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A CHARACTERISATION OF RIEMANNIAN FOLIATIONS
AND TOTALLY UMBILICAL SUBMANIFOLDS

P H . TONDEUR AND L. VANHECKE

We discuss characterisations of Riemannian foliations, totally geodesic submani-
folds, and totally umbilical submanifolds by sharp inequalities. These derive from
the same linear algebraic set up, characterising a linear endomorphism which is a
multiple of the identity.

1. GENERAL SET UP

In the first section we derive two general theorems which will lead to the applica-
tions mentioned in the abstract.

Let V be a finite-dimensional real vector space and g an inner product on it.
Further, let V = V\ © V2 be an orthogonal decomposition of V with dim V\ = m and
dim V2 — n. The induced product on V\ will be denoted by g\ and that on V2 by gi.

Next, let 7 be a symmetric bilinear form on Vi with values in V2 • Then

where u is a unit vector of V\, is a function on the unit sphere S m - 1 ( l ) in V\ . Here
we identify Vi with Rm via an orthonormal basis {ea,a — 1, . . . ,m}. Further, we put

— ru — / xaea.
a=l

Then we define F : Vi -> R;x H-> F(X) by

(1) F(x)=r*f(u)=
a,6,c,d=l

where yab = y{ea,eb).
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102 Ph. Tondeur and L. Vanhecke [2]

Our aim is to compute A / on 5 m - 1 ( l ) where A denotes the Laplace operator on
this unit sphere. Therefore, let A denote the Laplace operator on R m . We shall first
compute AF and then use the well-known relation (see for example [1])

d2 m - 1 d ~
or2 r or

where A r denotes the Laplacian on S" 1 " 1 ^) . Note that

It follows easily that

-fa- ~ 4 2 ^ Xf>xcXd92\.lab,lcd),
° b,c,d

Hence, we obtain

(3)
a=l

Next, put j(u,v) =

for u, v £ Vi , in terms of an orthonormal basis {e;, i = 1 , . . . , n} of V2 and the symmet-
ric endomorphisms Ti : Vi —* V\, i = 1,.. . ,n. We also define a symmetric non-negative
operator r 2 : Vi —> Vi by

for u 6 Vi. Then (3) can be written in the form

(4) (AF)(i) = 4r2

where Hy = / ]7 (e a , e n ) .
0=1

Next, using (1) and (2) we get, by putting r — 1,

m

(5) (AF)(u) - 4{J2( J1l7(u,«)) + 2j1(r
2«,«) - (m
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and finally, integration over 5 m - 1 ( l ) yields

(6)

where dfi is the canonical measure on 5m~1(l).

The first general result follows now at once from (6).

THEOREM 1. 7 = 0, that is, Vi is totally geodesic in V, if and only if

(7) g2(H^<r{u,u)) > (m + 2)g2{>Y{u,u),'r(u,u))

on S " 1 - 1 ^ ) .

To obtain the second result, we rewrite (6) in the following form :

(8) /
)

+3 / {
Jsm-1(i)

Since g2(-y(u,u),f(u,u)) = "Y] g^T JU, u)2,
»=i

the Schwarz inequality implies

(9) gi (T2u,u) ^ ff2(7(u,u),7(U)«)).

Then we get
THEOREM 2 . Vi is totally umbilical in V, that is, I\ = Aj7 for i = 1, . . . ,n, if

and only if

(10) 52(Jff^,7(u,u))-5i(r2u,it) > (m-l)ff2(7(u,u),7(u,u))

on S™-1^).

PROOF: First, suppose (10) is satisfied. Then we have by (8) and (9)

and hence, by the Schwarz inequality,

for i — l , . . . , n . Thus, I\u must be proportional to u for all u, which proves the
result.

Conversely, let I\ = AjJ, i = 1, . . . ,n. Then we have

<y(u,u) = J2^U H^ = mJ2^U T2 = ( ̂  A? ) /
»=1 «=1 \ i=l /

and the equality holds in (10). U
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REMARK. (6) may also be checked directly by using the integration formulas (see for
example [3, 6]). Then we have

Tn

gx (T
2u,u)dn = ^ - i trace T2,

+ 2 tracer2},/ ( ( ) (

where cm_i denotes the volume of 5*n~1(l).
In the rest of this note we shall consider applications of these two theorems by

specialising the symmetric bilinear form 7. The first one treats foliations and the
second one submanifolds of Riemannian manifolds.

2. APPLICATIONS TO FOLIATIONS

Let 5 be a foliation on a Riemannian manifold (M,g). We refer to [8, 9] for more
detailed information. We denote vector fields tangent to J by 17, V,... and vector fields
orthogonal (transversal) to $ by X,Y, The metric restricted to tangent vectors is
denoted by gi,, and the metric restricted to normal vectors is denoted by gQ. For the
Lie derivative 6(U)gQ we have then the following formula [9, (6.9)]:

LEMMA 3 . (0(U)gQ)(X,Y) = -2gL(a±{X,Y),U), where a-1 is the second fun-
damental form of the normal bundle L^- of 5-

In terms of the Levi Civita connection VM of g and the tangential projection
nL : TM —> L, the symmetric bilinear form aL is given by

[8, 9, (6.8)].

Using a^ for 7 in Theorem 1 we get the following characterisations of Riemannian

foliations, given by a.1- — 0 according to [9, Corollary 6.10].

THEOREM 4 . Let 5 be a foliation of codimension q on a Riemannian manifold

(M,g). Then 5 is Riemannian (that is,- g is bundle-like) if and only if

gL(T-L,a±(x,x)) > (q + 2)gL(a-L(x,x),a-L{x,x))

for all unit normal vectors x of 'S.

Note that T1- is the mean curvature vector field of the normal bundle given by

a = l
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for an orthonormal frame {eO) a = 1 , . . . , q} of transversal vectors [9, (6.27)].

Next, we consider the class of foliations with a holonomy invariant transversal

form v. According to [9, (6.32)], these are characterised by r1- = 0. Assuming this

condition, we rewrite (6) in the form

+0 I {SQ((A±)2xtx) -gL(a±(x,x),a-L(x,x))}dn = 0

at each point of M and for each unit normal vector z to ^ at this point. Here
(A-1) : L1- —• L1- is the endomorphism F2 corresponding to the bilinear form a x .
Then Theorem 2 yields the following result.

THEOREM 5 . Let $ be a foliation with holonomy invariant transversal volume
on the Riemannian manifold (M,g). Then 5 is Riemannian if and only if there exists
a number (3 such that

2 ' a±(* )*) ,ax(x,z)) for (3 > 0,

or
(2 - (3)gQ [{Ax)2x, x) < (q + 2 - j3)gL (a x (s , x), a^x, x)) for /? < 0

for each unit normal vector x to 5•

3. APPLICATIONS TO SUBMANIFOLDS

For a second series of applications we consider submanifolds of a Riemannian man-
ifold. For definitions and more detailed information we refer to [2], for example.

Let (M,g) be a Riemannian manifold of class C°° and suppose dim M = m.
Further, let V denote its Levi Civita connection and R its Riemann curvature tensor
defined by

for tangent vector fields X, Y. Next, let (N,g) denote an n-dimensional submanifold
of M where g also denotes the induced metric. Its Riemann curvature tensor will be
denoted by R and the associated Ricci tensor by p.

Now, let p £ N and let {eA, A = 1,. . . ,m} be an orthonormal basis of TPM such
that ei, i = l , . . . , n are tangent to N and en+1,...,em normal to N at p. Further,
let <r denote the second fundamental form of N and put, at p,

g(<r(x,y),ea) - -g(Sax,y), a = n + l,...,m
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for x, y 6 TpN. Here 5O denotes the shape operator corresponding to eo. For u £ TPN,
the Gauss equation yields

m

(11) p(u,u) = J2^i-''+s(H,a(u,u))- £ g(Sau,Sau)
»=1 o=n+ l

o=n+l o=n+l

where /> is the Ricci tensor of (M,g) and 27 the mean curvature vector field of N in

M.

For an arbitrary unit vector u £ TpiV, (6) becomes, using 7 = a and (11),
(12)

" ~ /"
g{S2u,u)dti = 0

and (8) may be written as

(13) / {p(u,u)
ys"-i(i)

+3 / {g(S2u,u)-g(<r(u,u),a(u,u))}dfi = O

where S 2 corresponds to T2. The relations (12), (13) yield at once

THEOREM 6 . N is a totally geodesic subxnajiifold if and only if

p(u,u) > (n + 2)5(<7-(u,ti),<T(U,U))

for all unit tangent vectors u.

THEOREM 7 . N is a totally umbilical submanifold if and only if

n

p{u,u) ^ (n -

for all unit tangent vectors u.

As a special case we then get

COROLLARY 8 . Let (M,g) be a space of constant curvature c. Then N is a

totally geodesic submanifold if and only if

p{u,u) > (n - l)c + (n + 2)g(a(utu),a(u,u))
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for all unit tangent vectors u.

COROLLARY 9 . Let (M,g) be a space of constant curvature c. Then N is a
totally umbilical submanifold if and only if

p{u,u) ^ (n - l){c + g(<r(u,u),<r(u,u))}

for all unit tangent vectors u.

REMARK. For c = 0 and n = m — 1 we obtain the result provided in [4] and used to
obtain a characterisation for a compact and connected hypersurface in R™+1 to be a
sphere in terms of lower bounds on the Ricci curvature.

Finally, we consider some special cases in almost Hermitian theory. For more details
about submanifolds in this context we refer to [7]. Let (M,g,J) be a Kahler manifold
and let N be a holomorphic submanifold of M. Then N is minimal and we get

THEOREM 10. Let N be a holomorphic submanifold of a Kahler manifold
(M,g,J). Then N is totally geodesic if and only if

p(u,u) ^ (n - l)g(a(u,u),<r{u,u)) +

for all unit tangent vectors u.

Note that the same result holds when (M,g,J) is a quasi-Kahler manifold, that
is, an almost Hermitian manifold satisfying

for all tangent vectors X, Y [5].
Next, let (M,g, J) be a complex space form, that is, a Kahler manifold of constant

holomorphic sectional curvature, say c. Further, we note that the second fundamental
form a of a holomorphic submanifold N in a Kahler manifold satisfies

(14) <r(Ju, u) = J<r(u, u), er(Ju,Ju) + <x(u,u) = O

for any tangent vector u. This and the Gauss equation yield that the holomorphic
sectional curvature H[u) of N corresponding to the unit vector v. is given by

-ff(u) = c - 2g(a(u,u),a(u,u)).

bo since > xtueue- = —:—c
^ 4

in the complex space form M, we obtain
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COROLLARY 1 1 . Let N be a holomorphic submanifold of a Kahler manifold of
constant holomorphic sectional curvature c. Then N is totally geodesic if and only if
for any unit vector u tangent to N we have

p(u,u) ^ 4 c + (n- l)g(o-(u,u),o-(u,u))

or equivalent]/,

p[u,u) > —c — H(u).
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