sufficient to prove that

O𝜕1
A×A1 ,0 ⊗𝑘 [𝑡 ] 𝑘 [𝑡]/(𝑡) �

(
OA,0/(𝑡)

) 𝜕̄ with 𝜕 =
𝑛∑
𝑖=1
𝑥2
𝑖 𝜕𝑥𝑖 ,

where 0 = 𝑉 (𝑥1, . . . , 𝑥𝑛, 𝑦, 𝑡). Clearly 𝜕 (𝑦) = 0, so it suffices to show that there is no 𝑓 ∈ OA×A1 ,0 such
that 𝜕1(𝑦 + 𝑡 𝑓 ) = 0. If there was such an f, we would have

0 = 𝜕1(𝑦 + 𝑡 𝑓 ) = 𝑡𝜇 +
𝑛∑
𝑖=1
𝑡𝑥2
𝑖 𝜕𝑥𝑖 ( 𝑓 ) + 𝑡2𝜇𝜕𝑦 ( 𝑓 ).

https://doi.org/10.1017/fms.2025.10129 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10129


Forum of Mathematics, Sigma 15

Taking into account that t is not a zero-divisor in OA×A1 ,0, we would obtain

−𝜇 =
𝑛∑
𝑖=1
𝑥2
𝑖 𝜕𝑥𝑖 ( 𝑓 ) + 𝑡𝜇𝜕𝑦 ( 𝑓 ).

However, the right-hand side belongs to the prime ideal (𝑥1, . . . , 𝑥𝑛, 𝑡), so this equality cannot hold in
the local ring OA×A1 ,0 by our choice of 𝜇. We have reached a contradiction, and hence 𝑌0 is not 𝑆2 at
the image of 0.

On the other hand, I claim that𝑌0 is (geometrically) reduced. Since Y is 𝑆2, the Cartier divisor𝑌0 is 𝑆1
and it is sufficient to show that 𝑌0 is generically reduced. Observe that 𝑌0 is irreducible. The 1-foliation
F𝑚 is regular on the open set 𝑈 = 𝐷 (𝑥1), which intersects 𝑌0 nontrivially. By Theorem 2.12 it follows
that the open subset (𝑈/F𝑚 |𝑈 )0 of 𝑌0 is the quotient of 𝑈0 by (the restriction of) F𝑚,0. In particular it
is normal, so 𝑌0 is generically reduced.

It remains to show that (𝑌,𝑌0) is lc (in the general case 𝑚 ≥ 1). For this, as in the proof of
Theorem 3.2, we blow-up A×A1 until the pullback of F𝑚 has only lc singularities. By Lemma 4.2, this
produces a sequence of m smooth blow-ups

𝑋𝑚 −→ 𝑋𝑚−1 −→ · · · −→ 𝑋1 −→ 𝑊 = A × A1

such that, if 𝑏𝑚 : 𝑋𝑚 → 𝑊 is the composition of the blow-ups, the 1-foliation 𝑏∗𝑚F𝑚 is lc. Let 𝐸 𝑗 ⊂ 𝑋𝑚
be the strict transform of the exceptional divisor of 𝑋 𝑗 → 𝑋 𝑗−1 (for 1 ≤ 𝑗 ≤ 𝑚), and denote (𝑡 = 0) ⊂ 𝑊
by𝑊0. We have 𝑎(𝐸1;𝑊,𝑊0) = 𝑛 − 1, and using Lemma 4.2 we compute

𝑎(𝐸2;𝑊,𝑊0) =𝑎(𝐸2; 𝑋1, (𝑋1 → 𝑊)−1
∗ 𝑊0 + (1 − 𝑛)𝐸1)

=2𝑛 − 1.

Continuing by induction, we find

𝑎(𝐸 𝑗 ;𝑊,𝑊0) = 𝑗𝑛 − 1, 𝑗 = 1, . . . , 𝑚.

Now let 𝑍 = 𝑋𝑚/𝑏∗𝑚F𝑚 and consider the induced commutative diagram

𝑋𝑚 𝑍

A × A1 𝑌

𝑏𝑚 𝔟

where the horizontal arrows are the quotient morphisms and where 𝔟 : 𝑍 → 𝑌 is birational. Let 𝐹𝑗 ⊂ 𝑍
be the prime divisor which is the image of 𝐸 𝑗 . Using Lemma 4.2 we get

𝑎(𝐸 𝑗 ;F𝑚) = − 𝑗 , 𝑗 = 1, . . . , 𝑚.

Now we use Theorem 2.10: since𝑊0 is F𝑚-invariant we find

𝑎(𝐹𝑗 ;𝑌,𝑌0) =𝑎(𝐸 𝑗 ;𝑊,𝑊0) + (𝑝 − 1) · 𝑎(𝐸 𝑗 ;F𝑚)
= 𝑗 (𝑛 − 𝑝 + 1) − 1.

Therefore we have the crepant equation

𝐾𝑍 + 𝔟−1
∗ 𝑌0 −

𝑚∑
𝑗=1

( 𝑗 (𝑛 − 𝑝 + 1) − 1)𝐹𝑗 = 𝔟∗(𝐾𝑌 + 𝑌0).
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To show that (𝑌,𝑌0) is lc it suffices to show that

discrep���𝑍, 𝔟−1
∗ 𝑌0 −

𝑚∑
𝑗=1

( 𝑗 (𝑛 − 𝑝 + 1) − 1)𝐹𝑗
�	
 ≥ −1.

Since 𝑏∗𝑚F𝑚 is lc, by Theorem 2.10 it suffices to show that

discrep���𝑋𝑚, (𝑏𝑚)−1
∗ 𝑊0 −

𝑚∑
𝑗=1

( 𝑗 (𝑛 − 𝑝 + 1) − 1)𝐸 𝑗
�	
 ≥ −1.

As (𝑋𝑚, (𝑏−1
𝑚 )∗𝑊0 +

∑𝑚
𝑗=1 𝐸 𝑗 ) is log smooth, this holds by [16, Corollary 2.11] as soon as

1 − 𝑗 (𝑛 − 𝑝 + 1) ≤ 1 for every 𝑗 ≥ 1. This is the case when 𝑛 + 1 ≥ 𝑝. The proof is complete. �

Remark 4.4. The normalization𝑌 𝜈0 of the 𝑛+1-dimensional central fiber𝑌0 in Theorem 4.3 is isomorphic
to the product of A1 with the n-dimensional quotient singularity of Theorem 3.2. In particular, it is
Q-factorial, 𝑆3 but non-𝑆4, non-F-injective, with a singular locus of dimension one. Since 𝑛 + 1 ≥
max{𝑝, 3} we have 𝑛 ≥ 𝑝−1 and so𝑌 𝜈0 is lc. If 𝑛 ≥ 𝑝 (resp. 𝑛 > 𝑝), it is even canonical (resp. terminal).

Corollary 4.5. Let 𝑌 = A𝑛+2
𝑥1 ,...,𝑥𝑛 ,𝑦,𝑡

/〈
∑𝑛
𝑖=1 𝑥

2
𝑖 𝜕𝑥𝑖 + 𝑡𝜕𝑦〉 with 𝑛 ≥ 2. If dim𝑌 = 𝑛 + 2 ≥ 𝑝 + 1, then Y has

non-𝑆3 canonical singularities along the image of 𝑉 (𝑥1, . . . , 𝑥𝑛, 𝑡).

Proof. The computations in the proof of Theorem 4.3 show that the central fiber 𝑌0 of 𝑌 → A1
𝑡 is not

𝑆2 along the image of 𝑉 (𝑥1, . . . , 𝑥𝑛, 𝑡). Thus Y is non-𝑆3 along that curve. To show that Y is canonical,
as the open set 𝑌 \𝑌0 is regular and thus terminal, it suffices to show that 𝑎(𝐸 ;𝑌 ) ≥ 0 for every divisor
E over Y with 𝑐𝑌 (𝐸) ⊆ 𝑌0. As 𝑌0 is an effective Cartier divisor and (𝑌,𝑌0) is lc we have

𝑎(𝐸 ;𝑌 ) = 𝑎(𝐸 ;𝑌,𝑌0) + mult𝐸 𝑌0 ≥ −1 + 1 = 0

and we are done. �

Example 4.6. Suppose that k has characteristic 𝑝 = 2, and consider the derivation 𝜕 = 𝑥2𝜕𝑥 + 𝑡𝜕𝑦 on
A3
𝑥,𝑦,𝑡 . Then 𝜕 [2] = 0 and that 𝑋 = A3/𝜕 is a flat A1

𝑡 -scheme given by the spectrum of 𝑘 [𝑥2, 𝑦2, 𝑡, 𝑡𝑥 +
𝑥2𝑦]: indeed, the latter ring is clearly 𝜕-invariant, is normal and has degree 4 over 𝑘 [𝑥2, 𝑦2, 𝑡2].

It is easily seen that X is isomorphic to an hypersurface in A4, and thus X is Cohen–Macaulay. Its
central fiber 𝑋0 = Spec 𝑘 [𝑥2, 𝑦2, 𝑥2𝑦] � 𝑉 (𝑊2 − 𝑋2𝑌 ) ⊂ A3

𝑋,𝑌 ,𝑊 is demi-normal but not normal: it
has a nodal singularity along the curve (𝑥 = 0). In fact, this is an inseparable node [28, §3.1], and thus
𝑋0 is semi-normal but not weakly normal [30, Lemma 2.3.7]. Simple computations in the spirit of the
proof of Theorem 4.3 show that the pair (𝑋, 𝑋0) is lc but not plt, as the image of the line (𝑥 = 0 = 𝑡) in
X is the singular locus of 𝑋0 and an lc center of (𝑋, 𝑋0). Compare also with the general semi-normality
results of [4].

Theorem 4.3 gives a series of local examples. We can compactify them as explained in the next
theorem to obtain global ones.

Theorem 4.7. For each 𝑝 > 0, there exists a projective family (Y ,B = 1
𝑝H) → A1 of relative dimension

𝑁 ≥ max{𝑝, 3} such that:

1. (Y , 1
𝑝H) → A1 is a stable family,

2. Y𝑡 has only 𝜇𝑝-quotient singularities for 𝑡 ≠ 0, and
3. Y0 is not 𝑆2.

Moreover:

◦ There exists a finite purely inseparable morphism P𝑁−1 × 𝐸 ×A1 → Y of degree p over A1, where E
is a supersingular elliptic curve, and H is the image of a Q-divisor 𝐻0 × A1 ⊂ P𝑁−1 × 𝐸 × A1;
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◦ If 𝑝 = 2 then we can modify the construction so that Y𝑡 is regular for every 𝑡 ≠ 0;
◦ If C is a normal curve and 𝐶 → A1 is a finite flat morphism, then Y𝐶 = Y ×A1 𝐶 is normal and

(Y𝐶 , 1
𝑝H𝐶 ) → 𝐶 is stable.

The following lemma will be useful for the proof.

Lemma 4.8. Consider E a supersingular elliptic curve,𝜔 ∈ 𝐻0(𝐸,𝑇𝐸 ) a global generator,A𝑁−1
𝑥1 ,...,𝑥𝑁−1 ⊂

P𝑁−1 a standard chart (with 𝑁 ≥ 3), A an integral Noetherian k-algebra and 𝑎 ∈ 𝐴. Then the derivation

𝜕(0) =
𝑁−1∑
𝑖=1

𝑥2
𝑖 𝜕𝑥𝑖 + 𝑎𝜔 on A𝑁−1 × 𝐸 × Spec(𝐴)

induces a 1-foliation G of rank 1 on P𝑁−1 × 𝐸 × Spec(𝐴) such that:

1. 𝐾G = OP𝑁−1 (1) �O𝐸×Spec(𝐴) ,
2. G has only multiplicative singularities away from {[1 : 0 : · · · : 0]} × 𝐸 ×𝑉 (𝑎),
3. If 𝐴 = 𝑘 [𝑡] and 𝑎 = 𝑡𝑚 with 𝑚 ≥ 1, then G ⊂ 𝑇(P𝑁−1×𝐸×A1)/A1 is a family of 1-foliations.

Proof. Since E is supersingular we have 𝜔 [𝑝] = 0 [14, 12.4.1.3]. An argument similar to Claim 3.1
shows that 𝜕(0) is p-closed. Therefore it induces a 1-foliation G of rank 1 on P𝑁−1 × 𝐸 × Spec(𝐴). We
compute the expression of 𝜕(0) on the other charts. Let 𝑋0, . . . , 𝑋𝑁−1 be homogeneous coordinates of
P𝑁−1: we may assume that 𝑥𝑖 = 𝑋𝑖/𝑋0 for 1 ≤ 𝑖 ≤ 𝑁 − 1. If 𝑢𝑖 = 𝑋𝑖/𝑋𝑁−1 for 0 ≤ 𝑖 < 𝑁 − 1, then
we have

𝑥𝑖 =
𝑢𝑖
𝑢0

(1 ≤ 𝑖 < 𝑁 − 1), 𝑥𝑁−1 =
1
𝑢0
,

𝑢𝑖 =
𝑥𝑖
𝑥𝑁−1

(1 ≤ 𝑖 < 𝑁 − 1), 𝑢0 =
1

𝑥𝑁−1
.

Therefore

𝜕𝑥𝑖 = 𝑢0𝜕𝑢𝑖 (1 ≤ 𝑖 < 𝑁 − 1), 𝜕𝑥𝑁−1 = −𝑢2
0𝜕𝑢0 −

𝑁−2∑
𝑖=1

𝑢0𝑢𝑖𝜕𝑢𝑖

and so

𝜕(0) =
−1
𝑢0

·
[
𝑢0𝜕𝑢0 +

𝑁−2∑
𝑖=1

(𝑢𝑖 − 𝑢2
𝑖 )𝜕𝑢𝑖 − 𝑎𝑢0𝜔

]
︸����������������������������������������︷︷����������������������������������������︸

𝜕(𝑁−1)

. (4.2)

This shows that G |𝐷+ (𝑋𝑁−1)×𝐸×Spec(𝐴) is generated by 𝜕(𝑁−1) and that 𝐾−1
G = G � OP𝑁−1 (−1) �

O𝐸×Spec(𝐴) . This proves the first assertion.
On 𝐷+(𝑋𝑁−1) ×𝐸 ×A1, notice that 𝜕(𝑁−1) is p-closed and that 𝜕(𝑁−1) (𝑢0) = 𝑢0. Therefore 𝜕 [𝑝](𝑁−1) =

𝜕(𝑁−1) by Lemma 2.3, which shows that G has only multiplicative singularities on 𝐷+(𝑋𝑁−1) ×𝐸 ×A1.
The computations on the patches 𝐷+(𝑋𝑖) × 𝐸 ×A1 for 1 ≤ 𝑖 < 𝑁 − 1 are similar. On 𝐷+(𝑋0) × 𝐸 ×A1,
we see that the singular locus of G is {[1 : 0 : · · · : 0]} × 𝐸 × 𝑉 (𝑎). This proves the second assertion.
In case 𝐴 = 𝑘 [𝑡] and 𝑎 = 𝑡𝑚, we proceed as in Claim 4.1 over each chart to see that G is a family of
1-foliations if and only if 𝑁 ≥ 3, which holds by assumption. �

Remark 4.9. The multiplicative singularities of G cannot be resolved by smooth blow-ups (unless
𝑝 = 2). Indeed, the singular locus of 𝜕(𝑁−1) is the union of the closed subsets

𝑍𝜀• = [𝜀0 = 0 : 𝜀1 : . . . 𝜀𝑁−2 : 1] × 𝐸 × Spec(𝐴)
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where 𝜀1, . . . , 𝜀𝑁−2 ∈ {0, 1}. It follows from [27, Proposition 4.1.1] that along 𝑍𝜀• , and formal-locally
on its first factor, the 1-foliation G is generated by∑

𝑖: 𝜀𝑖=0
𝑢̄𝑖𝜕𝑢̄𝑖 −

∑
𝑗: 𝜀 𝑗=1

𝑢̄ 𝑗𝜕𝑢̄ 𝑗 − 𝑎𝑢̄0𝜔

where 𝑢̄• are formal parameters of OP𝑁−1 , [𝜀•:1] with 𝑢̄0 = 𝑢0. To resolve the singularity of G along 𝑍𝜀• ,
we need to take the weighted blow-up given by the Rees algebra∑

𝑖: 𝜀𝑖=0
(𝑢̄𝑖 , 1) +

∑
𝑗: 𝜀 𝑗=1

(𝑢̄ 𝑗 , 𝑝 − 1).

As soon as some weight 𝑝 − 1 ≠ 1 appears, this blow-up produces a nonschematic tame regular
Deligne–Mumford stack whose coarse moduli space has quotient singularities: see [29] for details. So
the singularities of G along 𝑍𝜀• cannot be resolved by usual blow-ups, unless 𝜀• = (0, . . . , 0) or 𝑝 = 2.
The situation on the other patches 𝐷+(𝑋𝑖) × 𝐸 × Spec(𝐴), for 1 ≤ 𝑖 < 𝑁 − 1, is similar.

Proof of Theorem 4.7. For clarity, we divide the proof into several steps. If 𝑝 = 2 we can use a slightly
different construction, which we describe in Step 5.

Step 1: Construction of Y → A1. Let E be a supersingular elliptic curve and 𝜔 ∈ 𝐻0 (𝐸,𝑇𝐸 ) be a
global generator. If 𝑋0, . . . , 𝑋𝑁−1 are the homogeneous coordinates on P𝑁−1, consider on 𝐷+(𝑋0) ×
𝐸 × A1

𝑡 the derivation

𝜕(0) =
𝑁−1∑
𝑖=1

𝑥2
𝑖 𝜕𝑥𝑖 + 𝑡𝜔, 𝑥𝑖 = 𝑋𝑖/𝑋0.

By Lemma 4.8 it induces a 1-foliation G on 𝑊 = P𝑁−1 × 𝐸 × A1. We let Y = (P𝑁−1 × 𝐸 × A1)/G,
with quotient morphism 𝑞 : 𝑊 → Y . By construction the projection 𝑊 → A1 factors through a flat
projective morphism Y → A1.

Step 2: Construction of the divisor H. The divisor H is chosen as follows. Take a Q-divisor H on
W such that:

◦ 𝐻 = 𝐻0 × A1 for some Q-divisor 𝐻0 on P𝑁−1 × 𝐸 ;
◦ 𝐾𝑊 + (𝑝 − 1)𝐾G + 𝐻 is ample over A1,
◦ (𝑊,𝑊𝛼 + 𝐻) is lc for every 𝛼 ∈ A1 \ {0},
◦ the support of H lies in general position with respect to the curve {[1 : 0 : · · · : 0]} × 𝐸 × {0}, and
◦ H is not G-invariant.

The last three properties are satisfied for a general choice of divisor of the form 𝐻0 × A1, thus by
choosing 𝐻0 general in a sufficiently ample linear system on P𝑁−1, we see there exists an H with all
these properties. Notice that 𝐾𝑊 + (𝑝−1)𝐾G � OP𝑁−1 (−𝑁 + 𝑝−1)�O𝐸×A1 by Lemma 4.8, so because
of the second property and on the assumption 𝑁 ≥ max{𝑝, 3} we cannot take 𝐻 = 0.

We let H ⊂ Y be the prime divisor with support 𝑞(𝐻).

Step 3: Behaviour under base-change. Let us immediately observe what happens when we base-
changeY → A1

𝑡 along a flat finite morphism 𝑔 : 𝐶 → A1
𝑡 . By Lemma 2.13 we have a natural isomorphism

Y ×A1 𝐶 �
(
P𝑁−1 × 𝐸 × 𝐶

)
/ 𝑓 ∗G

where 𝑓 : P𝑁−1 × 𝐸 × 𝐶 → P𝑁−1 × 𝐸 × A1 is the base-change of g. This shows that Y𝐶 is normal.
Observe that 𝐻𝐶 = 𝑓 ∗𝐻 still satisfies the five properties listed in Step 2. The pullback of 𝐾Y + 1

𝑝H
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along Y𝐶 → Y is equal to 𝐾Y𝐶 + 1
𝑝H𝐶 : therefore the latter is ample over C as soon as 𝐾Y + 1

𝑝H is
ample over A1. By Proposition 2.9 and the non-G-invariance of H we have

𝑞∗
(
𝐾Y + 1

𝑝
H

)
= 𝐾𝑊 + (𝑝 − 1)𝐾G + 𝐻 (4.3)

which, by choice of H, is ample over A1.
To complete the proof, it remains to check properties (2) and (3), and that (Y𝐶 , 1

𝑝H𝐶 ) → 𝐶 is
locally stable. Properties (2) and (3) can be checked after an arbitrary surjective base-change. For local
stability, by [18, 2.15.5] and [12] it is enough to check it in case 𝑔 = 𝐹𝑟

A1/𝑘 is an iterate of the k-linear
Frobenius morphism of A1 (5).

Step 4: Local stability and singularities of fibers. To summarize, we have reduced the proof to
the following: let 𝑞′ : 𝑊 = P𝑁−1 × 𝐸 × A1

𝑡 → Y ′ be the quotient by the 1-foliation G ′ induced by the
derivation

𝜕 ′(0) =
𝑁−1∑
𝑖=1

𝑥2
𝑖 𝜕𝑥𝑖 + 𝑡 𝑝

𝑟
𝜔, on 𝐷+(𝑋0) × 𝐸 × A1

𝑡 .

It is endowed with a flat proper morphism Y ′ → A1
𝑡 . Let 𝐻 ′ be a Q-divisor on W satisfying the

properties listed in Step 2: we let H′ = 𝑞(𝐻 ′). We must show that (Y ′, 1
𝑝H′) → A1 is locally stable,

that Y ′
𝑡 has only 𝜇𝑝-quotient singularities for 𝑡 ≠ 0, and that Y ′

0 is not 𝑆2. As we will see, everything is
a consequence of Theorem 4.3 and Lemma 4.8.

Step 4.1: Singularity of the central fiber. First, let us prove that Y ′
0 is not 𝑆2 along the image

through 𝑞′ of the proper curve {[1 : 0 : · · · : 0]} ×𝐸 × {0}. Indeed, let 𝑧 = {[1 : 0 : · · · : 0]} × {𝑒} × {0}
where e is an arbitrary closed point of E. As Y ′

0 is a Cartier divisor in Y , it is equivalent to showing that
OY′,𝑞′ (𝑧) is not 𝑆3. I claim that this is étale-local over z. For if ℎ : Spec(Oℎ

𝑊 ,𝑧) → Spec(O𝑊 ,𝑧) is the
henselization, by [29, Lemma 3.2.1] we have a cartesian diagram

Spec(Oℎ
𝑊 ,𝑧) Spec(O𝑊 ,𝑧)

Spec(Oℎ
𝑊 ,𝑧)/ℎ

∗G ′ Spec(OY′,𝑞′ (𝑧) )

ℎ

𝑞′

𝑔

where g is an étale morphism. Therefore it suffices to prove that Spec(Oℎ
𝑊 ,𝑧)/ℎ

∗G ′ is not 𝑆3. If 𝑦 ∈ Oℎ
𝐸,𝑒

is an étale coordinate at 𝑒 ∈ 𝐸 , then an étale-local generator for G ′ at z is given by

𝜕ℎ =
𝑝∑
𝑖=1
𝑥2
𝑖 𝜕𝑥𝑖 + 𝑡 𝑝

𝑟
𝜇(𝑦)𝜕𝑦

where 𝜇(𝑦) ∈ Oℎ
𝐸,𝑒 is a unit such that 𝜔 ⊗ Oℎ

𝐸,𝑒 = 𝜇(𝑦)𝜕𝑦 . Then we apply Theorem 4.3 (or rather its
formal-local version at the origin, which is proved similarly) to see that the 𝜕ℎ-invariant sub-ring of
Oℎ
𝑊 ,𝑧 is not 𝑆3.
Since Y ′ is 𝑆2, the irreducible Cartier divisor Y ′

0 is nonetheless 𝑆1. As it is generically reduced by
Theorem 4.3, we obtain that Y ′

0 is (geometrically) reduced.

5Instead of appealing to [18, 12], one could proceed as follows. The local stability is Zariski-local over 𝐶′, so we reduce to
base-changes of the form Spec(O) → A1

𝑡 where O is a DVR. If s is a uniformizer of O, write 𝑡 = 𝜈 (𝑠)𝑠𝑚 where 𝜈 (𝑠) ∈ O×.
Then one can prove the analogue of Theorem 4.3 for derivations of the form

∑𝑛
𝑖=1 𝑥

2
𝑖 𝜕𝑥𝑖 + 𝑠

𝑚𝜈 (𝑠)𝜇 (𝑦)𝜕𝑦 : the argument is the
same, but the bookkeeping is even more cumbersome. The rest of the proof of Theorem 4.7 will then be similar.
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Step 4.2: Local stability. Now we prove that (Y ′, 1
𝑝H′) → A1 is locally stable. First, let 0 ≠ 𝛼 ∈ 𝑘 .

As G ′ |𝐷 (𝑡) is lc and (𝑊,𝑊𝛼 + 𝐻 ′) is lc, by Theorem 2.10 we have that (Y ′,Y ′
𝛼 + 1

𝑝H′) is lc along Y𝛼.
Moreover, as G ′ |𝐷 (𝑡) has only multiplicative singularities by Lemma 4.8, by Theorem 2.12 we obtain
that

Y ′
𝛼 = (P𝑁−1 × 𝐸)/G ′

𝛼

where G ′
𝛼 is the 1-foliation induced by

∑𝑁−1
𝑖=1 𝑥2

𝑖 𝜕𝑥𝑖 + 𝛼𝑝
𝑟
𝜔. By Lemma 4.8 we see that G ′

𝛼 has only
multiplicative singularities. Therefore Y𝛼 has only 𝜇𝑝-quotient singularities by [27, Proposition 4.1.1].

It remains to prove that (Y ′,Y ′
0 +

1
𝑝H′) is lc. To this end, we blow-up W to simplify the singularities

of G ′. By Lemma 4.8 the non-lc singularities of G ′ are contained on the chart 𝐷+(𝑋0) × 𝐸 ×A1, where
(étale-locally on the factor E) the 1-foliation G ′ is generated by a derivation of the form (4.1) with
𝑚 = 𝑝𝑟 . Therefore, the proofs of Lemma 4.2 and Theorem 4.3 show that if we blow-up repeatedly the
locus of non-lc singularities of G ′, we obtain a birational proper morphism

𝑏 : 𝑋 = 𝑋𝑝𝑟 −→ 𝑊

with 𝑝𝑟 exceptional divisors 𝐸1, . . . , 𝐸𝑝𝑟 ⊂ 𝑋 , such that 𝑏∗G ′ is lc, (𝑋, 𝑏−1
∗ 𝑊0 +

∑
𝑗 𝐸 𝑗 ) is log smooth,

each 𝐸 𝑗 is 𝑏∗G ′-invariant, 𝑎(𝐸 𝑗 ;G ′) = −1 and 𝑎(𝐸 𝑗 ;𝑊,𝑊0) = 𝑗 (𝑁 − 1) − 1. By our choice of 𝐻 ′, we
also have that (𝑋, 𝑏−1

∗ (𝑊0 + 𝐻 ′) +
∑
𝑗 𝐸 𝑗 ) is log smooth and

𝑎(𝐸 𝑗 ;𝑊,𝑊0 + 𝐻 ′) = 𝑎(𝐸 𝑗 ;𝑊,𝑊0) ∀ 𝑗 = 1, . . . , 𝑝𝑟 .

The arguments are now the same as the ones at the end of the proof of Theorem 4.3. Consider the
commutative diagram

𝑋 𝑍 = 𝑋/𝑏∗G ′

𝑊 Y ′.

𝑏 𝔟

𝑞′

If 𝐹1, . . . , 𝐹𝑝𝑟 ⊂ 𝑍 denote the 𝔟-exceptional divisors, then by Theorem 2.10 we have

𝑎

(
𝐹𝑗 ;Y ′,Y ′

0 +
1
𝑝
H′

)
= 𝑎(𝐸 𝑗 ;𝑊,𝑊0 + 𝐻 ′) + (𝑝 − 1) · 𝑎(𝐸 𝑗 ;G ′)

= 𝑎(𝐸 𝑗 ;𝑊,𝑊0) + (𝑝 − 1) (− 𝑗)
= 𝑗 (𝑁 − 𝑝) − 1

Hence we have the crepant equation

𝐾𝑍 + 𝔟−1
∗

(
Y ′

0 +
1
𝑝
H′

)
+

𝑝𝑟∑
𝑗=1

(1 − 𝑗 (𝑁 − 𝑝))𝐹𝑗 = 𝔟∗
(
𝐾Y′ + Y ′

0 +
1
𝑝
H′

)
.

Notice that 1 − 𝑗 (𝑁 − 𝑝) ≤ 1 for every 𝑗 ≥ 1 is equivalent to 𝑁 ≥ 𝑝, which holds as 𝑁 = max{𝑝, 3}.
Therefore we have that

discrep���𝑋, 𝑏−1
∗ (𝑊0 + 𝐻) +

𝑝𝑟∑
𝑗=1

(1 − 𝑗 (𝑁 − 𝑝))𝐸 𝑗
�	
 ≥ −1.
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Hence by Theorem 2.10 we obtain that

discrep���𝑍, 𝔟−1
∗ (Y0 +

1
𝑝
H) +

𝑝𝑟∑
𝑗=1

(1 − 𝑗 (𝑁 − 𝑝))𝐹𝑗
�	
 ≥ −1,

and therefore (Y ′,Y ′
0 +

1
𝑝H′) is lc.

Step 5: the case 𝑝 = 2. It follows from Remark 4.9 that there exists a smooth blow-up 𝑍 → P𝑁−1 whose
(reducible) center does not contain [1 : 0 : · · · : 0], and such that if 𝑏 : 𝑍 × 𝐸 ×A1 → 𝑊 is the induced
morphism, the birational pullback 𝑏∗G is regular away from the preimage of {[1 : 0 : · · · : 0]}×𝐸×{0}.
We take

Z = (𝑍 × 𝐸 × A1)/𝑏∗G −→ A1

as the example. By [27, Proposition 5.2.4, Lemma 2.5.10] we have that Z𝛼 is regular for 𝛼 ≠ 0. The
rest of the properties are proved exactly as above. This completes the proof. �

Let us make some observations about the preceding proof.

Remark 4.10. The coefficients of H are ≤ 1, so the coefficients of 1
𝑝H are ≤ 1/𝑝. The extra factor 1/𝑝

appears because H is chosen to be non-G-invariant. I do not know whether there exists a G-invariant
divisor H that satisfies the other properties. On the other hand, the number of irreducible components
of H can be any (in particular, H can be irreducible).

Remark 4.11. If 𝑒 ∈ 𝐸 an arbitrary point then the line bundle L = OP𝑁−1 (𝑁 + 𝑝) �O𝐸 (𝑒) is ample on
P𝑁−1 × 𝐸 , and L⊗𝑛 is very ample for every 𝑛 ≥ 3. Moreover, for any integer 𝑚 ≥ 1, if 𝐻0 is a general
element of the Q-linear system 1

𝑚 |L⊗𝑛 | then 𝐻0 × A1 satisfies the conditions listed in Step 2.

4.2. Second example: dim = 3, p = 3.

Consider the affine space A3
𝑥,𝑦,𝑧 × A1

𝑡 and the derivation

𝜕𝑚 = 𝑦3𝜕𝑥 + 𝑥𝜕𝑦 + 𝑡𝑚𝜕𝑧 , 𝑚 ≥ 1.

Using an argument as in Claim 3.1 together with [24, Corollary 6], one checks that 𝜕 [𝑝]𝑚 = 0 as soon as
𝑝 > 2. In that case 𝜕𝑚 generates a 1-foliation F𝑚 on A3 × A1. As in Claim 4.1, one sees that F𝑚 is a
family of 1-foliations over A1

𝑡 .
Let us show how to simplify the singularities of F𝑚. As in Lemma 4.2, we are able to reduce F𝑚 to

F𝑚−1, but we need two blow-ups to achieve this.

Claim 4.12. For 𝑝 > 2, we have ((1 − 2𝑥2)𝜕𝑥) [𝑝] = 2(5𝑝−3)/2(1 − 2𝑥2)𝜕𝑥 .

Proof. After the change of variable 𝑢 = 1 +
√

2𝑥, we reduce to consider the p-th power of the derivation
𝜕 =

√
2𝑢(2 − 𝑢)𝜕𝑢 on 𝑘 [𝑢]. By a formula of Jacobson [13, p. 209], we have

𝜕 [𝑝] = 2𝑝/2
(
(−𝑢2𝜕𝑥) [𝑝] + (2𝑢𝜕𝑢) [𝑝] + 𝑆

)
where S is a k-linear combination of (𝑝 − 1)-fold commutators of −𝑢2𝜕𝑥 and 2𝑢𝜕𝑢 . Now we make
several observations. First, by Hochschild’s formula 𝜕 is p-closed and so 𝜕 [𝑝] is a 𝑘 [𝑢]-scaling of 𝜕. As
(−𝑢2𝜕𝑢) [𝑝] = 0 and (2𝑢𝜕𝑢) [𝑝] = 2𝑝𝑢𝜕𝑢 , it follows that 𝑆 ≠ 0. As

[𝑢2𝜕𝑢 , 2𝑢𝜕𝑢] = −2𝑢2𝜕𝑢
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we see that 𝑆 ≠ 0 can only be of the form −𝛼𝑢2𝜕𝑢 for some 𝛼 ∈ 𝑘×. Hence 𝜕 [𝑝] = 2𝑝/2(2𝑝𝑢𝜕𝑢 −𝛼𝑢2𝜕𝑢)
is a 𝑘 [𝑢]-scaling of 𝜕 = 21/2 (2𝑢𝜕𝑢 − 𝑢2𝜕𝑢), which forces 𝛼 = 2(5𝑝−3)/2. �

Lemma 4.13. Suppose that 𝑝 > 2. We have Sing(F𝑚) = 𝑉 (𝑥, 𝑦, 𝑡) for 𝑚 ≥ 1, and F0 is regular. If
𝑚 ≥ 1 and

𝑏1 : 𝑌 = Bl(𝑥,𝑦,𝑡) (A3 × A1) −→ A3 × A1

with exceptional divisor E, then:

1. 𝑎(𝐸 ;F𝑚) = 0,
2. E is 𝑏∗1F𝑚-invariant,
3. the locus S of (non-lc) singularities of 𝑏∗1F𝑚 is closed, mult𝑆 𝐸 = 1, codim𝑌 𝑆 = 2 and S is not

contained in (𝑏1)−1
∗ (𝑡 = 0).

Consider 𝑏2 : Bl𝑆 𝑌 −→ 𝑌 with exceptional divisor F and 𝑏 = 𝑏1 ◦ 𝑏2. Then:

1. 𝑎(𝐹;F𝑚) = −1,
2. F is 𝑏∗F𝑚-invariant,
3. if 𝑚 ≥ 2, the non-lc locus of 𝑏∗F𝑚 is closed, contained in a blow-up chart V of 𝑏2, not contained in

the support of 𝑏−1
∗ (𝑡 = 0) + (𝑏2)−1

∗ 𝐸 , and
4. we have an A1

𝑡 -isomorphism 𝑉 � A3 × A1
𝑡 under which 𝑏∗F𝑚 |𝑉 is isomorphic to F𝑚−1, and the

𝑏2-exceptional divisor corresponds to (𝑡 = 0).

Proof. Let us first consider the blow-up 𝑏1. We have three blow-up charts, which we denote by𝑈𝐴,𝑈𝐵,
and𝑈𝐶 :

◦ Chart𝑈𝐴, given by 𝑥 ↦→ 𝑢, 𝑦 ↦→ 𝑢𝑣, 𝑧 ↦→ 𝑧, 𝑡 ↦→ 𝑢𝑠. Then

𝑏∗1𝜕𝑚 |𝑈𝐴 = 𝑢3𝑣3𝜕𝑢 + (1 − 𝑢2𝑣4)𝜕𝑣 − 𝑢2𝑣3𝑠𝜕𝑠 + 𝑢𝑚𝑠𝑚𝜕𝑧

which shows that 𝑏∗1F𝑚 |𝑈𝐴 is a regular 1-foliation. Notice that 𝑏∗1𝜕𝑚(𝑢) ∈ (𝑢), so E is 𝑏∗1F𝑚-invariant.
Since 𝑏∗1𝜕𝑚 |𝑈𝐴 generates 𝑏∗F𝑚 |𝑈𝐴 , without having to saturate, we have 𝑎(𝐸 ;F𝑚) = 0.

◦ Chart𝑈𝐵, given by 𝑥 ↦→ 𝑢𝑣, 𝑦 ↦→ 𝑣, 𝑧 ↦→ 𝑧, 𝑡 ↦→ 𝑣𝑠. Then

𝑏∗1𝜕𝑚 |𝑈𝐵 = (𝑣2 − 𝑢2)𝜕𝑢 + 𝑢𝑣𝜕𝑣 − 𝑢𝑠𝜕𝑠 + 𝑣𝑚𝑠𝑚𝜕𝑧

which is singular along the plane 𝑢 = 𝑣 = 0. These singularities are non-lc.
◦ Chart𝑈𝐶 , given by 𝑥 ↦→ 𝑢𝑠, 𝑦 ↦→ 𝑣𝑠, 𝑧 ↦→ 𝑧, 𝑡 ↦→ 𝑠. Then

𝑏∗1𝜕𝑚 |𝑈𝐶 = 𝑣3𝑠2𝜕𝑢 + 𝑢𝜕𝑣 + 𝑠𝑚𝜕𝑧

which is singular along the plane 𝑢 = 𝑠 = 0. These singularities are non-lc.

We see that the locus 𝑆 ⊂ 𝑌 of singularities of 𝑏∗1F𝑚 is smooth, closed, and irreducible of codimension
2. As can be checked on chart𝑈𝐵, that singular locus is not contained in the strict transform 𝑏−1

∗ (𝑡 = 0).
Next let us blow-up S. We have two blow-up charts above𝑈𝐵 (resp. above𝑈𝐶 ), which we denote by

𝑈𝐵𝐴 and𝑈𝐵𝐵 (resp. by𝑈𝐶𝐴 and𝑈𝐶𝐵):

◦ Chart𝑈𝐵𝐴, given by 𝑢 ↦→ 𝑢̄, 𝑣 ↦→ 𝑢̄𝑣̄, 𝑧 ↦→ 𝑧, 𝑠 ↦→ 𝑠. Then

𝑏∗𝜕𝑚 |𝑈𝐵𝐴 = 𝑢̄ ·
[
𝑢̄(𝑣̄2 − 1)𝜕𝑢̄ + 𝑣̄(2 − 𝑣̄2)𝜕𝑣̄ − 𝑠𝜕𝑠 + 𝑢̄𝑚−1𝑣̄𝑚𝑠𝑚𝜕𝑧

]︸��������������������������������������������������������������︷︷��������������������������������������������������������������︸
𝜓𝐵𝐴

.

As 𝜓𝐵𝐴(𝑠) = −𝑠, by Lemma 2.3 we see that 𝜓 [𝑝]
𝐵𝐴 = −𝜓𝐵𝐴. Thus 𝑏∗F𝑚 is lc on the chart 𝑈𝐵𝐴. As

𝜓𝐵𝐴(𝑢̄) ∈ (𝑢̄) we see that F is 𝑏∗F𝑚-invariant. As 𝑏∗𝜕𝑚 = 𝑢̄ · 𝜓𝐵𝐴 we find that 𝑎(𝐹;F𝑚) = −1.
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◦ Chart𝑈𝐵𝐵, given by 𝑢 ↦→ 𝑢̄𝑣̄, 𝑣 ↦→ 𝑣̄, 𝑧 ↦→ 𝑧, 𝑠 ↦→ 𝑠. Then

𝑏∗𝜕𝑚 |𝑈𝐵𝐵 = 𝑣̄ ·
[
(1 − 2𝑢̄2)𝜕𝑢̄ + 𝑢̄𝑣̄𝜕𝑣̄ − 𝑢̄𝑠𝜕𝑠 + 𝑣̄𝑚−1𝑠,𝜕𝑧

]︸������������������������������������������������︷︷������������������������������������������������︸
𝜓𝐵𝐵

.

By Claim 4.12 we see that 𝜓𝐵𝐵 (𝑢) = 2(5𝑝−3)/2𝜓𝐵𝐵 (𝑢). Thus by Proposition 2.6 we see that 𝑏∗F𝑚 is
lc on the chart𝑈𝐵𝐵.

◦ Chart𝑈𝐶𝐴, given by 𝑢 ↦→ 𝑢̄, 𝑣 ↦→ 𝑣, 𝑧 ↦→ 𝑧, 𝑠 ↦→ 𝑢̄𝑠. Then

𝑏∗𝜕𝑚 |𝑈𝐶𝐴 = 𝑢̄ ·
[
𝑢̄𝑣3𝑠2𝜕𝑢̄ + 𝜕𝑣 + 𝑢̄𝑚−1𝑠𝑚𝜕𝑧 − 𝑣3𝑠3𝜕𝑠

]︸��������������������������������������������︷︷��������������������������������������������︸
𝜓𝐶𝐴

.

As 𝜓𝐶𝐴 generates a regular 1-foliation, we see that 𝑏∗F𝑚 is regular on the chart𝑈𝐶𝐴.
◦ Chart𝑈𝐶𝐵, given by 𝑢 ↦→ 𝑢̄𝑠, 𝑣 ↦→ 𝑣, 𝑧 ↦→ 𝑧, 𝑠 ↦→ 𝑠. Then

𝑏∗𝜕𝑚 |𝑈𝐶𝐵 = 𝑠 ·
[
𝑣3𝜕𝑢̄ + 𝑢̄𝜕𝑣 + 𝑠𝑚−1𝜕𝑧

]︸������������������������︷︷������������������������︸
𝜓𝐶𝐵

.

Under the A1
𝑡 -isomorphism 𝑈𝐶𝐵 � A3

𝑥,𝑦,𝑧 × A1
𝑡 given by (𝑢̄, 𝑣̄, 𝑧, 𝑠) ↦→ (𝑥, 𝑦, 𝑧, 𝑡), we see that 𝜓𝐶𝐵

corresponds to 𝜕𝑚−1, and thus 𝑏∗F𝑚 |𝑈𝐶𝐵 corresponds to F𝑚−1.

The above computations show that the non-lc locus of 𝑏∗F𝑚 is contained in𝑈𝐶𝐵. It is elementary (but
tedious) to check that this locus does not intersect the other patches 𝑈𝐶𝐴,𝑈𝐵𝐴, and𝑈𝐵𝐵. It remains to
observe that the strict transforms of 𝐸 ⊂ 𝑌 and of (𝑡 = 0) ⊂ A3×A1

𝑡 are disjoint from the chart𝑈𝐶𝐵. �

Theorem 4.14. With the notations as above, assume that 𝑝 = 3 and let 𝑌 = (A3 × A1)/F1. Then:

1. The projection A3 × A1
𝑡 → A1

𝑡 factors through a flat morphism 𝑌 → A1
𝑡 of relative dimension 3;

2. 𝑌𝑡 is smooth for 𝑡 ≠ 0, while 𝑌0 is reduced and non-𝑆2;
3. 𝑌 → A1 is locally stable, and Y has canonical non-𝑆3 singularities along 𝑌0.

Moreover, if C is a normal curve and 𝐶 → A1
𝑡 is a finite flat morphism, then 𝑌 ×A1

𝑡
𝐶 is normal and

𝑌𝐶 → 𝐶 is locally stable.

Proof. The first item is clear. For the remaining ones, as in the proof of Corollary 4.5 and Theorem 4.7,
we reduce the proof to the following: if𝑌 ′ = (A3 ×A1)/F𝑝𝑟 then 𝑌 ′ → A1

𝑡 is locally stable, has smooth
fibers above 𝑡 ≠ 0 and a non-𝑆2 reduced central fiber 𝑌 ′

0. The statements about the singularities of the
fibers are proved as in Theorem 4.3 (and are true whenever 𝑝 > 2). It remains to check that 𝑌 ′ → A1 is
locally stable above 𝑡 = 0.

As usual by now, we blow-up𝑊 = A3 ×A1
𝑡 . By Lemma 4.13, there is a sequence of smooth blow-ups

𝑏 : 𝑋 = 𝑋2𝑝𝑟 −→ 𝑊 = A3 × A1
𝑡

with exceptional divisors 𝐸𝑖 , 𝐹𝑖 ⊂ 𝑋 for 𝑖 = 1, . . . , 𝑝𝑟 such that: (𝑋,
∑
𝑖 𝐸𝑖 + 𝐹𝑖) is log smooth, 𝑏∗F𝑝𝑟

has only lc singularities, the 𝐸𝑖’s and the 𝐹𝑖’s are 𝑏∗F𝑝𝑟 -invariant, and

𝑎(𝐸𝑖;F𝑝𝑟 ) = −𝑖 + 1, 𝑎(𝐹𝑖;F𝑝𝑟 ) = −𝑖 ∀𝑖 = 1, . . . , 𝑝𝑟 .

Using Lemma 4.13 and proceeding by induction, one computes

𝑎(𝐸𝑖;𝑊,𝑊0) = 3𝑖 − 2, 𝑎(𝐹𝑖;𝑊,𝑊0) = 3𝑖 − 1.
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Now let 𝑍 = 𝑋/𝑏∗F𝑝𝑟 and denote by 𝐸 ′
𝑖 ⊂ 𝑍 (resp. by 𝐹 ′

𝑖 ⊂ 𝑍) the image of 𝐸𝑖 (resp. of 𝐹𝑖). Then by
Lemma 4.13 and Theorem 2.10 we have

𝑎(𝐸 ′
𝑖 ;𝑌

′, 𝑌 ′
0) = 𝑎(𝐸𝑖;𝑊,𝑊0) + (𝑝 − 1) · 𝑎(𝐸𝑖;F𝑝𝑟 ) = 𝑖(4 − 𝑝) + 𝑝 − 3

and

𝑎(𝐹 ′
𝑖 ;𝑌

′, 𝑌 ′
0) = 𝑎(𝐹𝑖;𝑊,𝑊0) + (𝑝 − 1) · 𝑎(𝐹𝑖;F𝑝𝑟 ) = 𝑖(4 − 𝑝) − 1.

As 𝑏∗F𝑝𝑟 is lc, by Theorem 2.10 it suffices to ensure that

discrep

(
𝑍,−

∑
𝑖

𝑎(𝐸 ′
𝑖 ;𝑌

′, 𝑌 ′
0)𝐸

′
𝑖 −

∑
𝑖

𝑎(𝐹 ′
𝑖 ;𝑌

′, 𝑌 ′
0)𝐹

′
𝑖

)
≥ −1

to obtain that (𝑌 ′, 𝑌 ′
0) is lc. This holds as soon as 𝑖(4 − 𝑝) ≥ 0 for every 𝑖 = 1, . . . , 𝑝𝑟 , which happens

if (and only if) 𝑝 = 3, so the proof is complete. �

Remark 4.15. One can try to compactify the examples of Theorem 4.14 using the method of
Theorem 4.7. This is quite delicate, as the 1-foliation 𝜓 = 𝑦3𝜕𝑥 + 𝑥𝜕𝑦 acquires complicated singularities
when we compactify. For example, if we regard A2

𝑥,𝑦 as a standard chart of P2, then on the chart with
coordinates 𝑢 = 1/𝑥, 𝑣 = 𝑦/𝑥 the 1-foliation induced by 𝜓 is generated by 𝑢𝑣3𝜕𝑢 + (𝑣4−𝑢2)𝜕𝑣 . Similarly,
if we regard A2

𝑥,𝑦 has a standard chart of the Hirzebruch surface 𝐹𝑛, then on the chart with coordinates
𝑢 = 1/𝑦, 𝑣 = 1/(𝑥𝑦𝑛) the 1-foliation induced by 𝜓 is generated by 𝑢2𝑛+5𝜕𝑢 + (𝑣3 + 𝑛𝑢2𝑛+4𝑣)𝜕𝑣 .

A. Appendix: KSBA moduli stacks in positive characteristics

In this appendix we explore the consequences of Theorem 1.3 for KSBA moduli theory. The point is to
show that the most straightforward adaptations of the characteristic 0 definitions do not yield satisfactory
theories.

As we will see, the point is the unavoidable appearance of non-𝑆2 fibers as limits of stable families
over punctured curves. To formulate this in a precise way we need to define which moduli stacks we are
working with (or, equivalently, which families we allow in our theory), and we face two difficulties:

1. Our examples involve boundary divisors with small coefficients, and defining stable families of pairs
with such coefficients over general bases is already extremely delicate in characteristic 0;

2. The algebraicity of the stacks we could write down is an open question (6), except in the surface case
where it should follow from [11].

We go around the first difficulty by using a minimalistic, underdetermined, working definition of the
KSBA moduli stacks. We will ignore the second difficulty by imposing algebraicity in our definition: it
is natural to expect from the point of view of moduli theory (since we expect boundedness to hold), and
on a technical level it allows us to state generic conditions for the objects parametrized by the stacks. In
any case, (non-)algebraicity is irrelevant for the phenomenon that we will exhibit.

We work over an algebraically closed field k of characteristic 𝑝 > 0. First, we define one-parameter
stable pairs and stable families of pairs, generalizing slightly Definition 2.1.

Definition A.1. A proper pair (𝑋,Δ) over k is stable if it is semi-log canonical (slc) (7) and if 𝐾𝑋 + Δ
is ample.

6On the other hand, any reasonable KSBA moduli stack will have a finite diagonal by [25], first paragraph of the proof of
Theorem 9.7, and will be separated by Lemma A.3 below.

7We refer to [16] and to [28] for the definition of semi-log canonical singularities.
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Definition A.2. Let T be regular k-curve. Let 𝑓 : 𝑋 → 𝑇 be a flat proper pure-dimensional morphism
with geometrically reduced fibers. Let Δ be a Q-divisor on X such that 𝑓 : (𝑋,Δ) → 𝑇 is a family of
pairs [18, Definition 2.2]. We say that 𝑓 : (𝑋,Δ) → 𝑇 is a stable family if:

1. (𝑋, 𝑋𝑡 + Δ) is slc for every closed point 𝑡 ∈ 𝑇 , and
2. 𝐾𝑋 + Δ is f -ample.

Lemma A.3 (cf. [25, Lemma 9.4]). Let T be an affine regular k-curve. Let (𝑋𝑖 ,Δ 𝑖) → 𝑇 (𝑖 = 1, 2) be
two stable families over T whose total spaces 𝑋𝑖 are normal. Assume that for a fixed closed point 0 ∈ 𝑇 ,
with complement 𝑇∗ = 𝑇 \ {0}, there is a 𝑇∗-isomorphism of pairs

𝜙∗ : (𝑋1,Δ1) ×𝑇 𝑇∗ � (𝑋2,Δ2) ×𝑇 𝑇∗.

Then 𝜙∗ extends to a T-isomorphism 𝜙 : (𝑋1,Δ1) � (𝑋2,Δ2).

Proof. If Z is the normalization of the closure of the graph of 𝜙∗, with projections 𝛼𝑖 : 𝑍 → 𝑋𝑖 , let us
write for each i

𝛼∗𝑖 (𝐾𝑋𝑖 + Δ 𝑖) = 𝐾𝑍 + Γ𝑖,−︸︷︷︸
≤0

+ Γ𝑖,+︸︷︷︸
≥0

where Γ𝑖,− and Γ𝑖,+ have no components in common. We have

𝑋𝑖 = Proj𝑇
⊕
𝑚≥0

𝐻0 (𝑋𝑖 , �𝑚(𝐾𝑋𝑖 + Δ 𝑖�) = Proj𝑇
⊕
𝑚≥0

𝐻0(𝑍, �𝑚(𝐾𝑍 + Γ𝑖,+�).

Now since (𝑋𝑖 ,Δ 𝑖 + 𝑋𝑖,0) is lc and 𝑋𝑖,0 is Cartier, if E is an exceptional divisor over 𝑋𝑖 with
𝑎(𝐸 ; 𝑋𝑖 ,Δ 𝑖) < 0 then E dominates T. In particular, every component of Γ𝑖,+ dominates T. By as-
sumption on 𝜙∗ it follows that Γ1,+ = Γ2,+ and therefore the above Proj description of the 𝑋𝑖 yields the
extension 𝜙 : (𝑋1,Δ1) � (𝑋2,Δ2). �

Now we want to give our working definition of KSBA moduli stacks. We will only specify their
values on points and regular curves, using the two definitions above. But at least for psychological
comfort, it is better to specify what kind of values our stacks take in general. We follow the first step
of the approach of [18] (see in particular Chapter 7 there): the objects of interest lie amongst relative
effective Mumford divisors.

We refer to [18, 4.29, 4.78] for the definition of a relative effective Mumford divisor D supported on
a morphism 𝑋 → 𝑇 . To simplify the terminology, from now on a relative effective Mumford divisor
will refer to the 2-tuple (𝑋 → 𝑇, 𝐷). As explained in [18, 4.29], given any ℎ : 𝑇 ′ → 𝑇 we can form the
pullback ℎ [∗]𝑋 𝐷 which is again a relative effective Mumford divisor supported on 𝑋𝑇 ′ → 𝑇 ′, and this
pullback operation is functorial. Thus we can make the following definition:

Definition A.4 (Fibered category of relative Mumford divisors). Fix a (possibly empty) vector of positive
rational numbers c = (𝑐1, . . . , 𝑐𝑟 ) ∈ (Q>0)⊕𝑟 . We define the category M𝑢𝑚c as follows:

◦ its objects are 2-tuples D = ( 𝑓 : 𝑋 → 𝑇,
∑𝑟
𝑖=1 𝑐𝑖𝐷𝑖) where f is a morphism of k-schemes, and each

( 𝑓 : 𝑋 → 𝑇, 𝐷𝑖) is a relative effective Mumford divisor supported on f ;
◦ the class of arrows is generated by the following ones:

1. if D = (𝑋 → 𝑇,
∑𝑟
𝑖=1 𝑐𝑖𝐷𝑖) and D′ = (𝑋 ′ → 𝑇,

∑𝑟
𝑖=1 𝑐𝑖𝐷

′
𝑖) are two relative Mumford divisors

over a common base T, then every T-isomorphism 𝜙 : 𝑋 � 𝑋 ′ sending 𝐷𝑖 to 𝐷 ′
𝑖 for each i defines

an arrow 𝜙 : D � D′;
2. if D is a relative Mumford divisor over T and ℎ : 𝑇 ′ → 𝑇 is a k-morphism, then there is a pullback

morphism ℎ [∗]D → D.
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We have a forgetful functor M𝑢𝑚c → Sch𝑘 sending (𝑋 → 𝑇,
∑𝑟
𝑖=1 𝑐𝑖𝐷𝑖) to T, the isomorphism 𝜙 to

id𝑇 , and ℎ [∗]D → D to h. By functoriality of pullbacks, this makes M𝑢𝑚c into a fibered category over
Sch𝑘 .

With these definitions in place, we can at last introduce our working definition of KSBA moduli
stacks.

Terminology A.5. A stack over k means a stack in groupoids over the big étale site of k in the sense of
[1, 02ZH]. Algebraic stacks are understood in the sense of [1, 026N].

Definition A.6 (Potential KSBA moduli stacks). Let M be an algebraic stack over k. We say that M is
a potential KSBA moduli stack if there exist 𝑛 ∈ N, 𝑣 ∈ Q>0, and c = (𝑐1, . . . , 𝑐𝑟 ) ∈ (Q>0)⊕𝑟 with the
following properties:

1. There exists a fully faithful functor M ↩→ M𝑢𝑚c of fibered categories over Sch𝑘 ;
2. if K is an algebraically closed field extension of k, then M(𝐾) is the groupoid of all stable pairs

(𝑋 → Spec(𝐾),Δ =
∑𝑟
𝑖=1 𝑐𝑖Δ 𝑖) ∈ M𝑢𝑚c(𝐾) with dim 𝑋 = 𝑛 and (𝐾𝑋 + Δ)𝑛 = 𝑣;

3. if T is a regular (germ of) k-curve then M(𝑇) is the set of (𝑋 → 𝑇,Δ =
∑𝑟
𝑖=1 𝑐𝑖Δ 𝑖) ∈ M𝑢𝑚c (𝑇)

such that (𝑋,Δ) → 𝑇 is a stable family.

We refer to the array (𝑛, 𝑣, c) as the numerical constants of M.

Remark A.7. Let us stress that if M is a potential KSBA moduli stack and T a regular k-curve, then the
families in M(𝑇) are stable families of pairs whose underlying fibers are demi-normal (in particular
reduced and 𝑆2). This is forced by the way we compute pullbacks in M𝑢𝑚c and by the prescription of
the values of M on points.

We introduce two variants of the above definition.

Variant A.8 (Potential KSBA-CM moduli stacks). Let M be a potential KSBA moduli stack over k.
We say that M is a potential KSBA-CM moduli stack if there exists a dense open algebraic sub-stack
MCM ⊂ M such that, whenever (𝑋,Δ) ∈ MCM (𝐾) for an algebraically closed field K, the variety X is
Cohen–Macaulay.

Remark A.9. Because of [10, 12.2.1], we think of a potential KSBA-CM moduli stack as an open
sub-stack of a potential KSBA moduli stack. In characteristic 0 we have the following striking picture:
if 𝔐 = 𝔐KSBA

C,𝑛,𝑣,c is the KSBA moduli stack over C with numerical constants (𝑛, 𝑣, c), defined as in
[18, §8.2], then we have a decomposition into open and closed sub-stacks

𝔐 =
𝑛⊔
𝑖=2

𝔐(𝑖)

where 𝔐(𝑖) parametrizes pairs whose underlying varieties are 𝑆𝑖 but not 𝑆𝑖+1. This follows from [20]
(see also [19, Corollary 1.3]). In particular 𝔐CM = 𝔐(𝑛) is a connected component of 𝔐.

Variant A.10 (Potential KSBA-F-injective moduli stacks). Let M be a potential KSBA moduli stack
over k. We say that M is a potential KSBA-F-injective moduli stack if there exists a dense open algebraic
sub-stack M𝐹 -inj ⊂ M such that, whenever (𝑋,Δ) ∈ M𝐹 -inj(𝐾) for an algebraically closed field K,
the variety X is F-injective.

F-injectivity is often described as a positive characteristic analogue of the du Bois condition in
characteristic 0: see, for example, [31] and [23].

Remark A.11 (Generic singularities in [17]). We briefly comment on the singularities of a general fiber
𝑌 𝑐1 of the examples of [17], using the notations of that paper. As noted in [17, Lemma 17],𝑌 𝑐1 is not CM.
It is easily seen from the construction that 𝑌 𝑐1 is not klt: a resolution is given by 𝜏𝑌 : 𝑌1 → 𝑌 𝑐1 , and the
exceptional locus is the divisor 𝑍0 which is a log canonical place. We check whether 𝑌 𝑐1 is F-injective
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along 𝜏𝑌 (𝑍0). Recall that 𝑍0 → 𝜏𝑌 (𝑍0) is the elliptic fibration 𝜏 : 𝑆1 → P1 [17, Proof of Lemma 17].
Arguing as in [3, Lemma 3.10, Proposition 3.12], we see that for any 𝑦 ∈ 𝜏𝑌 (𝑍0) we have

𝐻2
𝑦 (𝑌 𝑐1 ,O𝑌 𝑐

1
) = 𝐻0

𝑦 (𝑌 𝑐1 , 𝑅
1𝜏𝑌 ,∗O𝑌1 ) = 𝐻0

𝑦 (P1, 𝑅1𝜏∗O𝑆1 ).

The fibration 𝜏 has one multiple fiber 𝑝𝐷1, and the other fibers are smooth elliptic curves [17, §9]. The tor-
sion of 𝑅1𝜏∗O𝑆1 is concentrated at the image 𝔶 of 𝑝𝐷1, and we have dim𝐻0

𝔶 (P1, 𝑅1𝜏∗O𝑆1 ) = 1 [17, Proof
of Lemma 17]. By cohomology and base-change, this torsion module embeds into 𝐻1 (𝑝𝐷1,O𝑝𝐷1), and
to check F-injectivity it remains to understand the action of Frobenius on this cohomology group. By
[17, Proof of Lemma 17] we have 𝐻1 (𝑝𝐷1,O𝑝𝐷1) = 𝐻1(𝐸, 𝐹𝑝−1 ⊕ O𝐸 ) where E is an elliptic curve
and 𝐹𝑝−1 is the unique unipotent indecomposable bundle of rank 𝑝 − 1 on E. By induction on the rank
of such bundles, we see that the action of Frobenius on 𝐻1(𝐸, 𝐹𝑝−1 ⊕ O𝐸 ) is bijective if and only if E
is ordinary. In particular, we may arrange 𝑌 𝑐1 to be F-injective.

With all these preparations, we can finally formulate:

Theorem A.12. Let 𝑛 ≥ max{𝑝, 3}. Then there is a dense subset I of (0;+∞) such that for every
𝑣 ∈ 𝐼 there exists c = c(𝑣) ≠ ∅ with the following property: there is no proper potential KSBA, nor
KSBA-CM/F-injective, moduli stack over k with numerical constants (𝑛, 𝑣, c).

Proof. Let 𝑇 = A1
𝑡 and consider some family 𝑓 : (Y ,B) → 𝑇 constructed in Theorem 4.7 of relative

dimension n. There are many choices for B, and we exploit this later. For now let 𝑇∗ = 𝑇 \ {0} and
𝑓 ∗ : (Y∗,B∗) → 𝑇∗ denote the family restricted to the punctured curve. A geometric fiber of 𝑓 ∗ has
only 𝜇𝑝-quotient singularities: in particular it is Cohen–Macaulay and F-injective [27, Theorem 1]. So
if M is a potential KSBA (or KSBA-CM/F-injective) moduli stack whose numerical constants match
those of (Y∗,B∗) → 𝑇∗, we must have [(Y∗,B∗) → 𝑇∗] ∈ M(𝑇∗). Restricting over the generic point
of 𝑇∗, we obtain [ 𝑓 ] : Spec(𝑘 (𝑡)) → M. I claim that there is no finite extension of DVRs 𝑘 [𝑡](𝑡) ↩→ 𝑅
such that we have a commutative diagram over k

Spec(Frac(𝑅)) Spec(𝑘 (𝑡)) M

Spec(𝑅)

𝜄 [ 𝑓 ]

[𝑔]

where 𝜄 is induced by the DVR extension. This implies nonproperness of M by [1, 0CLZ].
We proceed by contradiction. Assume that there exists such an extension of DVRs and morphism

[𝑔] : Spec(𝑅) → M. This implies that there exists a stable family 𝑔 : (Y ′,B′) → Spec(𝑅), belong-
ing to M(𝑅), whose generic fiber is the base-change of the generic fiber of (Y ,B) → 𝑇 along 𝜄.
The scheme Y ′ is also normal, since its generic fiber is normal and its special fiber is reduced. More-
over, by Theorem 4.7 the base-change Y𝑅 is normal. Therefore by Lemma A.3 we actually have an
R-isomorphism (Y𝑅,B𝑅) � (Y ′,B′). So (Y𝑅,B𝑅) ∈ M(𝑅): but the central fiber of Y𝑅 → Spec(𝑅) is
not 𝑆2 by Theorem 4.7, and we obtain a contradiction with the definition of the elements of M(𝑅) (see
Remark A.7).

It remains to prove that as we change the boundary B, the set of volumes (𝐾Y𝑡 + B𝑡 )𝑛, for t an
arbitrary point in 𝑇∗, is dense in the interval (0;+∞). Recall that the support of B𝑡 is the image through
a degree p quotient map

P𝑛−1 × 𝐸 −→ Y𝑡

of a divisor 𝐻0. By Remark 4.11 it suffices to consider the case where𝐻0 belongs to theQ-linear systems

1
𝑠

  (OP𝑛−1 (𝑛 + 𝑝) �O𝐸 (𝑒))⊗𝑟
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where 𝑟 ≥ 3 and 𝑠 ≥ 1 are integers. From (4.3) and Lemma 4.8 it follows that

(𝐾Y𝑡 + B𝑡 )𝑛 = 𝑝 · (𝐾P𝑛−1×𝐸 + (𝑝 − 1)𝐾G𝑡 + 𝐻0)𝑛

= 𝑝 ·
[
OP𝑛−1

(
𝑝 − 𝑛 − 1 + 𝑟

𝑠
(𝑛 + 𝑝)

)
�O𝐸

( 𝑟
𝑠
𝑒

)]𝑛
= 𝑛𝑝 · 𝑟

𝑠
·

(
𝑝 − 𝑛 − 1 + 𝑟

𝑠
(𝑛 + 𝑝)

)𝑛
.

We consider this expression as a function 𝜈 in 𝑟/𝑠 ∈ R>0. Then 𝜈 is continuous, increases to infinity
with 𝑟/𝑠, and is bounded below by

lim
𝑟
𝑠→0+

𝑛𝑝 · 𝑟
𝑠
·

(
𝑝 − 𝑛 − 1 + 𝑟

𝑠
(𝑛 + 𝑝)

)𝑛
= 0.

By continuity the image 𝐼 = 𝜈(Q>0) is dense in (0;+∞). By construction, for every 𝑣 = 𝜈(𝑟/𝑠) ∈ 𝐼 there
is a family (Y∗,B∗) → 𝑇∗ constructed by Theorem 4.7 which belongs to any potential KSBA or KSBA-
CM/F-injective moduli stacks with numerical constants (𝑛, 𝑣, c ≠ ∅) (8). This completes the proof. �
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