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ABSTRACT 

Integrating metabolic syndrome (MetS) screening procedures into routine care remains 

challenging. Traditional anthropometric and body composition assessments, while useful, have 

drawbacks that limit their application. However, automated anthropometrics produced from 

smartphone scanning applications may offer a solution. This study aimed to determine whether 

smartphone-derived anthropometrics could effectively predict both MetS and its severity. A total 

of 281 participants underwent a MetS screening assessment to determine fasting blood pressure, 

lipids, glucose, and waist circumference, and completed a smartphone scanning assessment 

(MeThreeSixty
®
) to collect digital anthropometrics. Actual MetS classification and MetS 

severity (MetSindex), a continuous estimate of MetS progression, were determined using MetS 

screening data. Then, LASSO regression was used to develop a new MetSindex prediction 

equation in a subset of participants (n=226), which was subsequently tested in the remaining 

participants (n=55), and MetS classification was predicted from the retained variables using 

logistic regression. The following equation was produced:  

Smartphone-predicted MetSindex: -0.8880+ 0.1493(medication use=1; 0=no medication 

use) + 0.0089(weight) + 0.0079(bust circumf.) + 0.0140 (thigh circumf.) – 0.6247(appendage-to-

trunk circumf. index),  

where medication use includes medications for hypertension, dyslipidemia, or hyperglycemia. 

The newly-developed MetSindex prediction model demonstrated equivalence with actual MetSindex 

and revealed acceptable agreement (R
2
: 0.72; RMSE: 0.42; SEE: 0.22) when evaluated in the 

testing sample (n=55), although proportional bias was observed (p<0.001). Smartphone-

predicted MetS classification demonstrated acceptable diagnostic performance with an accuracy 

of 92.7% and an AUC of 0.89. Smartphone scanning applications can accurately assess MetS 

prevalence and severity, presenting new possibilities for health screening beyond clinical 

environments. 

Keywords: mobile application, 3D scanning, digital imaging, cardiometabolic health, 

smartphone  
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LIST OF ABBREVIATIONS 

β: unstandardized beta coefficients 

3D: 3-dimensional 

AI: artificial intelligence 

ATI: appendage-to-trunk circumference index 

ATP III: National Cholesterol Education Program Adult Treatment Panel III 

AUC: area under the curve  

BMI: body mass index 

CCC: concordance correlation coefficient 

DBP: diastolic blood pressure 

FBG: fasting blood glucose  

HDL-C: high-density lipoprotein cholesterol  

LASSO: least absolute shrinkage and selection operator  

LOA: 95% limits of agreement  

LR+: positive and likelihood ratio 

LR-: negative likelihood ratio 

MetS: metabolic syndrome  

MetSindex: metabolic syndrome severity index 

R2: coefficient of determination  

RMSE: root mean squared error  

ROC: receiver operating characteristic  

SBP: systolic blood pressure 

SEE: standard error of the estimate 

TRG: triglycerides  

US: United States 

VIF: variance inflation factor 

WC: waist circumference  
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INTRODUCTION 

Metabolic syndrome (MetS), a condition characterized by the presence of several 

adiposity-related cardiometabolic abnormalities, is a prominent precursor of many chronic 

diseases 
1
. In fact, MetS now mirrors obesity in its prevalence and recognition as a public health 

priority, with recent estimates suggesting that >40% of US adults have MetS 
2
. With the 

continuous rise in obesity, an aging US population more susceptible to cardiometabolic diseases 

3
, and the increased rate of MetS amongst young adults 

4
, it is unsurprising that integrating MetS 

screening techniques into routine care remains challenging for overwhelmed healthcare systems. 

Nevertheless, routine health screenings are critical for identifying those at elevated risk.  

Screening for MetS typically involves evaluating individual risk factors such as 

abdominal obesity, hypertension, hyperglycemia, and dyslipidemia. However, acquiring these 

diagnostic biomarkers is often challenged by cost, availability, technician dependence, and 

access, particularly for those in rural and low socioeconomic communities. Consequently, 

anthropometric measures are frequently used as primary indicators of cardiometabolic 

complications, given the relationship between MetS development and increasing adiposity. 

While BMI has historically been used to assess cardiometabolic health status due to its 

convenience, its oversimplified nature has led to a lack of clinical consensus. More recently, 

combining BMI with proxies of central adiposity, such as absolute and/or relative waist 

circumference (WC) has been the preferred approach, as it may better represent fat distribution 

patterns indicative of cardiometabolic dysfunction 
5
. However, these proxies often depend on 

access to trained personnel, measurement location, and intra/interrater reliability. As a result, 

many desire more detailed body composition assessments, which have well-demonstrated 

associations with chronic disease 
6
. Unfortunately, the most widely-accepted methods are 

expensive and typically unavailable outside of research environments, and many consumer-level 

devices are inaccessible and often require patients to incur additional costs. Although most 

healthcare systems have begun addressing accessibility concerns through the rapid adoption of 

digital health services, most anthropometric methods cannot provide remote assessments without 

a technician present, and self-assessments are often inaccurate 
7
. Given the limited clinical 

acceptance and feasibility of these approaches, it is essential to identify accessible, non-invasive, 
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time- and cost-efficient anthropometric tools capable of evaluating MetS both remotely and at 

point-of-care.  

A potential solution may lie in recent adaptations of 3-dimensional (3D) body scanning. 

Specifically, 3D scanning uses light emission and detection techniques to create a 3D avatar 

capable of automating hundreds of anthropometric measurements. While prior studies highlight 

the potential of this method as a MetS screening tool 
8,9

, it remains limited by the same 

drawbacks as many previously described strategies. However, since most smartphones are 

equipped with the high-quality imaging and machine learning capabilities necessary for these 

assessments, 3D scanning procedures have now been optimized for smartphone applications. 

Although integration of this technique into smartphone applications represents a promising 

advancement in remote and automated cardiometabolic health screenings, the ability of 

smartphone-derived anthropometrics to effectively evaluate MetS remains unclear. Therefore, 

this study aimed to determine whether anthropometrics obtained from a smartphone application 

could be used to predict both MetS and its severity.  

METHODS  

Participants 

A total of 281 participants aged 18-65 were prospectively recruited through a 

combination of convenience and snowball sampling methods (i.e., in-person and online word-of-

mouth) and completed this cross-sectional evaluation. Participants were excluded if they were 

<18y or >65y; pregnant; or breastfeeding/lactating. The age range for study eligibility was 

established based on the American Aging Association’s guidelines for clinically meaningful age 

groupings in the context of disease 
10

.  Moreover, this age group is at the highest risk for 

developing MetS, particularly among individuals in the younger subcategories 
4
. Because the 

MetS severity (MetSindex) equations used in this study are unavailable for Asian individuals 
11

, 

Asian participants were also not included in this analysis. This study was conducted according to 

the guidelines laid down in the Declaration of Helsinki and all procedures involving human 

subjects were approved by the University of Southern Mississippi Institutional Review Board 

(IRB#22-1012/23-0446). Written informed consent was obtained from all subjects. 
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Procedures 

 Participants arrived at the laboratory for testing after an ≥8-h overnight fast from food, 

beverage, and supplements/medications, and after abstention from exercise for ≥24-h. 

Participants were instructed to wear tight form-fitting athletic clothing, and to remove any 

external metal or accessories prior to testing. After sitting for a minimum of 5-min, systolic 

(SBP) and diastolic (DBP) blood pressure were collected using an automated digital blood 

pressure monitor. Afterward, participants underwent several anthropometric evaluations 

including measurements of height, weight, WC at the superior iliac crest using traditional tape 

measure, and automated anthropometric assessments using a freely downloadable 3D 

smartphone application (MeThreeSixty
®
, Size Stream, Cary, NC) that provides users with both 

the images and anthropometric data free-of-charge (additional metrics provided via a $4.99 

USD/month subscription at time of this study). Finally, capillary blood was collected to assess 

fasting blood glucose (FBG), high-density lipoprotein cholesterol (HDL-C), and triglycerides 

(TRG). 

Anthropometric Smartphone Application  

Body composition, circumferences, surface areas, and volumes were measured using a 

smartphone scanning application, and the procedures used to collect these measurements have 

been described in detail elsewhere 
12–16

. Notably, the measurements produced by this smartphone 

application have well-demonstrated precision 
12,13,16,17

 and have shown to agree with criterion 

methods 
12–15,17

. Importantly, the mobile application used in this study has demonstrated 

acceptable agreement and test-retest reproducibility across multiple smartphone models 
13

, 

including various Apple
®
 devices equipped with body scanning capabilities 

14
. For these 

assessments, participants were required to wear only tight-form fitting athletic clothing and to tie 

their hair up so that it was not present below the shoulder line. After entering the participant’s 

descriptive information into the application, the smartphone (iPhone 14 Pro Max, Apple
®
, 

Cupertino, CA) was placed into a stationary tripod at a standardized height, and the smartphone’s 

orientation was confirmed by the application. Participants were then instructed to stand on top of 

a foot guide at a standardized distance from the smartphone. Once positioned, the application 

prompted participants to situate themselves into two poses: 1) the A pose, which required 
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participants to face the smartphone, widen their feet, and laterally raise their arms; and 2) the 

side pose, which required participants to turn to the side, bring their feet together, and place their 

hands to their sides. The smartphone’s front facing camera captured a single image during each 

pose. All scans were conducted in a designated area featuring a neutral-colored backdrop (gray) 

and no external light sources (e.g., window light) nor light at the participants back. Importantly, 

according to the manufacturer, raw image files are neither stored on the device nor uploaded to 

the cloud to protect user privacy. 

Blood Biomarkers and Metabolic Syndrome Assessments 

The procedures for the collection of blood biomarkers and the determination of MetS and 

MetSindex have been published elsewhere 
18–22

. In summary, ~40 μL of capillary blood were 

collected via fingerstick, placed into to a single-use testing cassette, and inserted into a validated 

capillary blood analyzer 
23

 (Cholestech LDX, Abbot, Abbott Park, IL) for the analysis of HDL-C 

(%CV: 3.3–4.9), TRG (%CV: 1.6–3.6), and FBG (%CV: 4.5–6.2). Importantly, this capillary 

blood analyzer does not report HDL-C for HDL-C <15 mg/dL (n=3) nor TRG measurements 

>650 mg/dL (n=3), and does not report TRG for TRG >650 mg/dL nor TRG <45 mg/dl (n=39). 

As such, HDL-C and TRG below these thresholds were recorded as 15 mg/dL and 45 mg/dL, 

respectively, and TRG >650 mg/dL were recorded as 650 mg/dL. Because all participants with 

TRG >650 mg/dL were classified as having MetS, irrespective of their HDL classification, HDL-

C values for these participants were recorded as the median HDL-C of sex, race/ethnicity, and 

MetS matched participants. Quality assurance tests were performed in compliance with the 

manufacturer’s standards. 

MetS classification was determined using the ATP III criterion 
1
, which includes 

possessing any three of the following five risk factors: 1) FBG ≥100 mg/dL; 2) SBP ≥130 mmHg 

or DBP ≥85 mmHg; 3) TRG ≥150 mg/dL; 4) WC ≥88 cm for females and ≥102 cm for males; 

and 5) HDL-C <50 mg/dL for females and <40 mg/dL for males. Participants that were currently 

being prescribed medications for the treatment of hypertension, hyperglycemia, and/or 

dyslipidemia (n=17) were classified as meeting the criteria for the treated risk factor. The only 

other medications reported by participants with the potential to meaningfully influence 

cardiometabolic outcomes were muscle relaxants (n=3) and over-the-counter anti-inflammatory 
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drugs (n=12). However, as part of the overnight fasting protocol, participants were instructed to 

abstain from taking these medications until after their study visit. Because these medications 

were used on an as-needed basis for personal or prescribed reasons, and are not considered in the 

formal diagnostic criteria for MetS, they were not included in model development. Nonetheless, 

their prevalence is reported here to provide transparency and contextual clarity. 

The primary outcome variable in the current study was MetSindex, defined as an expansion 

of the simple dichotomous classification system (i.e., MetS positive or negative) into a 

continuous value whose magnitude represents the severity and progression of MetS. MetSindex 

scores were calculated from the aforementioned risk factors for each participant using the sex 

and race specific equations put forth by Gurka et al 
11

. Interpreted as a z-score, positive and 

negative MetSindex values represent greater and lesser MetS severity and progression, 

respectively, and these values have shown to be associated with additional markers of 

cardiometabolic dysfunction 
11

. 

Model Development  

A new MetSindex prediction equation was developed using least absolute shrinkage and 

selection operator (LASSO) regression procedures 
15

 after employing the demographic and 

smartphone-derived anthropometric predictor variables listed hereafter. Demographic predictor 

variables included: age, height, weight, sex, race (White/Black), ethnicity (Hispanic/non-

Hispanic), medication use (prescribed or not prescribed medication to treat hypertension, 

hyperglycemia, and/or dyslipidemia), and smoking status. Anthropometric predictor variables 

produced by the smartphone application included: circumferences (cm) of the head, collar, neck, 

halter, shoulder, chest, bust (designated as HingedBust in the application), upper arms, biceps, 

forearms, wrists, thighs, knees, calves, ankles, and vertical trunk; lengths (in cm) of the arms, 

outside legs, and central trunk; surface areas (cm
2
) and volumes (cm

3
) of the whole-body, arms, 

legs, and torso; and appendage-to-trunk circumference index (ATI), defined as the sum of left 

and right upper arm, thigh, and calf circumferences divided by the stomach circumference 
24

. 

Circumferences and lengths collected from the right and left sides were averaged to produce a 

single estimate, whereas right and left surface areas and volumes were summed. To evaluate 

whether smartphone-derived anthropometric measurements offered additional predictive value 
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beyond demographic variables alone, we first developed a baseline model using only 

demographic predictors via LASSO regression. This was followed by the construction of a 

comprehensive model incorporating both demographic and smartphone anthropometric 

variables. 

Statistical analyses 

Using a medium effect size (f
2
: 0.25) and five predictor variables, power analyses for 

multiple linear regression revealed that 57 participants would yield 80% power at an α = 0.05. To 

create and assess a newly-developed MetSindex prediction equation, a training dataset comprised 

of 80% of the sample (n=226) and a testing dataset containing the remaining 20% (n=55) were 

produced using random sampling techniques in R 
25

. LASSO regression was then used to fit 

models in the training dataset using the glmnet package in R 
26

. Importantly, LASSO regression 

works by identifying the predictor variables that decrease prediction error while simultaneously 

shrinking the coefficients of extraneous variables towards zero so that they are effectively 

omitted from the model 
27

; which ultimately produces the most parsimonious model that 

minimizes multicollinearity and model overfitting. To determine the LASSO shrinkage 

technique, the best λ value was calculated using 10-fold cross-validation with the one SE rule 
15

.  

After the MetSindex prediction model was developed in the training sample, the model was 

used to predict MetSindex in the testing sample. The performance of the smartphone-predicted 

MetSindex was evaluated against the actual MetSindex in the testing sample using paired t-tests, 

equivalence tests, coefficients of determination (R
2
), Deming regression, Bland-Altman analyses, 

root mean squared error (RMSE), standard error of the estimate (SEE), and concordance 

correlation coefficients (CCC). Because MetSindex is interpreted as a z-score, the equivalence 

regions were defined as ±0.34 to represent approximately one-third of a standard deviation, 

which have been used to assess z-score values in prior studies 
28

. The agreement between 

smartphone-predicted MetSindex and the line-of-identity using Deming regression was determined 

if the 95% confidence intervals for the intercept and slope contained the values 0 and 1, 

respectively. The 95% limits of agreement (LOA) and proportional biases were determined using 

Bland-Altman and linear regression techniques.  
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Additionally, the ability of the retained smartphone variables to correctly predict MetS 

classification was evaluated using binomial logistic regression with a cutoff point of 0.5 (MetS 

negative: <0.5; MetS positive: ≥0.5). The true positive and true negative proportions of 

smartphone-predicted MetS were compared to the proportions determined by the actual 

diagnostic procedures using the receiver operating characteristic (ROC) area under the curve 

(AUC), chi-square tests with corrections for continuity, R
2

McFadden, and sensitivity, specificity, 

accuracy, and positive (LR+) and negative (LR-) likelihood ratios. Acceptable accuracy of the 

smartphone-predicted MetS classification was defined as having a both an AUC ≥0.70 and 

having a summed sensitivity and specificity of ≥1.50 
29–31

. Variance inflation factors (VIF) were 

used to assess the multicollinearity of the final LASSO and logistic regression models (all VIFs 

≤6.24). Statistical significance was accepted at p<0.05.  

RESULTS 

Metabolic Syndrome Severity  

Descriptive characteristics of the participants in the combined, training, and testing 

samples are presented in Table 1. The initial model, which included only demographic predictors 

(intercept: -0.2925), retained age (β = 0.0028), medication use (β = 0.2692), height (β = -0.0113), 

and weight (β = 0.0234). However, this model performed worse overall (R² = 0.63; LOA = 0.82; 

AUC = 0.84; joint sensitivity and specificity = 1.48) compared to the full model that 

incorporated both demographic and smartphone-derived anthropometric variables (reported 

below). Notably, when LASSO regression was applied to the complete model, age and height 

were excluded, while the coefficients for medication use and weight were substantially reduced, 

indicating that the additional anthropometric features provided stronger predictive value. 

The coefficients of the retained variables using LASSO regression in the complete model 

are presented in Table 2. Retained variables included medication use, weight, bust 

circumference, thigh circumference, and ATI, which produced the following equation: 

Smartphone-predicted MetSindex: -0.8880 + 0.1493(medication use=1; 0=no medication 

use) + 0.0089(weight) + 0.0079(bust circumf.) + 0.0140(thigh circumf.) – 0.6247(ATI). 
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The equation presents unstandardized coefficients for the predictors retained in the final model. 

All other predictor variables, as detailed in the preceding sections, had their coefficients shrunk 

to 0, effectively excluding them from the model. Figure 1a-d illustrates the agreement between 

the newly-developed smartphone MetSindex prediction equation and the actual MetSindex in the 

testing sample. Paired t-tests revealed significant differences between smartphone-predicted and 

actual MetSindex (p=0.006; Fig.1a), though smartphone-predicted MetSindex demonstrated 

equivalence with actual MetSindex (Fig.1d). Supplemental Table 1 presents the prevalence and 

risk factors of MetS across MetSindex groups, as defined by these equivalence bounds, to further 

support the results of our equivalence testing procedures. R
2
, CCC, RMSE, and SEE values (Fig. 

1c) revealed good agreement between methods, and LOA were moderate. Proportional biases 

(p<0.001; Fig.1a) and differences in the slope (but not intercept) from the line-of-identity were 

observed (Fig.1b).  

Metabolic Syndrome Classification 

 The ROC plots and associated contingency tables of Figure 2 demonstrate the ability of 

the retained smartphone variables to accurately diagnose MetS compared to the traditional 

diagnostic standards. The true prevalence of MetS was 18.2% whereas the apparent prevalence 

of smartphone-predicted MetS was 14.5%. Chi-square tests for the overall model were 

significant (p<0.001), and smartphone-predicted MetS had a diagnostic accuracy of 92.7%, with 

sensitivity (70%), specificity (97.8%; joint sensitivity+specificity: 1.68), and LR+ (31.5) and 

LR- (0.31) indicating acceptable diagnostic performance. Moreover, the model AUC (0.89) and 

R
2
McFadden (0.43) revealed excellent model performance.  

DISCUSSION 

After developing a MetSindex prediction model using LASSO regression and cross-

validating this model in an independent subset of participants, our evaluations revealed that 

smartphone-acquired anthropometrics can provide accurate estimates of MetS severity and 

progression. While the ability to predict a continuous MetSindex score from a smartphone 

application may improve diagnostic flexibility and better inform clinicians of MetS progression, 

the absence of diagnostic cutoffs may complicate clinical decision making and limit the 

implementation of this technique at scale. Therefore, we also assessed whether smartphone-
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derived anthropometrics could accurately predict MetS classification, and our model 

demonstrated good-to-excellent ability to identify MetS in accordance with traditional diagnostic 

standards. These findings affirm that both MetS and its severity can be accurately determined 

using a smartphone application. 

 The ability of 3D body scanners to deliver accurate estimates of conventional 

anthropometrics is well-established 
32

. However, ongoing advancements in artificial intelligence 

(AI) and digital imaging now offer new opportunities to leverage the predictive power of these 

automated anthropometrics to produce more clinically significant outcomes. For example, 3D 

scanners have accurately predicted measurements such as appendicular lean mass 
15

 and MetS 
9
 

based on the established relationship between key anthropometrics and both muscularity 
33

 and 

chronic disease 
34

. In fact, prior studies have demonstrated that body volumes obtained from 3D 

scanners predict MetS more accurately than traditional anthropometric assessments 
5
, which is 

likely attributed to the advanced landmarking procedures that can eliminate human error while 

simultaneously automating more elaborate measurements. However, given the existing 

limitations of 3D scanning, manufacturers have begun to couple 3D scanners with smartphone 

equivalents, which have demonstrated a similar ability to predict MetS 
5
. 

 Our findings align with previous studies that employed both 3D 
5,9

 and smartphone 
5
 

scanning techniques for predicting MetS classification. However, to our knowledge, only one 

study has assessed whether a smartphone application can predict the prevalence and severity of 

MetS 
5
. Although the predictive power of our smartphone scanning model for detecting binary 

MetS status was nearly identical to other methods 
5,9

, our model exhibited markedly greater 

accuracy in predicting MetSindex 
5
. While the improved performance of our model could be due to 

the technological differences between applications, it could also result from variations in the 

strength of the predictor variables. For example, other applications use body volume estimates to 

predict MetS, which have shown comparable performance to traditional circumferences collected 

from similar regions 
8
. In fact, previous studies have shown that the prediction of MetS 

9
 and 

MetS risk factors 
35

 improves most when using automated circumferences. Since body 

circumferences appear to be stronger predictors of binary MetS status, and MetSindex is simply an 

extension of this status, the systematic selection and omission of body circumferences and 

volumes, respectively, likely accounts for the performance differences between applications. 

https://doi.org/10.1017/S000711452510576X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S000711452510576X


Accepted manuscript 

 

Importantly, since WC is a risk factor for MetS, and is included in MetSindex, we chose to 

exclude closely related raw circumferences as predictor variables. This allowed us to avoid 

potential biases, and addressed the challenges of predicting MetSindex from abdominal 

circumferences in Black adults 
21

. Despite excluding these variables, we still observed acceptable 

model performance using only circumferences of the bust, thighs, and ATI. Recent investigations 

using AI to predict diabetes and hypertension from biometric data have shown that thigh 

circumference enhances model specificity more than BMI; likely because it can better discern 

young adults with greater muscularity from those with higher body fat 
36

. While it is reasonable 

to assume that bust circumference was included as a marker of upper body adiposity in the 

absence of raw abdominal measurements, bust circumference may also uniquely contribute to 

MetS. Exploratory analyses of the present dataset revealed that bust, but not WC (r: -0.09, 0.00; 

p>0.050), was significantly associated with SBP (r: 0.30, p=0.029) and HDL-C (r: -0.27, 

p=0.047) after adjusting for both age and BMI. Interestingly, HDL-C is inversely associated with 

estradiol 
37

, which contributes to fat accumulation in breast tissue 
38

. Greater fat accumulation 

could stimulate aromatase activity, and elevated conversion of androgens-to-estrogens may 

increase bust size 
39

 whilst exerting vasoconstrictive responses that increase SBP 
40

. Despite the 

historical reliance on abdominal measurements to assess cardiometabolic abnormalities, our 

findings suggest that individual components of MetS could be more effectively captured using 

alternative anthropometrics, and mobile scanning presents an emerging opportunity to automate 

anthropometrics that have traditionally been difficult to obtain.  

There are a few limitations that warrant discussion. While our sample was diverse, we 

were unable to evaluate Asian adults, as MetSindex is currently unavailable for this group. The 

average age of our sample was also relatively young. However, the prevalence of MetS in our 

sample matches the national prevalence for this age range and reflects the age group 

experiencing the most rapid increase in MetS 
4
. Although age was included as a continuous 

predictor in the initial LASSO regression model, it was not retained in the final model, 

suggesting that it did not contribute additional predictive value beyond the selected variables. 

Similarly, sex was included as a predictor but was excluded during model selection. While future 

models evaluating the performance of smartphone-derived anthropometrics for predicting 

MetSIndex within sex-specific subgroups may be warranted, the sample sizes in our study were 
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insufficient to support adequately powered stratified analyses and may have introduced bias into 

subgroup-specific models. Future studies seeking to improve these models should consider 

employing age- and sex stratified models. The use of prescription medication to treat specific 

MetS risk factors may have lowered MetSindex for these participants. However, we accounted for 

this during LASSO, and medication use was retained as a variable in the final model. Because 

DBP is not included in MetSindex, unique hypertensive MetS phenotypes may have been 

overlooked 
21

. The prediction model in our study exhibited significant proportional biases and 

differences from the line-of-identity, which, in the context of chronic disease diagnosis, may lead 

to underestimation of risk among high-risk individuals. However, such biases, particularly 

underestimation, are commonly reported in studies validating novel anthropometric and body 

composition methods. Despite this, our model demonstrated excellent classification accuracy for 

MetS, supporting its potential utility in risk stratification. Still, users and practitioners should 

employ caution when using this technique. Because the mobile application used in our study has 

well-established test-retest reliability 
12,13,16,17

, we did not collect duplicate measures of the 

smartphone-derived anthropometric variables, and therefore cannot report test-retest 

reproducibility for these features (thigh, ATI, and bust circumference) within the context of this 

study. However, previous studies have demonstrated the reproducibility of the thigh and chest 

circumferences produced by this mobile application, as well as the circumferences used to 

calculate ATI 
14,17

. Although, to our knowledge, no studies have specifically evaluated the test-

retest reproducibility of bust measurements using this mobile application, unpublished pilot data 

from our laboratory in an independent sample of female participants demonstrated acceptable 

agreement between smartphone-derived and tape-measured bust measurements (R² = 0.82; mean 

difference = 3.07 cm). Additionally, other studies have reported acceptable agreement between 

smartphone-derived and MRI-based breast volume estimates 
41

. Together, these findings support 

the reliability and/or validity of the anthropometric variables retained in our prediction model. 

Finally, our findings are specific to the application used in our study. 
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 In conclusion, smartphone scanning applications can accurately assess MetS prevalence 

and severity, supporting its use in remote settings. While longitudinal studies are needed to 

determine its effectiveness in monitoring changes, our findings highlight the predictive power of 

automated anthropometrics and presents new possibilities for health screening beyond clinical 

environments.  
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Figure 1a-d. Bland-Altman (a), Deming regression (b), simple regression (c), and equivalence plots 

demonstrating the agreement between smartphone-predicted MetSindex and the actual MetSindex in the testing 

sample (n = 55). For the Bland-Altman plots (a), the upper and lower dashed lines represent the 95% LOA, the 

middle-dashed line represents the MD between the smartphone-predicted MetSindex and the actual MetSindex, 

and the solid blue line and its corresponding shaded area represents the regression line and its 95%CI, 

respectively. For the Demming regression plots (b), the solid black line represents the line of identity and the 

red dashed line represents the regression line. For the simple regression plot (c), the solid blue line and its 

corresponding shaded area represents the regression line and its 95%CI, respectively. For the equivalence 

plots, the average MD (top) and effect size MD (bottom) are presented, where the blue shaded regions 

represent the TOST CIs displayed in the CI legend, the black circles and intersecting horizontal lines represent 

the MD and the TOST 90%CIs, respectively, and the vertical dashed lines indicate the equivalence regions.  

β: proportional bias coefficient; CCC: concordance correlation coefficient; CI: confidence interval; LOA: 95% 

limits of agreement; MD: mean difference calculated as the smartphone-predicted MetSindex minus the actual 

MetSindex.; MetSindex: metabolic syndrome (MetS) severity score; R
2
: coefficient of determination; RMSE: root 

mean square error; SEE: standard error of the estimate; TOST: values from the TOSTER package in R.  

* statistically significant at p<0.050.  

https://doi.org/10.1017/S000711452510576X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S000711452510576X


Accepted manuscript 

 

 

Figure 2. An ROC curve and corresponding AUC demonstrating the ability of the predictor variables 

retained during LASSO regression to predict conventional MetS classification relative to actual MetS 

status in the testing sample (n=55). Positive and negative MetS cases are presented for both smartphone-

predicted and actual MetS, as well as the sensitivity, specificity, and accuracy of smartphone-predicted 

MetS status. R
2
McFadden, chi-square, and LR+ and LR- are also tabulated. 

χ
2
: chi-square; AUC: area under the curve; LASSO: least absolute shrinkage and selection operator; LR+: 

positive likelihood ratio; LR-: negative likelihood ratio; MetS: metabolic syndrome; R
2

McFadden: McFadden 

pseudo coefficient of determination; ROC: receiver-operating characteristic. 

* statistically significant at p<0.050. 
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Table 1. Descriptive Characteristics of the Combined, Training, and Testing Samples  

 Combined Sample Training Sample Testing Sample 

N 281 226 55 

Sex (F/M) 173/108 136/90 37/18 

Race (W/B) 170/111 133/93 37/18 

Ethnicity (H/NH) 17/264 9/217 8/47 

Metabolic Syndrome 49 39 10 

Medication use 18 12 6 

Smoke 16 14 2 

Age (y) 24.5 ± 8.7 24.6 ± 8.8 24.3 ± 8.3 

Height (cm) 169.6 ± 9.8 169.8 ± 10.1 168.7 ± 8.1 

Weight (kg) 77.1 ± 20.2 76.9 ± 20.6 77.8 ± 18.8 

BMI (kg/m
2
) 26.7 ± 5.9 26.5 ± 5.9 27.3 ± 6.1 

Body fat (%)
a 27.3 ± 8.2 26.9 ± 8.1 28.9 ± 8.7 

Fat Mass (kg)
a 21.7 ± 11.4 21.3 ± 11.4 23.3 ± 11.6 

Fat-free mass (kg)
a 55.4 ± 12.8 55.6 ± 13.3 54.5 ± 11.0 

Metabolic Syndrome Severity 

Score  

-0.36 ± 0.70 -0.33 ± 0.71 -0.43 ± 0.68 

Smartphone Metabolic Syndrome 

Severity Score
 b
  

- - -0.28 ± 0.43 

Waist Circumference (cm)
a 88.5 ± 14.4 88.1 ± 14.3 90.2 ± 14.6 

Systolic blood pressure (mmHg) 117.2 ± 13.4 117.6 ± 13.4 115.7 ± 13.5 
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Diastolic blood pressure (mmHg) 78.9 ± 10.4 78.5 ± 10.3 80.9 ± 10.7 

HDL-C (mg/dL) 48.4 ± 13.9 48.0 ± 14.3 50.4 ± 12.1 

Triglycerides (mg/dL) 111.2 ± 100.7 116.3 ± 108.6 90.0 ± 54.2 

Fasting blood glucose (mg/dL) 89.7 ± 8.1 89.8 ± 7.8 89.4 ± 9.1 

Head (cm) 59.2 ± 3.5 59.1 ± 3.6 59.6 ± 2.9 

Collar (cm) 37.3 ± 4.5 37.3 ± 4.6 37.3 ± 4.0 

Neck (cm) 43.1 ± 4.1 43.1 ± 4.3 42.9 ± 3.5 

Halter (cm) 85.2 ± 8.1 84.9 ± 8.1 86.4 ± 8.2 

Shoulder (cm) 110.8 ± 12.3 110.7 ± 12.5 111.4 ± 11.5 

Chest (cm) 101.6 ± 14.6 101.2 ± 14.7 103.1 ± 14.5 

Bust (cm) 104.1 ± 13.7 103.6 ± 13.7 105.8 ± 13.8 

Upper arms (cm) 33.8 ± 5.1 33.6 ± 5.0 34.5 ± 5.4 

Biceps (cm) 31.6 ± 5.1 31.5 ± 5.0 32.2 ± 5.5 

Forearms (cm) 26.7 ± 3.4 26.7 ± 3.4 26.8 ± 3.3 

Wrists (cm) 16.4 ± 1.7 16.4 ± 1.7 16.5 ± 1.6 

Stomach (cm) 92.1 ± 13.7 91.6 ± 13.6 93.8 ± 14.0 

Waist (cm) 91.3 ± 13.5 90.8 ± 13.6 93.6 ± 13.7 

Hips (cm) 104.9 ± 11.8 104.4 ± 11.7 107.0 ± 12.3 

Thighs (cm) 59.9 ± 7.7 59.5 ± 7.4 61.4 ± 8.7 

Knees (cm) 38.3 ± 3.9 38.1 ± 3.8 39.0 ± 4.4 

Calves (cm) 38.0 ± 3.9 37.9 ± 3.9 38.6 ± 4.0 

Ankle (cm) 24.5 ± 2.0 24.5 ± 2.1 24.7 ± 1.8 
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Arm length (cm) 58.6 ± 4.2 58.6 ± 4.4 58.3 ± 3.2 

Outside leg length (cm) 103.3 ± 6.4 103.4 ± 6.7 103.0 ± 4.5 

CTL (cm) 154.5 ± 13.2 154.4 ± 13.6 155.0 ± 11.7 

VTC (cm) 162.4 ± 14.9 162.2 ± 15.3 163.3 ± 13.3 

Surface area (cm
2
) 18,201 ± 2,716 18,156 ± 2,764 18,385 ± 2,524 

Arm surface area (cm
2
) 3,280 ± 564 3,280 ± 575 3,278 ± 521 

Leg surface area (cm
2
) 8,804 ± 1,211 8,778 ± 1,227 8,914 ± 1,149 

Torso surface area (cm
2
) 6,120 ± 1,056 6,102 ± 1,078 6,191 ± 968 

Body volume (cm
3
) 75,494 ± 21,854 74,981 ± 21,969 77,605 ± 21,444 

Arm volume (cm
3
) 8,134 ± 2,632 8,109 ± 2,623 8,236 ± 2,693 

Leg volume (cm
3
) 19,629 ± 5,036 19,430 ± 4,880 20,449 ± 5,606 

Torso volume (cm
3
) 47,661 ± 14,933 47,373 ± 15,190 48,841 ± 13,892 

ATI 2.88 ± 0.19 2.87 ± 0.19 2.88 ± 0.15 

Data are presented as N or mean ± standard deviation.  

All body circumferences from the right and left sides were averaged to produce a single estimate. 

Appendicular surface areas and volumes were calculated as the sum of the right and left sides. 

For ATI, all variables were collected using smartphone-derived measurements. Medication use 

was defined as being prescribed medication to treat hypertension, hyperglycemia, and/or 

dyslipidemia. Smoking was defined as currently smoking or vaping. 

F: female; M: male; White; B: Black; H: Hispanic; NH: non-Hispanic; BMI: body mass index; 

CTL: center trunk length; VTC: vertical trunk circumference; ATI: appendage-to-trunk 

circumference index 

a 
estimates produced using smartphone application; 

b
 estimates produced using the newly 

developed smartphone prediction model.
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Table 2. LASSO regression model coefficients predicting metabolic syndrome severity from 

smartphone-derived anthropometrics  

Predictor Variables Metabolic Syndrome Severity Prediction 

Coefficients 

Intercept -0.8880 

Medication use 0.1493 

Weight (kg) 0.0089 

Bust (cm) 0.0079 

Thighs (cm) 0.0140 

ATI -0.6247 

All data are presented as the unstandardized coefficients for each variable within the 

corresponding body composition prediction model. The coefficients of all other predictor 

variables were shrunk to “0” and are therefore not included in the final model equations nor the 

table.  

“Medication use” was defined as: 1 = prescribed medication to treat hypertension, 

hyperglycemia, and/or dyslipidemia; or 0 = no prescribed these medications. For ATI, all 

variables were collected using smartphone-derived measurements, and was defined as the sum of 

left and right upper arm, thigh, and calf circumferences divided by the stomach circumference 

ATI: appendage-to-trunk circumference index.  
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