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ABSTRACT

Integrating metabolic syndrome (MetS) screening procedures into routine care remains
challenging. Traditional anthropometric and body composition assessments, while useful, have
drawbacks that limit their application. However, automated anthropometrics produced from
smartphone scanning applications may offer a solution. This study aimed to determine whether
smartphone-derived anthropometrics could effectively predict both MetS and its severity. A total
of 281 participants underwent a MetS screening assessment to determine fasting blood pressure,
lipids, glucose, and waist circumference, and completed a smartphone scanning assessment
(MeThreeSixty®) to collect digital anthropometrics. Actual MetS classification and MetS
severity (MetSingex), @ continuous estimate of MetS progression, were determined using MetS
screening data. Then, LASSO regression was used to develop a new MetSi,gex prediction
equation in a subset of participants (n=226), which was subsequently tested in the remaining
participants (n=55), and MetS classification was predicted from the retained variables using

logistic regression. The following equation was produced:

Smartphone-predicted MetSj,gex: -0.8880+ 0.1493(medication use=1; 0=no medication
use) + 0.0089(weight) + 0.0079(bust circumf.) + 0.0140 (thigh circumf.) — 0.6247(appendage-to-

trunk circumf. index),

where medication use includes medications for hypertension, dyslipidemia, or hyperglycemia.
The newly-developed MetSinqex prediction model demonstrated equivalence with actual MetSiqgex
and revealed acceptable agreement (R* 0.72; RMSE: 0.42; SEE: 0.22) when evaluated in the
testing sample (n=55), although proportional bias was observed (p<0.001). Smartphone-
predicted MetS classification demonstrated acceptable diagnostic performance with an accuracy
of 92.7% and an AUC of 0.89. Smartphone scanning applications can accurately assess MetS
prevalence and severity, presenting new possibilities for health screening beyond clinical

environments.

Keywords: mobile application, 3D scanning, digital imaging, cardiometabolic health,

smartphone
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LIST OF ABBREVIATIONS

B: unstandardized beta coefticients

3D: 3-dimensional

Al: artificial intelligence

ATI: appendage-to-trunk circumference index
ATP I11: National Cholesterol Education Program Adult Treatment Panel 111
AUC: area under the curve

BMI: body mass index

CCC: concordance correlation coefficient
DBP: diastolic blood pressure

FBG: fasting blood glucose

HDL-C: high-density lipoprotein cholesterol
LASSO: least absolute shrinkage and selection operator
LOA: 95% limits of agreement

LR+: positive and likelihood ratio

LR-: negative likelihood ratio

MetS: metabolic syndrome

MetSingex. metabolic syndrome severity index
R?: coefficient of determination

RMSE: root mean squared error

ROC: receiver operating characteristic

SBP: systolic blood pressure

SEE: standard error of the estimate

TRG: triglycerides

US: United States

VIF: variance inflation factor

WC: waist circumference
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INTRODUCTION

Metabolic syndrome (MetS), a condition characterized by the presence of several
adiposity-related cardiometabolic abnormalities, is a prominent precursor of many chronic
diseases *. In fact, MetS now mirrors obesity in its prevalence and recognition as a public health
priority, with recent estimates suggesting that >40% of US adults have MetS 2 With the
continuous rise in obesity, an aging US population more susceptible to cardiometabolic diseases
% and the increased rate of MetS amongst young adults *, it is unsurprising that integrating MetS
screening techniques into routine care remains challenging for overwhelmed healthcare systems.

Nevertheless, routine health screenings are critical for identifying those at elevated risk.

Screening for MetS typically involves evaluating individual risk factors such as
abdominal obesity, hypertension, hyperglycemia, and dyslipidemia. However, acquiring these
diagnostic biomarkers is often challenged by cost, availability, technician dependence, and
access, particularly for those in rural and low socioeconomic communities. Consequently,
anthropometric measures are frequently used as primary indicators of cardiometabolic
complications, given the relationship between MetS development and increasing adiposity.
While BMI has historically been used to assess cardiometabolic health status due to its
convenience, its oversimplified nature has led to a lack of clinical consensus. More recently,
combining BMI with proxies of central adiposity, such as absolute and/or relative waist
circumference (WC) has been the preferred approach, as it may better represent fat distribution
patterns indicative of cardiometabolic dysfunction °. However, these proxies often depend on
access to trained personnel, measurement location, and intra/interrater reliability. As a result,
many desire more detailed body composition assessments, which have well-demonstrated

¢ Unfortunately, the most widely-accepted methods are

associations with chronic disease
expensive and typically unavailable outside of research environments, and many consumer-level
devices are inaccessible and often require patients to incur additional costs. Although most
healthcare systems have begun addressing accessibility concerns through the rapid adoption of
digital health services, most anthropometric methods cannot provide remote assessments without
a technician present, and self-assessments are often inaccurate . Given the limited clinical

acceptance and feasibility of these approaches, it is essential to identify accessible, non-invasive,
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time- and cost-efficient anthropometric tools capable of evaluating MetS both remotely and at

point-of-care.

A potential solution may lie in recent adaptations of 3-dimensional (3D) body scanning.
Specifically, 3D scanning uses light emission and detection techniques to create a 3D avatar
capable of automating hundreds of anthropometric measurements. While prior studies highlight

| 9 it remains limited by the same

the potential of this method as a MetS screening too
drawbacks as many previously described strategies. However, since most smartphones are
equipped with the high-quality imaging and machine learning capabilities necessary for these
assessments, 3D scanning procedures have now been optimized for smartphone applications.
Although integration of this technique into smartphone applications represents a promising
advancement in remote and automated cardiometabolic health screenings, the ability of
smartphone-derived anthropometrics to effectively evaluate MetS remains unclear. Therefore,
this study aimed to determine whether anthropometrics obtained from a smartphone application

could be used to predict both MetS and its severity.
METHODS
Participants

A total of 281 participants aged 18-65 were prospectively recruited through a
combination of convenience and snowball sampling methods (i.e., in-person and online word-of-
mouth) and completed this cross-sectional evaluation. Participants were excluded if they were
<18y or >65y; pregnant; or breastfeeding/lactating. The age range for study eligibility was
established based on the American Aging Association’s guidelines for clinically meaningful age

10" Moreover, this age group is at the highest risk for

groupings in the context of disease
developing MetS, particularly among individuals in the younger subcategories *. Because the
MetS severity (MetSingex) €quations used in this study are unavailable for Asian individuals *,
Asian participants were also not included in this analysis. This study was conducted according to
the guidelines laid down in the Declaration of Helsinki and all procedures involving human
subjects were approved by the University of Southern Mississippi Institutional Review Board

(IRB#22-1012/23-0446). Written informed consent was obtained from all subjects.
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Procedures

Participants arrived at the laboratory for testing after an >8-h overnight fast from food,
beverage, and supplements/medications, and after abstention from exercise for >24-h.
Participants were instructed to wear tight form-fitting athletic clothing, and to remove any
external metal or accessories prior to testing. After sitting for a minimum of 5-min, systolic
(SBP) and diastolic (DBP) blood pressure were collected using an automated digital blood
pressure monitor. Afterward, participants underwent several anthropometric evaluations
including measurements of height, weight, WC at the superior iliac crest using traditional tape
measure, and automated anthropometric assessments using a freely downloadable 3D
smartphone application (MeThreeSixty®, Size Stream, Cary, NC) that provides users with both
the images and anthropometric data free-of-charge (additional metrics provided via a $4.99
USD/month subscription at time of this study). Finally, capillary blood was collected to assess
fasting blood glucose (FBG), high-density lipoprotein cholesterol (HDL-C), and triglycerides
(TRG).

Anthropometric Smartphone Application

Body composition, circumferences, surface areas, and volumes were measured using a
smartphone scanning application, and the procedures used to collect these measurements have

been described in detail elsewhere **°. Notably, the measurements produced by this smartphone

12,13,16,17

application have well-demonstrated precision and have shown to agree with criterion

120517 1mportantly, the mobile application used in this study has demonstrated

acceptable agreement and test-retest reproducibility across multiple smartphone models 3,

14

methods
including various Apple® devices equipped with body scanning capabilities **. For these
assessments, participants were required to wear only tight-form fitting athletic clothing and to tie
their hair up so that it was not present below the shoulder line. After entering the participant’s
descriptive information into the application, the smartphone (iPhone 14 Pro Max, Apple®,
Cupertino, CA) was placed into a stationary tripod at a standardized height, and the smartphone’s
orientation was confirmed by the application. Participants were then instructed to stand on top of
a foot guide at a standardized distance from the smartphone. Once positioned, the application
prompted participants to situate themselves into two poses: 1) the A pose, which required
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participants to face the smartphone, widen their feet, and laterally raise their arms; and 2) the
side pose, which required participants to turn to the side, bring their feet together, and place their
hands to their sides. The smartphone’s front facing camera captured a single image during each
pose. All scans were conducted in a designated area featuring a neutral-colored backdrop (gray)
and no external light sources (e.g., window light) nor light at the participants back. Importantly,
according to the manufacturer, raw image files are neither stored on the device nor uploaded to

the cloud to protect user privacy.
Blood Biomarkers and Metabolic Syndrome Assessments

The procedures for the collection of blood biomarkers and the determination of MetS and
MetSingex have been published elsewhere %2 In summary, ~40 pL of capillary blood were
collected via fingerstick, placed into to a single-use testing cassette, and inserted into a validated
capillary blood analyzer ?® (Cholestech LDX, Abbot, Abbott Park, IL) for the analysis of HDL-C
(%CV: 3.3-4.9), TRG (%CV: 1.6-3.6), and FBG (%CV: 4.5-6.2). Importantly, this capillary
blood analyzer does not report HDL-C for HDL-C <15 mg/dL (n=3) nor TRG measurements
>650 mg/dL (n=3), and does not report TRG for TRG >650 mg/dL nor TRG <45 mg/dl (n=39).
As such, HDL-C and TRG below these thresholds were recorded as 15 mg/dL and 45 mg/dL,
respectively, and TRG >650 mg/dL were recorded as 650 mg/dL. Because all participants with
TRG >650 mg/dL were classified as having MetS, irrespective of their HDL classification, HDL-
C values for these participants were recorded as the median HDL-C of sex, race/ethnicity, and
MetS matched participants. Quality assurance tests were performed in compliance with the

manufacturer’s standards.

! which includes

MetS classification was determined using the ATP Il criterion
possessing any three of the following five risk factors: 1) FBG >100 mg/dL; 2) SBP >130 mmHg
or DBP >85 mmHg; 3) TRG >150 mg/dL; 4) WC >88 cm for females and >102 cm for males;
and 5) HDL-C <50 mg/dL for females and <40 mg/dL for males. Participants that were currently
being prescribed medications for the treatment of hypertension, hyperglycemia, and/or
dyslipidemia (n=17) were classified as meeting the criteria for the treated risk factor. The only
other medications reported by participants with the potential to meaningfully influence

cardiometabolic outcomes were muscle relaxants (n=3) and over-the-counter anti-inflammatory
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drugs (n=12). However, as part of the overnight fasting protocol, participants were instructed to
abstain from taking these medications until after their study visit. Because these medications
were used on an as-needed basis for personal or prescribed reasons, and are not considered in the
formal diagnostic criteria for MetS, they were not included in model development. Nonetheless,

their prevalence is reported here to provide transparency and contextual clarity.

The primary outcome variable in the current study was MetSijnqex, defined as an expansion
of the simple dichotomous classification system (i.e., MetS positive or negative) into a
continuous value whose magnitude represents the severity and progression of MetS. MetSingex
scores were calculated from the aforementioned risk factors for each participant using the sex
and race specific equations put forth by Gurka et al ™. Interpreted as a z-score, positive and
negative MetSiqex Values represent greater and lesser MetS severity and progression,
respectively, and these values have shown to be associated with additional markers of

cardiometabolic dysfunction .
Model Development

A new MetSinqgex prediction equation was developed using least absolute shrinkage and

1> after employing the demographic and

selection operator (LASSO) regression procedures
smartphone-derived anthropometric predictor variables listed hereafter. Demographic predictor
variables included: age, height, weight, sex, race (White/Black), ethnicity (Hispanic/non-
Hispanic), medication use (prescribed or not prescribed medication to treat hypertension,
hyperglycemia, and/or dyslipidemia), and smoking status. Anthropometric predictor variables
produced by the smartphone application included: circumferences (cm) of the head, collar, neck,
halter, shoulder, chest, bust (designated as HingedBust in the application), upper arms, biceps,
forearms, wrists, thighs, knees, calves, ankles, and vertical trunk; lengths (in cm) of the arms,
outside legs, and central trunk; surface areas (cm?) and volumes (cm®) of the whole-body, arms,
legs, and torso; and appendage-to-trunk circumference index (ATI), defined as the sum of left
and right upper arm, thigh, and calf circumferences divided by the stomach circumference 2.
Circumferences and lengths collected from the right and left sides were averaged to produce a
single estimate, whereas right and left surface areas and volumes were summed. To evaluate

whether smartphone-derived anthropometric measurements offered additional predictive value
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beyond demographic variables alone, we first developed a baseline model using only
demographic predictors via LASSO regression. This was followed by the construction of a
comprehensive model incorporating both demographic and smartphone anthropometric

variables.
Statistical analyses

Using a medium effect size (f%: 0.25) and five predictor variables, power analyses for
multiple linear regression revealed that 57 participants would yield 80% power at an o = 0.05. To
create and assess a newly-developed MetSiqex prediction equation, a training dataset comprised
of 80% of the sample (n=226) and a testing dataset containing the remaining 20% (n=55) were
produced using random sampling techniques in R %. LASSO regression was then used to fit
models in the training dataset using the glmnet package in R %°. Importantly, LASSO regression
works by identifying the predictor variables that decrease prediction error while simultaneously
shrinking the coefficients of extraneous variables towards zero so that they are effectively

| #"; which ultimately produces the most parsimonious model that

omitted from the mode
minimizes multicollinearity and model overfitting. To determine the LASSO shrinkage

technique, the best A value was calculated using 10-fold cross-validation with the one SE rule *°.

After the MetSinqex prediction model was developed in the training sample, the model was
used to predict MetSi,qex in the testing sample. The performance of the smartphone-predicted
MetSingex Was evaluated against the actual MetSi qex in the testing sample using paired t-tests,
equivalence tests, coefficients of determination (R?), Deming regression, Bland-Altman analyses,
root mean squared error (RMSE), standard error of the estimate (SEE), and concordance
correlation coefficients (CCC). Because MetSinqex iS interpreted as a z-score, the equivalence
regions were defined as +0.34 to represent approximately one-third of a standard deviation,
which have been used to assess z-score values in prior studies . The agreement between
smartphone-predicted MetSingex and the line-of-identity using Deming regression was determined
if the 95% confidence intervals for the intercept and slope contained the values 0 and 1,
respectively. The 95% limits of agreement (LOA) and proportional biases were determined using

Bland-Altman and linear regression techniques.
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Additionally, the ability of the retained smartphone variables to correctly predict MetS
classification was evaluated using binomial logistic regression with a cutoff point of 0.5 (MetS
negative: <0.5; MetS positive: >0.5). The true positive and true negative proportions of
smartphone-predicted MetS were compared to the proportions determined by the actual
diagnostic procedures using the receiver operating characteristic (ROC) area under the curve
(AUC), chi-square tests with corrections for continuity, R*vcradcen, @nd sensitivity, specificity,
accuracy, and positive (LR+) and negative (LR-) likelihood ratios. Acceptable accuracy of the
smartphone-predicted MetS classification was defined as having a both an AUC >0.70 and
having a summed sensitivity and specificity of >1.50 ****!, Variance inflation factors (VIF) were
used to assess the multicollinearity of the final LASSO and logistic regression models (all VIFs

<6.24). Statistical significance was accepted at p<0.05.
RESULTS
Metabolic Syndrome Severity

Descriptive characteristics of the participants in the combined, training, and testing
samples are presented in Table 1. The initial model, which included only demographic predictors
(intercept: -0.2925), retained age (p = 0.0028), medication use (p = 0.2692), height (f = -0.0113),
and weight (B = 0.0234). However, this model performed worse overall (R? = 0.63; LOA = 0.82;
AUC = 0.84; joint sensitivity and specificity = 1.48) compared to the full model that
incorporated both demographic and smartphone-derived anthropometric variables (reported
below). Notably, when LASSO regression was applied to the complete model, age and height
were excluded, while the coefficients for medication use and weight were substantially reduced,

indicating that the additional anthropometric features provided stronger predictive value.

The coefficients of the retained variables using LASSO regression in the complete model
are presented in Table 2. Retained variables included medication use, weight, bust
circumference, thigh circumference, and ATI, which produced the following equation:

Smartphone-predicted MetSingex: -0.8880 + 0.1493(medication use=1; 0=no medication
use) + 0.0089(weight) + 0.0079(bust circumf.) + 0.0140(thigh circumf.) — 0.6247(AT]I).
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The equation presents unstandardized coefficients for the predictors retained in the final model.
All other predictor variables, as detailed in the preceding sections, had their coefficients shrunk
to 0, effectively excluding them from the model. Figure la-d illustrates the agreement between
the newly-developed smartphone MetSingex prediction equation and the actual MetSingex In the
testing sample. Paired t-tests revealed significant differences between smartphone-predicted and
actual MetSjrgex (p=0.006; Fig.1la), though smartphone-predicted MetSinqex demonstrated
equivalence with actual MetSingex (Fig.1d). Supplemental Table 1 presents the prevalence and
risk factors of MetS across MetSiqex groups, as defined by these equivalence bounds, to further
support the results of our equivalence testing procedures. R?, CCC, RMSE, and SEE values (Fig.
1c) revealed good agreement between methods, and LOA were moderate. Proportional biases
(p<0.001; Fig.1a) and differences in the slope (but not intercept) from the line-of-identity were
observed (Fig.1b).

Metabolic Syndrome Classification

The ROC plots and associated contingency tables of Figure 2 demonstrate the ability of
the retained smartphone variables to accurately diagnose MetS compared to the traditional
diagnostic standards. The true prevalence of MetS was 18.2% whereas the apparent prevalence
of smartphone-predicted MetS was 14.5%. Chi-square tests for the overall model were
significant (p<0.001), and smartphone-predicted MetS had a diagnostic accuracy of 92.7%, with
sensitivity (70%), specificity (97.8%; joint sensitivity+specificity: 1.68), and LR+ (31.5) and
LR- (0.31) indicating acceptable diagnostic performance. Moreover, the model AUC (0.89) and

R2mcradden (0.43) revealed excellent model performance.
DISCUSSION

After developing a MetSjngex prediction model using LASSO regression and cross-
validating this model in an independent subset of participants, our evaluations revealed that
smartphone-acquired anthropometrics can provide accurate estimates of MetS severity and
progression. While the ability to predict a continuous MetSjngex SCore from a smartphone
application may improve diagnostic flexibility and better inform clinicians of MetS progression,
the absence of diagnostic cutoffs may complicate clinical decision making and limit the
implementation of this technique at scale. Therefore, we also assessed whether smartphone-
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derived anthropometrics could accurately predict MetS classification, and our model
demonstrated good-to-excellent ability to identify MetS in accordance with traditional diagnostic
standards. These findings affirm that both MetS and its severity can be accurately determined

using a smartphone application.

The ability of 3D body scanners to deliver accurate estimates of conventional
anthropometrics is well-established *2. However, ongoing advancements in artificial intelligence
(Al) and digital imaging now offer new opportunities to leverage the predictive power of these
automated anthropometrics to produce more clinically significant outcomes. For example, 3D
scanners have accurately predicted measurements such as appendicular lean mass ** and MetS °
based on the established relationship between key anthropometrics and both muscularity * and
chronic disease *. In fact, prior studies have demonstrated that body volumes obtained from 3D
scanners predict MetS more accurately than traditional anthropometric assessments °, which is
likely attributed to the advanced landmarking procedures that can eliminate human error while
simultaneously automating more elaborate measurements. However, given the existing
limitations of 3D scanning, manufacturers have begun to couple 3D scanners with smartphone

equivalents, which have demonstrated a similar ability to predict MetS °.

Our findings align with previous studies that employed both 3D *° and smartphone °
scanning techniques for predicting MetS classification. However, to our knowledge, only one
study has assessed whether a smartphone application can predict the prevalence and severity of
MetS °. Although the predictive power of our smartphone scanning model for detecting binary
MetS status was nearly identical to other methods *°, our model exhibited markedly greater
accuracy in predicting MetSingex °. While the improved performance of our model could be due to
the technological differences between applications, it could also result from variations in the
strength of the predictor variables. For example, other applications use body volume estimates to
predict MetS, which have shown comparable performance to traditional circumferences collected
from similar regions &. In fact, previous studies have shown that the prediction of MetS ° and
MetS risk factors * improves most when using automated circumferences. Since body
circumferences appear to be stronger predictors of binary MetS status, and MetSijngex iS Simply an
extension of this status, the systematic selection and omission of body circumferences and

volumes, respectively, likely accounts for the performance differences between applications.
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Importantly, since WC is a risk factor for MetS, and is included in MetSingex, We chose to
exclude closely related raw circumferences as predictor variables. This allowed us to avoid
potential biases, and addressed the challenges of predicting MetSingex from abdominal
circumferences in Black adults #. Despite excluding these variables, we still observed acceptable
model performance using only circumferences of the bust, thighs, and ATI. Recent investigations
using Al to predict diabetes and hypertension from biometric data have shown that thigh
circumference enhances model specificity more than BMI; likely because it can better discern
young adults with greater muscularity from those with higher body fat *. While it is reasonable
to assume that bust circumference was included as a marker of upper body adiposity in the
absence of raw abdominal measurements, bust circumference may also uniquely contribute to
MetS. Exploratory analyses of the present dataset revealed that bust, but not WC (r: -0.09, 0.00;
p>0.050), was significantly associated with SBP (r: 0.30, p=0.029) and HDL-C (r: -0.27,
p=0.047) after adjusting for both age and BMI. Interestingly, HDL-C is inversely associated with
estradiol ', which contributes to fat accumulation in breast tissue *. Greater fat accumulation
could stimulate aromatase activity, and elevated conversion of androgens-to-estrogens may
increase bust size * whilst exerting vasoconstrictive responses that increase SBP “°. Despite the
historical reliance on abdominal measurements to assess cardiometabolic abnormalities, our
findings suggest that individual components of MetS could be more effectively captured using
alternative anthropometrics, and mobile scanning presents an emerging opportunity to automate

anthropometrics that have traditionally been difficult to obtain.

There are a few limitations that warrant discussion. While our sample was diverse, we
were unable to evaluate Asian adults, as MetSingex iS currently unavailable for this group. The
average age of our sample was also relatively young. However, the prevalence of MetS in our
sample matches the national prevalence for this age range and reflects the age group
experiencing the most rapid increase in MetS *. Although age was included as a continuous
predictor in the initial LASSO regression model, it was not retained in the final model,
suggesting that it did not contribute additional predictive value beyond the selected variables.
Similarly, sex was included as a predictor but was excluded during model selection. While future
models evaluating the performance of smartphone-derived anthropometrics for predicting

MetSingex Within sex-specific subgroups may be warranted, the sample sizes in our study were

ssaud Alssaaun abpuguied Aq auluo paysliand X9/501525t L L£000S/£101L°01/B10"10p//:sdny


https://doi.org/10.1017/S000711452510576X

Accepted manuscript

insufficient to support adequately powered stratified analyses and may have introduced bias into
subgroup-specific models. Future studies seeking to improve these models should consider
employing age- and sex stratified models. The use of prescription medication to treat specific
MetS risk factors may have lowered MetSiqex fOr these participants. However, we accounted for
this during LASSO, and medication use was retained as a variable in the final model. Because
DBP is not included in MetSingex, Unique hypertensive MetS phenotypes may have been
overlooked 2'. The prediction model in our study exhibited significant proportional biases and
differences from the line-of-identity, which, in the context of chronic disease diagnosis, may lead
to underestimation of risk among high-risk individuals. However, such biases, particularly
underestimation, are commonly reported in studies validating novel anthropometric and body
composition methods. Despite this, our model demonstrated excellent classification accuracy for
MetS, supporting its potential utility in risk stratification. Still, users and practitioners should
employ caution when using this technique. Because the mobile application used in our study has

12131627 " \ve did not collect duplicate measures of the

well-established test-retest reliability
smartphone-derived anthropometric variables, and therefore cannot report test-retest
reproducibility for these features (thigh, ATI, and bust circumference) within the context of this
study. However, previous studies have demonstrated the reproducibility of the thigh and chest
circumferences produced by this mobile application, as well as the circumferences used to
calculate ATI ***'. Although, to our knowledge, no studies have specifically evaluated the test-
retest reproducibility of bust measurements using this mobile application, unpublished pilot data
from our laboratory in an independent sample of female participants demonstrated acceptable
agreement between smartphone-derived and tape-measured bust measurements (Rz = 0.82; mean
difference = 3.07 cm). Additionally, other studies have reported acceptable agreement between
smartphone-derived and MRI-based breast volume estimates **. Together, these findings support
the reliability and/or validity of the anthropometric variables retained in our prediction model.

Finally, our findings are specific to the application used in our study.

ssaud Alssaaun abpuguied Aq auluo paysliand X9/501525t L L£000S/£101L°01/B10"10p//:sdny


https://doi.org/10.1017/S000711452510576X

Accepted manuscript

In conclusion, smartphone scanning applications can accurately assess MetS prevalence
and severity, supporting its use in remote settings. While longitudinal studies are needed to
determine its effectiveness in monitoring changes, our findings highlight the predictive power of
automated anthropometrics and presents new possibilities for health screening beyond clinical

environments.
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Figure la-d. Bland-Altman (a), Deming regression (b), simple regression (c), and equivalence plots
demonstrating the agreement between smartphone-predicted MetSi,qex and the actual MetSingex in the testing
sample (n = 55). For the Bland-Altman plots (a), the upper and lower dashed lines represent the 95% LOA, the
middle-dashed line represents the MD between the smartphone-predicted MetSi,ex and the actual MetS;ngex,
and the solid blue line and its corresponding shaded area represents the regression line and its 95%ClI,
respectively. For the Demming regression plots (b), the solid black line represents the line of identity and the
red dashed line represents the regression line. For the simple regression plot (c), the solid blue line and its
corresponding shaded area represents the regression line and its 95%CI, respectively. For the equivalence
plots, the average MD (top) and effect size MD (bottom) are presented, where the blue shaded regions
represent the TOST Cls displayed in the CI legend, the black circles and intersecting horizontal lines represent

the MD and the TOST 90%Cls, respectively, and the vertical dashed lines indicate the equivalence regions.

B: proportional bias coefficient; CCC: concordance correlation coefficient; Cl: confidence interval; LOA: 95%
limits of agreement; MD: mean difference calculated as the smartphone-predicted MetS;,gex Minus the actual
MetSingex-; MetSingex: metabolic syndrome (MetS) severity score; R?: coefficient of determination; RMSE: root

mean square error; SEE: standard error of the estimate; TOST: values from the TOSTER package in R.

* statistically significant at p<0.050.
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Figure 2. An ROC curve and corresponding AUC demonstrating the ability of the predictor variables
retained during LASSO regression to predict conventional MetS classification relative to actual MetS
status in the testing sample (n=55). Positive and negative MetS cases are presented for both smartphone-
predicted and actual MetS, as well as the sensitivity, specificity, and accuracy of smartphone-predicted

MetS status. R*vcrageens Chi-square, and LR+ and LR- are also tabulated.

¥*: chi-square; AUC: area under the curve; LASSO: least absolute shrinkage and selection operator; LR+:
positive likelihood ratio; LR-: negative likelihood ratio; MetS: metabolic syndrome; R%\icradden: McFadden

pseudo coefficient of determination; ROC: receiver-operating characteristic.

* statistically significant at p<0.050.
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Table 1. Descriptive Characteristics of the Combined, Training, and Testing Samples

Combined Sample Training Sample

Testing Sample

N

Sex (F/M)

Race (W/B)
Ethnicity (H/NH)
Metabolic Syndrome
Medication use
Smoke

Age (y)

Height (cm)
Weight (kg)

BMI (kg/m?)
Body fat (%)*
Fat Mass (kg)®

Fat-free mass (kg)®

Metabolic ~ Syndrome

Score

Smartphone Metabolic Syndrome

Severity Score”

Waist Circumference (cm)?

Systolic blood pressure (mmHg)

281

173/108

170/111

17/264

49

18

16

245+ 8.7

169.6 £ 9.8

77.1+20.2

26.7+59

27.3+8.2

21.7+11.4

55.4+12.8

-0.36 £0.70

88.5+14.4

117.2+134

226

136/90

133/93

9/217

39

12

14

246 +8.8

169.8 +10.1

76.9 +£20.6

265+59

269+8.1

21.3+114

55.6 £13.3

-0.33+0.71

88.1+14.3

1176 £134

55

37/18

37/18

8/47

10

243 +8.3

168.7 £ 8.1

77.8+18.8

27.3+6.1

28.9+8.7

23.3+11.6

545+11.0

-0.43 +0.68

-0.28 £0.43

90.2 £14.6

115.7+£ 135
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Diastolic blood pressure (mmHg) 78.9+10.4 78.5+10.3 80.9+10.7
HDL-C (mg/dL) 48.4+13.9 48.0+14.3 50.4+12.1
Triglycerides (mg/dL) 111.2 +100.7 116.3 + 108.6 90.0 +54.2
Fasting blood glucose (mg/dL) 89.7+8.1 89.8+7.8 89.4+9.1
Head (cm) 59.2+35 59.1+ 3.6 59.6 +2.9
Collar (cm) 37.3x45 37.3+4.6 37.3+4.0
Neck (cm) 431+41 43.1+43 42.9+35
Halter (cm) 85.2+8.1 849+8.1 86.4 +8.2
Shoulder (cm) 110.8+12.3 110.7+12.5 1114+ 115
Chest (cm) 101.6+14.6 101.2+14.7 103.1+14.5
Bust (cm) 104.1 +13.7 103.6 + 13.7 105.8 +13.8
Upper arms (cm) 33.8+5.1 33.6+£5.0 345+5.4
Biceps (cm) 316+5.1 315+5.0 32.2+55
Forearms (cm) 26.7+3.4 26.7+3.4 26.8 + 3.3
Wrists (cm) 164+1.7 164+1.7 165+1.6
Stomach (cm) 92.1+13.7 91.6+13.6 93.8+14.0
Waist (cm) 91.3+135 90.8+13.6 93.6 £ 13.7
Hips (cm) 1049+ 11.8 1044+ 11.7 107.0+12.3
Thighs (cm) 59.9+7.7 59.5+ 7.4 61.4+8.7
Knees (cm) 38.3+3.9 38.1+3.8 39.0+4.4
Calves (cm) 38.0+3.9 37.9+3.9 38.6£4.0
Ankle (cm) 24520 24521 247+1.38
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Arm length (cm)
Outside leg length (cm)
CTL (cm)

VTC (cm)

Surface area (cm?)
Arm surface area (cm?)
Leg surface area (cm?)
Torso surface area (cm?)
Body volume (cm?)
Arm volume (cm®)

Leg volume (cm®)
Torso volume (cm®)

ATI

Accepted manuscript

58.6 +4.2

103.3+6.4

1545+ 13.2

162.4+14.9

18,201 + 2,716

3,280 + 564

8,804 + 1,211

6,120 + 1,056

75,494 + 21,854

8,134 + 2,632

19,629 * 5,036

47,661 + 14,933

2.88+0.19

58.6 +4.4

103.4+6.7

1544+ 13.6

162.2+15.3

18,156 + 2,764

3,280 + 575

8,778 1,227

6,102 + 1,078

74,981 + 21,969

8,109 + 2,623

19,430 * 4,880

47,373 + 15,190

2.87+0.19

58.3+3.2

103.0+ 4.5

155.0 £ 11.7

163.3+13.3

18,385 + 2,524

3,278 + 521

8,914 + 1,149

6,191 + 968

77,605 + 21,444

8,236 + 2,693

20,449 + 5,606

48,841 + 13,892

2.88+0.15

Data are presented as N or mean + standard deviation.

All body circumferences from the right and left sides were averaged to produce a single estimate.

Appendicular surface areas and volumes were calculated as the sum of the right and left sides.

For ATI, all variables were collected using smartphone-derived measurements. Medication use

was defined as being prescribed medication to treat hypertension, hyperglycemia, and/or

dyslipidemia. Smoking was defined as currently smoking or vaping.

F: female; M: male; White; B: Black; H: Hispanic; NH: non-Hispanic; BMI: body mass index;

CTL: center trunk length; VTC: wvertical trunk circumference; ATI: appendage-to-trunk

circumference index

2 estimates produced using smartphone application; ® estimates produced using the newly

developed smartphone prediction model.
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Table 2. LASSO regression model coefficients predicting metabolic syndrome severity from

smartphone-derived anthropometrics

Predictor Variables Metabolic  Syndrome  Severity  Prediction

Coefficients

Intercept -0.8880
Medication use 0.1493
Weight (kg) 0.0089
Bust (cm) 0.0079
Thighs (cm) 0.0140
ATI -0.6247

All data are presented as the unstandardized coefficients for each variable within the
corresponding body composition prediction model. The coefficients of all other predictor
variables were shrunk to “0” and are therefore not included in the final model equations nor the
table.

“Medication use” was defined as: 1 = prescribed medication to treat hypertension,
hyperglycemia, and/or dyslipidemia; or 0 = no prescribed these medications. For ATI, all
variables were collected using smartphone-derived measurements, and was defined as the sum of

left and right upper arm, thigh, and calf circumferences divided by the stomach circumference

ATI: appendage-to-trunk circumference index.
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